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ABSTRACT

Reinforcement Learning (RL) is a methodology used to solve Markov decision processes (MDPs) within
simulators. In the classical Actor-Critic (AC), a popular RL algorithm, the values of the so-called actor
become unbounded. A recently introduced variant of the AC keeps the actor’s values naturally bounded.
However, the algorithm’s convergence properties have not been established mathematically in the literature.
Numerically, the bounded AC was studied under the Boltzmann action-selection strategy, but not under
the more popular ε-greedy strategy in which the probability of selecting any non-greedy action converges
to zero in the limit. The paper revisits the AC framework. A short review of the existing literature in
the growing field of ACs is first presented. Thereafter, the algorithm is investigated for its convergence
properties, under ε-greedy action selection, numerically on a small-scale MDP, as well as mathematically
via the ordinary differential equation framework.

1 INTRODUCTION

Reinforcement Learning (Bertsekas and Tsitsiklis 1996; Sutton and Barto 1998) is a methodology used to
solve Markov Decision Processes (MDPs) when the transition probabilities are unknown because of the
complexity or large-scale of the problem. It can be used in real-time, which is common in the field of
artificial intelligence and robotics (Szepesvári 2010) or within discrete-event simulators, which is more
common in the operations research and management science community (Gosavi 2015; Chang et al. 2013).
The Actor-Critic (AC) is the oldest algorithm in the Reinforcement Learning (RL) family (Barto et al.
1983) and predates Q-Learning (Watkins 1989). Perhaps due to technical difficulties with its applicability
to large-scale problems, it was not as popular. However, that has changed, especially after its convergence
properties were studied mathematically, and currently there is much interest in this algorithmic framework.

RL algorithms are studied under (a) the infinite time horizon and (b) the finite time horizon. Under each
of these time horizons, one can use the so-called net discounted reward (or cost in case one is minimizing
instead of maximizing) metric and the net undiscounted/average reward metric. The prefix “net” will be
dropped in the rest of this paper. See the classical texts of Puterman (1994) and Bertsekas (2007) for a
very thorough treatment of this vast subject. In this paper, the focus is on the infinite horizon discounted
reward metric.

This paper revisits the AC framework, and in particular, a recently developed bounded version of the AC
for discounted reward is investigated for its convergence properties. This bounded AC was proposed under
the so-called Boltzmann action-selection strategy. In such a strategy, a function composed of exponential
terms is used to select a stochastic policy during the learning process; the final values of the actor are used
to determine the deterministic (stationary) policy delivered by the algorithm. A popular action-selection
strategy in literature is the so-called ε-greedy strategy in which the non-greedy (exploratory) action(s) is
selected with high probability at the start; this probability is decayed to zero in the limit (Sutton and Barto
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1998). The focus of this paper is on studying the bounded AC for its convergence under the ε-greedy strategy.
First, its convergence is tested numerically in a simulator of a small MDP. Thereafter, the convergence is
investigated mathematically via the ordinary differential equation (ODE) method.

The rest of this paper is structured as follows: The AC framework is first reviewed, along with with
a discussion on what has stirred the recent interest in it and its advantages and disadvantages vis-a-vis
Q-Learning (Section 2). Then, the recently developed bounded AC is considered for the discounted reward
metric (Section 3). Thereafter, this algorithm is tested under ε-greedy action selection numerically (Section
4). Finally, convergence properties of the bounded AC are investigated mathematically via the ODE method
(Section 5). Conclusions and future work are discussed in the final section (Section 6).

2 BACKGROUND AND LITERATURE REVIEW

This section provides the technical background for the AC framework, along with a short review of the
existing literature. It is first necessary to provide the mathematical notation to be used in this paper and
the objective function:

2.1 Preliminaries and Notation

Much of the basic notation used in this paper is first presented; some other notation needed for specific
topics will be introduced as needed later.

• S : the finite set of states in the system
• A (i): the finite set of actions permitted in state i
• A : the union of all sets A (.), i.e., ∪i∈S A (i)≡A
• µ(i): the action chosen in state i when deterministic, stationary policy µ is pursued; d also used

to denote a stationary, deterministic policy
• p(i,a, j): the transition probability associated with the transition from state i to j under action a
• r(i,a, j): the one-step immediate reward of transition from state i to j under action a
• r̄(i,a) = ∑ j∈S p(i,a, j)r(i,a, j): the one-step expected immediate reward of a transition from i

under action a
• λ : the discount factor
• k: the number of iterations in the algorithm
• V k(i): critic’s value for state i in the kth iteration
• Pk(i,a): actor’s value for state-action pair (i,a) in the kth iteration
• st : state in the tth step of an infinitely long trajectory
• α: a learning rate or step-size rule; β is another learning rate

The objective function under consideration in this paper is the discounted reward metric on an infinite
horizon, which is defined as follows:

Λi(µ) = lim
k→∞

E

[
k

∑
t=1

λ
t−1r(st ,µ(st),st+1)

∣∣∣∣∣s1 = i

]
.

