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ABSTRACT

We propose a simulation-based value iteration algorithm for approximately solving infinite horizon discounted
MDPs with continuous state spaces and finite actions. At each time step, the algorithm employs the shrinking
ball method to estimate the value function at sampled states and uses historical estimates in an interpolation-
based fitting strategy to build an approximator of the optimal value function. Under moderate conditions,
we prove that the sequence of approximators generated by the algorithm converges uniformly to the optimal
value function with probability one. Simple numerical examples are provided to compare our algorithm
with two other existing methods.

1 INTRODUCTION

Markov decision processes (MDPs) (e.g., Bertsekas 2015) are among the most widely used frameworks for
studying sequential decision making problems under uncertainty. However, numerically optimizing such
models in practice has been recognized as a very challenging task because the optimal solution is characterized
by an underlying functional equation called the Bellman equation, solving of which would require explicit
knowledge of state transitions and the ability to enumerate all state-action pairs. Consequently, effective
MDPs solutions typically rely on the idea of approximately solving the Bellman equation through a fusion
of tools from function approximation and computer simulation (Chang et al. 2013; Gosavi 2014). This has
given rise to a variety of techniques collectively known as reinforcement learning (RL) (Sutton and Barto
1998; Busoniu et al. 2010) or approximate dynamic programming (ADP) (Bertsekas and Tsitsiklis 1996;
Powell 2007). Since many RL algorithms are rooted in classical approaches such as value iteration (VI)
and policy iteration (PI), their applications are mostly centered on MDPs with discrete state spaces.

For continuous-state MDPs, a mainstream approach is based on a suitable (often implicit) discretization
of the state space, so that the techniques developed for discrete-state problems can be directly carried
over by working with a countable number of states. One popular algorithm of this kind is the fitted value
iteration (FVI) (e.g., Chandramohan et al. 2010; Gordon 1995; Mbuwir et al. 2017). The algorithm
requires a batch of transition samples to be pre-generated (off-line) at a given finite set of states, and uses a
supervised learning procedure to iteratively approximate the value function based on the transition samples.
Stachurski (2008) provides error bounds on the performance of FVI by using non-expansive function
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approximators. Munos and Szepesvári (2008) show that as the numbers of states and transition samples
become sufficiently large, FVI can achieve arbitrarily high accuracy with large probabilities. Other useful
alternatives for continuous-state MDPs include the fitted Q-iteration (Ernst et al. 2005; Ernst et al. 2005)
and fitted policy evaluation (Busoniu et al. 2010). The former is essentially a variant of FVI applied to
estimating the Q-function, whereas the latter is used to gauge the performance of a given policy, which can
be employed in conjunction with a policy improvement procedure to obtain better policies. Although the
general idea of converting a continuous-state problem into a discrete-state one is natural and intuitive, the
practical performance of these algorithms could be highly influenced by the choice of the pre-determined
states and transitions samples. In addition, their convergence guarantees typically rely on non-expansive
approximation of the value-/Q-function (Busoniu et al. 2010; Ernst et al. 2005; Ormoneit and Sen 2002),
so care must be taken when selecting approximation techniques to prevent possible divergence.

In this paper, we present a new RL algorithm based on the classical VI for solving continuous-state
MDPs. The algorithm complements the aforementioned approaches in the sense that it is fully online and
discretization-free, and hence does not resort to the use of pre-selected transition samples. The underlying
idea is to combine the principle of VI with those of interpolation-based approximation techniques and
the shrinking ball method. Interpolation-based methods have been especially prominent in the simulation
optimization (SO) literature (e.g., Barton 2009; Gutmann 2001; Jones et al. 1998; Kleijnen 2009) but less
explored in the RL context. In a continuous-state RL setting, such an approximator has the benefit of
allowing the value function at an unsampled state to be reliably predicted using estimates at previously
sampled states, leading to good control decisions even at states that have not been visited thus far. The
shrinking ball method was originally introduced in Baumert and Smith (2002) for estimating the objective
function values in continuous SO. We adapt the method to construct value function estimates, so that the
variance of the estimate at a visited state can be effectively reduced by averaging estimates at other near-by
states sampled along a single trajectory produced by the algorithm.

For a given problem, our algorithm works with a learning policy and proceeds iteratively by generating
new transition samples from the policy. This information is used at each step in an asynchronous version of
the shrinking ball method to update the value function estimates at all previously encountered states. These
point estimates are then fully retained in an interpolation-based fitting strategy to construct an approximator
of the value function. We show that a careful coupling of these steps leads to a natural generalization
of VI for continuous-state MDPs and that under moderate conditions, the sequence of value function
approximators converges to the optimal value function in a uniform manner.

The rest of this paper is organized as follows. We begin by introducing the problem setting in Section
2. A detailed description of the proposed algorithm is then provided in Section 3. In Section 4, we present
the main convergence property of our algorithm with a sketch of proof. In Section 5, we provide two
simple numerical examples to illustrate and compare the performance of the algorithm with two existing
approaches. Finally, we conclude the paper in Section 6.

2 PROBLEM SETTING

We consider an infinite horizon discounted MDPs defined by a tuple (S,A, p,R,β ). We focus on the case
where the state space S is a compact subset of Rd and the action space A is a (discrete) finite set. Let
p(u|s,a),s,u ∈ S,a ∈ A be the Markov transition density, R(·, ·) : S×A→ R be the reward function, and
β ∈ (0,1) be the discount factor. To simplify the exposition, we assume all actions a ∈ A are admissible
for all states s ∈ S and that the one-stage reward R(s,a) can be explicitly observed at a given state-action
pair (s,a). Throughout our paper, we consider the scenario in which the transition density p is unknown
but can be simulated.

Let Π denote the set of stationary deterministic Markovian policies. For each π ∈Π, π(s) denotes the
action applied at state s under policy π . For an initial state s0 = s, we define the value function associated
with policy π as V π(s) = E [∑∞

t=0 β tR(st ,π(st))|s0 = s], where st is the state of the process at time t. The
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objective is to find an optimal policy π∗ ∈Π that attains the supremum of V π , i.e.,

V ∗(s) =V π∗(s) = sup
π∈Π

V π(s), (1)

for all initial states s ∈ S. Under mild conditions (see, e.g., Rust 1997), it can be shown that there exists a
policy π∗ satisfying (1) and that the optimal value function V ∗(s) is uniquely determined by the solution
to the following Bellman’s equation:

V ∗(s) = max
a

[
R(s,a)+β

∫
V ∗(u)p(u|s,a)du

]
= max

a

[
R(s,a)+βE

[
V ∗(s′)

]]
, (2)

where s′ ∼ p(·|s,a) is a generic random variable representing the new state observed after taking action a
at state s.

3 ALGORITHM DESCRIPTION AND CONVERGENCE ANALYSIS

In this section, we provide a description of the proposed algorithm and present the main convergence result.
We begin by introducing the following notation. Let {rt > 0}∞

t=0 be a sequence of positive nonincreasing
real numbers and B(s,r) be an open ball centered at s with radius r > 0. For two states sl and st sampled
at iterations l and t (l < t), let It(sl) = I{st ∈ B(sl,rt)} be an indicator function indicating whether the state
st is contained in the ball B(sl,rt).

3.1 Algorithm Description

A main difficulty involved in solving a continuous-state MDP is that the state space S cannot be enumerated
so that classical methods such as VI are no longer applicable. Therefore, one must instead consider suitable
approximations of the value function by working with only a countable number of states. Similar to a typical
RL method, our algorithm can be viewed as a simulation-based approach for approximately solving the
Bellman equation (2). The basic idea is to work with a learning policy (i.e., an action selection distribution)
and then iteratively construct a sequence of value-function approximators based on simulation samples
generated from the policy in an online manner. In our algorithm, the function approximation is carried
out using an interpolation-based fitting strategy. Such a strategy has been widely employed in simulation
optimization to approximate the response surface of an unknown function (e.g., Barton 2009; Fan and Hu
2018; Gutmann 2001; Jones et al. 1998; Kleijnen 2009). Compared to other popular approaches such as
linear combinations of basis functions and neural networks, an interpolation-based approximation technique
does not require prior knowledge about the problem at hand and often results in smooth interpolators that
allow easy quantification of their approximation errors.

Suppose at time t, a function approximator Vt of the value function V ∗ has been obtained. Then, a
value function estimate Ṽt(st) at the state st encountered at time t can be formed by replacing V ∗ in (2)
with Vt ,

Ṽt(st) = max
a

[
R(st ,a)+βE

[
Vt(s′t+1)

]]
, (3)

where s′t+1 ∼ p(·|st ,a) is the sampled next state. Note that since the approximator Vt has an analytical
expression, the expectation involved in (3) can be evaluated very accurately (e.g., via Monte Carlo method
by sampling a large number of s′t+1 from the transition density) with little computational effort. However,
unlike the discrete-state-space setting where the estimate Ṽt(st) can be repeatedly updated whenever st is
revisited by an (online) algorithm, we cannot expect multiple visits to the same state in a continuous state
domain. Existing approaches for addressing this issue are mostly off-line techniques (cf. e.g., Busoniu
et al. 2010), where a common procedure is to predetermine a set of states within S and then update Ṽt (and
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Vt) only on the set of selected states. This, in essence, is equivalent to converting a continuous state-space
MDP into a discrete one and then applying (approximate) value iteration on the discretized state space.