The goal in this context is to identify a policy in which the above metric, i.e., Λi(.), is maximized for all
values of i ∈S .

2.2 The Actor-Critic Framework

A broad structure of the AC framework is now provided. It should be noted that the AC framework relies
on the Bellman equation for a given policy used in policy iteration (Howard 1960). This Bellman equation,
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which has a unique solution for the discounted reward over an infinite time horizon, is given as:

hµ(i) =

[
r̄(i,µ(i))+λ ∑

j∈S
p(i,µ(i), j)hµ( j)

]
for all i ∈S , (1)

where the unknowns in the linear equation above are the elements of the value function for a given policy µ:
hµ(i) for i ∈S . The above equation can be solved easily as it is a linear system of equations, provided the
transition probabilities are known. The following updating equation, used within the simulators, is based
on the above for the so-called critic in the AC framework. It is also based on ideas in the Robbins-Monro
stochastic approximation (Robbins and Monro 1951) and was first developed in Barto et al. (1983):

V (i)← (1−β )V (i)+β [r(i,a, j)+λV ( j)] ,

where V (i) is the proxy for hµ in Equation (1) above and is updated when the state i is visited in the
simulator. This forms the critic update in the AC framework, which can be written as:

V (i)←V (i)+β [r(i,a, j)+λV ( j)−V (i)]≡V (i)+β [TD-error] ,

where the TD-error is defined as [r(i,a, j)+λV ( j)−V (i)]. The phrase TD-error has origins in the RL
community, where T D denotes temporal differences; TD-error can simply be viewed as the feedback
obtained from the environment or the simulator. The so-called actor works in conjunction with the critic;
the critic’s job is to estimate the optimal value function, while the actor’s job is to select actions using the
so-called actor’s values. There is one actor-value, P(i,a), for each state-action pair, (i,a). In the classical
AC (Barto et al. 1983), the actor’s value is updated as follows: P(i,a)← P(i,a)+α [TD-error], where α

is another learning rate (step size) and the TD-error is as defined above. As the system (or its simulator)
transitions from one state to the next, feedback is gathered for updating the actor and the critic values.
Ideally, when this training ends, the algorithm delivers the optimal solution (policy).

The above discussion was meant to provide the intuition under this framework, while a bare-bones
structural format for the AC framework is presented in Figure 1. When the algorithm terminates, it ideally

AC Structure

• Inputs: Initialize input values; kmax will denote the maximum number of iterations for
which the algorithm is run.

• Loop until k = kmax
– Let i be the current state. Select an action. Let j be the next state.
– Actor’s Update: Update the actor’s values from the TD-error calculated from the state

transition.
– Critic’s Update: Update the critic’s values from the same TD-error. In case of average

reward, the average-reward parameters are also updated, typically with the critic’s
values (Lawhead and Gosavi 2019).

– Set k← k+1. If k = kmax, exit loop; otherwise, set i← j and continue within loop.
• Outputs: Extract the optimal policy from the actor’s values.

Figure 1: A Template for An Actor Critic

delivers the optimal policy, i.e., the critic values equate or approach the solution of the classical Bellman
optimality equation that provides the foundation for solving the discounted reward MDP optimally. The
following provides the key result associated to the optimality equation (Puterman 1994; Bertsekas 2007):
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Theorem 1 The system of equations defined by:

h(i) = max
a∈A (i)

[
r̄(i,a)+λ ∑

j∈S
p(i,a, j)h( j)

]
for all i ∈S , (2)

where h(i) ∈ℜ for all i ∈S , has a unique solution, h∗(i) for all i ∈S , that leads to an optimal solution
of the MDP, i.e., if for all i ∈S ,

µ
∗(i) ∈ argmax

a∈A (i)

[
r̄(i,a)+λ ∑

j∈S
p(i,a, j)h∗( j)

]
,

then µ∗ is an optimal (deterministic and stationary) policy of the MDP.

2.3 Literature Review

The goal of this subsection is to provide a brief review of the growing field of ACs. As stated above, the
AC was first proposed in Barto et al. (1983); see also Witten (1977) for earlier research on this topic.
Konda and Borkar (1999) studied the convergence properties of the AC. Their analysis showed that the
actor’s values can get unbounded, and they used a projection to keep these values bounded for facilitating
convergence. The recently developed bounded AC in Lawhead and Gosavi (2019) seeks to update the
actor’s values in a way that does not need a projection, but keeps the values bounded regardless; their
study also tested the bounded AC framework on a large-scale airline revenue management problem under
the Boltzmann action-selection strategy. While a great deal of theoretical work has occurred in related
areas, much of it is on analyzing convergence when combined with function approximation (Haarnoja
et al. 2020; Fujimoto et al. 2020) and on the related policy gradient algorithm with parameterized policies
(Agarwal et al. 2020). In contrast, the focus here is on a different AC algorithm that does not require the
projection but is along the lines of the classical actor-critic (Barto et al. 1983; Konda and Borkar 1999);
further a tabular (lookup-table-based) approach is used in this study. Clearly, convergence under function
approximation is a topic worth pursuing after the tabular approach is shown to converge.