In our proposed algorithm, we circumvent this problem from a different viewpoint, by employing an
online averaging procedure adapted from the shrinking ball method. The idea is not to use Ṽt(st) to directly
update the function approximator Vt , but to use it to improve the value function estimates at all other states
that are close to st . Specifically, let s1, . . . ,st−1 be the sequence of states generated from a learning policy
prior to time t and denote by Ṽt−1(sl), l = 1, . . . , t−1, the value function estimates obtained at these states.
Then for each state sl sampled before time t, if the state st is considered to be sufficiently close to sl , then
the current estimate at sl , Ṽt−1(sl), will be updated by incorporating Ṽt(st); otherwise, Ṽt−1(sl) remains
unchanged. This results in the following recursion:

Ṽt(sl) = (1−αt(sl)It(sl))Ṽt−1(sl)+αt(sl)It(sl)Ṽt(st), (4)

where recall that It(sl) = I{st ∈ B(sl,rt)}, and αt(sl) ∈ (0,1) is the learning rate used at time t, which
may depend on the state sl . The intuition is that while the state sl cannot be revisited by the algorithm,
its value function estimate can still be continuously improved by using estimates at other states that lie in
the vicinity of sl (assuming the smoothness of the value function). Note that in a discrete-space setting, if
the shrinking ball radius rt is sufficiently small, then each ball B(sl,rt) will only contain sl itself. Thus,
the update (4) will only be carried out when the same state sl is revisited by the algorithm, in which case
(4) reduces to the usual stochastic averaging procedure. Equations (3) and (4), when coupled with an
interpolation-based function approximator, lead to our proposed algorithm called adaptive asynchronous
value iteration (AAVI), whose basic steps are presented in Algorithm 1.

Algorithm 1 Adaptive Asynchronous Value Iteration for Continuous-state MDPs
Input: A learning policy π = {πt , t = 0,1, . . .}; an initial state s0; learning rates αt(s) ∈ (0,1) ∀s ∈ S

and ∀t; shrinking ball radiuses {rt};
1: Initialize V0(s) = 0 ∀s ∈ S, Λ0 = /0 and the iteration counter t = 0;
2: for all t = 0,1, . . . do
3: Set Λt+1 = Λt ∪{st};
4: Obtain the point estimate of the value function at state st

Ṽt(st) = max
a

[
R(st ,a)+βE

[
Vt(s′t+1)

]]
,

where s′t+1 ∼ p(s′|st ,a);
5: for all state sl ∈ Λt do
6:

Ṽt(sl) = (1−αt(sl)It(sl))Ṽt−1(sl)+αt(sl)It(sl)Ṽt(st);

7: end for
8: Construct Vt+1 by interpolating the data {(s,Ṽt(s)) : s ∈ Λt};
9: Apply π , obtain action at = πt(st), and simulate a next state st+1 ∼ p(s|st ,at).

10: set t = t +1;
11: if A stopping criterion is satisfied then
12: terminate
13: end if
14: end for
15: return {Vt};

Note that the algorithm requires the function approximator to be updated at each iteration. Thus, on
problems that require many iterations to arrive at a good solution, the cost associated for data fitting may

2859



Yang, Hu, Hu, and Peng

become prohibitive as the number of states in the interpolation increases. One simple empirical solution
to alleviate this issue is to update the approximator every a few iterations (as opposed to every iteration).
In addition, one may consider selecting a subset of the sampled states that tend to evenly fill the state
space, and then constructing the interpolator only based on observations collected at the subset of states.
In certain curve fitting techniques such as kriging (e.g., Kleijnen 2009), the uncertainty in the prediction
can often be quantified. It is also possible to exploit such information in ways similar to those discussed in
e.g., Sacks et al. (1989), Wang and Hu (2018), and adaptively determine whether a sampled state should
be included in the construction of the function approximator. We leave this as a task for future research.

3.2 Convergence Result

For a given state sl , let Nt(sl) = Σt
j=lI j(sl), signifying the number of times of the shrinking neighborhoods

B(sl,r j) j = l, . . . , t of sl have been visited by the algorithm up to time t. We assume that the learning rate
at sl is a function of Nt(sl), i.e., αt(sl) = f (Nt(sl)) for some function f . For two sequences {at} and {bt},
we say at = Ω(bt) if ∃ c,K > 0 such that at ≥ cbt for all t ≥ K.

Our main result shows the uniform convergence of the sequence of function approximators {Vt} to the
optimal value function with probability one. This is established based on the following assumptions:
Assumption 1 Rmax := sups,a |R(s,a)|< ∞ and there exists a constant KR < ∞ such that for all s,s′ ∈ S and
a ∈ A, ∣∣R(s,a)−R(s′,a)

∣∣≤ KRd(s,s′),

where d(s,s′) is the Euclidean distance between states s and s′.
Assumption 2 The transition density p(s′|s,a) is continuous and p(s′|s,a)> 0 for all s,s′ ∈ S, a ∈ A. In
addition, for all s,s′,s′′ ∈ S and a ∈ A, there exists a function Kp(s) satisfying

∫
S Kp(s)ds < ∞ such that∣∣p(s′′|s,a)− p(s′′|s′,a)

∣∣≤ Kp(s′′)d(s,s′).

Assumption 3 The interpolators Vt’s are Lipschitz continuous with their Lipschitz constants uniformly
bounded by L < ∞ w.p.1.
Assumption 4 The function f satisfies f (i) ∈ (0,1) for all i and

∞

∑
i=1

f (i) = ∞,
∞

∑
i=1

f 2(i)< ∞.

Assumption 5 The shrinking ball radius rt is nonincreasing in t and satisfies rt = Ω(t−γ) for some constant
γ ∈ (0, 1

2d ).
We remark that the first two assumptions ensure that the optimal value function is sufficiently smooth.

This in turn justifies the use of the online averaging procedure (4). The Lipschitz continuity condition
in Assumption 3 is weaker than the typical non-expansiveness requirement on the function approximator
used in the existing literature (cf. e.g., Busoniu et al. 2010). Assumptions 4 and 5 are conditions on the
algorithm input parameters. The main convergence theorem is stated below.
Theorem 1 Under Assumptions 1−5, we have

lim
t→∞

sup
s∈S
|Vt(s)−V ∗(s)|= 0 w.p.1.

Proof. Due to space constraints, we only provide a sketch of the proof. The detailed proof is highly
similar to that of Hu et al. (2020). The main idea is to write (4) in the form of a generalized stochastic
approximation recursion involving a bias term (due to the use of the shrinking ball strategy) and an error
term caused by replacing the optimal value function V ∗ by Vt in (2). Consequently, the convergence of the
point estimators can be studied using existing tools in stochastic approximation theory. Next, using the
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interpolating structure of the approximator and the continuity of the value function, it can be shown that
the values of Vt will eventually coincide with those of V ∗ at the interpolation states. Finally, the uniform
convergence of Vt follows from a similar argument used in Tsitsiklis (1994).

4 NUMERICAL EXAMPLES

In this section, we illustrate the proposed AAVI algorithm on a continuous-state queueing control problem
in both one and two dimensions, and compare its performance with two other existing methods.

4.1 One-Dimensional Queueing Control Example

We consider an admission control problem in a single server queueing system. Denote wt as the workload
at time t, which is the “real” load on the processor. Without loss of generality, we assume that the processor
works at a unit rate, i.e., if no further work arrives after t, then the server would become idle at t +wt .
Suppose that customers (or jobs) arrive at the system with constant (unit) interarrival times. Every time
a customer arrives, the decision-maker faces two options: accept or reject the customer. If a customer is
accepted, then the system receives a fixed reward p > 0; otherwise, no reward is received. In addition,
a holding cost is incurred at a constant rate cw per unit of workload per unit time. Specifically, at the
beginning of a stage, if there is a workload w≥ 0 on the server, then the cost incurred during the stage is
given by

cwr(w) = cw

∫ 1

0
(w− t)+dt = cw

∫ 1∧w

0
(w− t)dt =−cw

2
(w− t)2

∣∣∣∣1∧w

t=0
,

where we set cw = 1 in our numerical experiments.
The problem can be modeled as an infinite-horizon discounted MDP with a continuous state space and

a discrete action space. The state is the amount of workload w in the system, the action set contains two
actions, “accept” and “reject”, and the transition dynamics from times t to t +1 (t = 0,1,2, . . .) are given
by

wt+1 =

{
(wt −1)++ s, at = “accept”;
(wt −1)+, at = “reject”,

where at is the action used at time t and s is the service time of the accepted customer. The goal is to
maximize the total discounted return, where costs are viewed as negative rewards. It can be easily seen
that the Bellman equation is given below:

V ∗(w) = max
{

p− r(w)+βEV ∗((w−1)++ s),−r(w)+βV ∗((w−1)+)
}
.

In our numerical experiment, we take p = 2, β = 0.9, and s is uniformly distributed between 0 and 3.
Further, to ensure the set of states is compact, we set an upper bound on the amount of workload to 11
in our experiment. We assume that the service times of arriving customers are generated beforehand. If
the required service time of an arrival plus the current workload exceeds the prescribed upper bound, then
that arrival will be turned away. Thus, from the state transition equation, it is easy to observe that the state
space is given by [0,10].

For comparison purposes, we apply three different approaches to approximate the optimal solution
to the above queueing control problem: discretization method (DM), fitted value iteration (FVI), and the
proposed AAVI algorithm. For DM, we first discretize the state space [0,10] into evenly-spaced points
by using a mesh size 0.05 and approximate the service time using a discrete uniform random variable
on {0.05k : k = 0, . . . ,60}. This converts the original problem into a discrete-state MDP, whose transition
probabilities can be computed exactly from the state transition equation. We then apply the standard
VI algorithm on the discretized problem. FVI is implemented by pre-generating 5000 states uniformly
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distributed over state space [0,10]. Then at each iteration, a polynomial regression model is iteratively
used to fit the point estimates collected at these pre-generated states. We set the total number of algorithm
iterations to 200. The parameters for AAVI are set as follows: learning rate αt(sl) = Nt(sl)

−0.9, shrinking
ball radius rt = t−0.2, and the interpolation scheme is the ordinary kriging interpolation with an exponential
semivariogram (implemented by using the PyKrige package https://pypi.org/project/PyKrige/). AAVI is
run for two scenarios according to different behavior policies at each time step. One is an ε-greedy
policy (AAVI(1)) that chooses at each step an action uniformly with probability ε and chooses the greedy
action (i.e., the action that maximizes (3)) with probability 1− ε . Here, we set ε = 0.1. The other one
is a nonuniform random policy (AAVI(2)) that accepts the customer with a 2/3 probability and reject the
customer with a 1/3 probability. In both cases, the initial state is taken to be w0 = 2 and we stop the
algorithm after 5000 transition steps. Note that in AAVI (and also in FVI), the expectation at step 4 of the
algorithm is estimated by using a sample average of Vt values based on 1000 independent draws from the
transition density.

Figure 1 shows the value function approximations obtained by the three comparison algorithms upon
termination. In Table 1, we also reported the value function estimates at 5 selected states w ∈ {1,3,5,7,9},
where the results for FVI and AAVI are averaged over 30 independent replication runs (with the corresponding
standard errors indicated in parentheses).

0 2 4 6 8 10

State

-30

-20

-10

0

10

Va
lu
e 
Fu
nc
ti
on

AAVI(1)

AAVI(2)

DM

FVI

Figure 1: Value function approximators obtained by comparison algorithms

Note that since a fine discretization is used, the approximator returned by DM is very close to the true
optimal value function, and hence can be used as a benchmark to gauge the performance of AAVI and FVI.
From both Figure 1 and Table 1, we see that our proposed algorithm shows better overall performance than
FVI. However, when compared with AAVI(2), the approximator generated by AAVI(1) shows significant
performance degradation when the states are large. This is because the initial state is set small in our
experiments, so that the points generated from the ε-greedy policy tend to be clustered around regions
where the state bears small values. As a result, there are an insufficient number of points generated in the
region where the state value is large, rendering the value function estimate less reliable over that area. In
contrast, since AAVI(2) makes the sampled points more evenly distributed over the entire state space, it
shows a much improved performance over AAVI(1). This indicates that the performance of AAVI could
be influenced by the choice of the learning policy. In particular, if one is interested in approximating
the entire value function, then the policy should be sufficiently exploratory to allow a relatively unbiased
access to all parts of the state space. The typical behavior of AAVI(2) is also shown in Figure 2, which
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plots the current value function estimates at the 5 selected states as a function of the number of algorithm
iterations (time periods simulated). The figure clearly indicates the fast convergence of these estimates to
their corresponding optimal values.

Table 1: Value function estimates obtained by comparison algorithms

w =1.0 w =3.0 w =5.0 w =7.0 w =9.0
DM 3.30 -1.17 -8.60 -18.42 -30.17
FVI 11.40(0.10) 4.99(0.08) -3.47(0.06) -14.01(0.05) -26.61(0.04)

AAVI(1) 2.02(0.12) -2.25(0.12) -8.76(0.20) -11.15(0.39) -12.75(0.59)
AAVI(2) 2.78(0.13) -1.70(0.13) -9.14(0.13) -18.86(0.12) -30.08(0.13)
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Figure 2: Convergence behavior of AAVI(2)

4.2 Two-Dimensional Queueing Control Example

To illustrate the performance of the algorithm in higher dimensions, we consider a simple two-dimensional
extension of the previous example with the underlying system consisting of two single-server queues in
parallel. When a customer arrives at the system, the decision-maker can apply one of the three actions:
accept entry to queue 1, accept entry to queue 2, or reject entry to either queue. The state variable is now
denoted by s := (w1,w2), which indicates the workload at queue 1 and queue 2, respectively. Thus, by
using the same transition function and cost structure as described in the one-dimensional case, the Bellman
equation can be formulated as follows:

V ∗(w1,w2) = max{p1− r(w1)− r(w2)+βEV ∗
(
(w1−1)++ s,(w2−1)+

)
,

p2− r(w2)− r(w1)+βEV ∗
(
(w1−1)+,(w2−1)++ s

)
,

−r(w1)− r(w2)+βV ∗
(
(w1−1)+,(w2−1)+

)
},

where pi (i = 1,2) is the reward earned by admitting an arrival into queue i and s is the service time of the
accepted arrival. In the numerical experiments, we take p1 = p2 = 2, β = 0.9, and s is uniformly distributed
between 0 and 4. The upper bound on the amount of workload allowed at each queue is set to 5.

We implemented DM, FVI, and AAVI on this two-dimensional problem. The parameter setting for
AAVI is basically the same as in the one-dimensional case except that the shrinking ball radius is taken to
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Table 2: Value function estimates obtained by comparison algorithms

s =(0.5,2.5) s =(1.5,2.0) s =(2.5,1.0) s =(3.5,0.5)
DM -3.13 -3.06 -3.50 -5.32
FVI 1.34(0.06) 0.76(0.03) 0.74(0.04) -0.42(0.08)

AAVI -3.29(0.08) -3.16(0.08) -3.66(0.08) -5.16(0.47)
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Figure 3: Convergence behavior of AAVI at different states

be rt =C/ ln(1+ t), where the constant C is chosen to ensure that the shrinking ball radius is approximately
10% of the size of the state space when the algorithm terminates. In addition, a “warm-up” phase is
used to speed up the algorithm performance. In particular, instead of setting V0 = 0 as in Step 1 of the
algorithm, similar to FVI, we have used the initial value function estimates at a set of pre-sampled states
to fit the initial V0. This step aims at providing the function approximator with the initial information
necessary to reasonably predict the general trend of the value function, which is often helpful in improving
the algorithm’s transient behavior.

Table 2 shows the value function estimates (at selected states) obtained by AAVI using an ε-greedy policy
after 5000 iterations (its convergence behavior is shown in Figure 3). Also included are the performances
of DM and FVI, both are implemented using the same procedures described in Section 4.1. The results
are similar to those in the one-dimensional case, with AAVI providing superior performance over FVI.
We remark that although we have used DM as a benchmark algorithm, its performance relies on explicit
knowledge of transition probabilities and cost functions, which prevents its application in a simulation-based
environment. FVI is model-free but often requires transition samples to be generated off-line (e.g., from
a simulation model) and then stored in advance. In contrast, AAVI is a fully online technique that allows
value function estimates at visited states to be adaptively updated based on a single sample trajectory
produced from a learning policy.

5 CONCLUSIONS

In this paper, we have proposed a novel algorithm called AAVI for solving continuous-state discrete-action
MDPs in a simulation-based setting. The algorithm can be viewed as an extension of the approximate
VI algorithm to the continuous-state domain. The key idea is to incorporate the shrinking ball idea from
continuous SO into a RL context so that the value function estimates at a visited state can be effectively
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improved by using estimates at other states collected along a single trajectory produced from a learning
policy. The algorithm is fully adaptive, discretization-free, and provably convergent to the optimal value
function. Preliminary simulation results and comparison studies indicate promise of the approach.
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