The use of Q-values for critics and the first direct connection to the policy-gradient framework (Baxter
and Bartlett 2001) can be found in Konda and Tsitsiklis (2003). There is growing interest in the natural
(gradient) AC, which was first developed in Peters and Schaal (2008). The interested reader is referred to
Grondman et al. (2012), who provide a comprehensive survey of numerous aspects of the AC, especially
in the context of function approximation, as well as the connection to the policy-gradient framework and
the use of Q-values, instead of the value function, as critics.

ACs are known to have some advantages and disadvantages in comparison to Q-Learning. It has
been known from the early days of RL that Q-Learning has proven to be difficult to blend with function
approximation on large-scale problems (Baird 1995). The Q-Learning algorithm’s update is based on the
Bellman optimality equation and is hence non-linear, which is perhaps why it is difficult to approximate the
equation via function approximators. In contrast, the AC is based on the fixed policy equation (see Equation
(1)), which is linear that makes it relatively easier to approximate the value function. One disadvantage
of the AC over Q-Learning is that it requires additional memory, i.e., storage for the actor’s values in
addition to the critic values. The other disadvantage is that convergence properties of ACs are not as well
understood, but this is expected to change as ACs are investigated more thoroughly.

2.4 Nature of the Bellman Equation in ACs

It should be stressed that the Bellman equation used in the AC is not the optimality equation, but rather the
linear equation associated to a fixed policy employed in the steps of the policy iteration algorithm of Howard
(1960). This equation is also used in the modified policy iteration algorithm (see Chapter 6 of Puterman
(1994) for additional details). Further, recent, successful work in large-scale function approximation in
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RL is based on approximate policy iteration (Mnih et al. 2015; Silver et al. 2017), which also uses the
Bellman equation for a fixed policy. The algorithm Q-P-Learning (Gosavi 2004a) also uses the Bellman
equation for a fixed policy and is rooted in (modified) policy iteration. One notable difference between
policy-iteration-based algorithms, such as approximate policy iteration (Bertsekas 2018) and Q-P-Learning
(Gosavi 2015), and the AC is that in the former class of algorithms, the notion of ε-greedy exploration is not
used, and rather a fixed policy is evaluated for a finite number of iterations within each policy-evaluation
phase of the algorithm. In the AC with ε-greedy exploration, the algorithm updating mechanism uses the
equation for a fixed policy, but gradually guides the algorithm toward the optimal policy. In other words,
the policy continually changes in the AC as the algorithm makes progress, and in this respect, the AC with
ε-greedy exploration is similar to Q-Learning with ε-greedy exploration, but the critical difference is that
Q-Learning uses the Bellman optimality equation.

3 BOUNDED ACTOR-CRITIC

The bounded AC for infinite-horizon discounted-reward MDPs from Lawhead and Gosavi (2019) is presented
next under ε-greedy action selection.

• Inputs: Set k, the number of iterations, to 0. Initialize all actor, Pk(., .), and critic, V k(.), values
to zero. Let αk and β k denote the learning rates (step sizes) in the kth iteration. Set kmax, the
maximum number of iterations for which the algorithm is run, to a large number.

• Loop until k = kmax
– Let i be the current state. Using the ε-greedy approach for action selection (discussed in more

detail below), select an action, a, Let j be the next state. Let r(i,a, j) denote the immediate
reward in the state transition.

– Actor’s update:

Pk+1(i,a)← (1−α
k)Pk(i,a)+α

k
[
r(i,a, j)+λV k( j)−V k(i)

]
. (3)

– Critic’s update:
V k+1(i)← (1−β

k)V k(i)+β
k
[
r(i,a, j)+λV k( j)

]
. (4)

– Set k← k+1. If k = kmax, exit loop; otherwise, set i← j and continue within loop.
• Outputs: The policy, d, delivered by the algorithm, is computed as follows. The action d(i) in state

i is: argmaxb∈A (i) Pk(i,b).

It should be noted that the classical actor-critic used in much of the literature uses the following update
for the actor, which unlike Equation (3), does not use the multiplier (1−αk) for the old value of the
actor (Pk(i,a)) and consequently makes the actor’s values unbounded, requiring a projection onto a finite
interval:

Pk+1(i,a)← Pk(i,a)+α
k
[
r(i,a, j)+λV k( j)−V k(i)

]
.

ε−Greedy Action-Selection: In this kind of an action-selection strategy, a distinction is made between a
greedy action(s) and a non-greedy action(s). The greedy action in a current state (i) is one that maximizes
the actor’s value for that action in current state i in the current iteration (k). Mathematically, this means:
the greedy action belongs to the set: argmaxb∈A (i) Pk(i,b). (Note that in case the algorithm is presented
in terms of minimizing costs, rather than rewards, the set in question would be: argminb∈A (i) Pk(i,b).)
Any action that does not belong to this set in the kth iteration is considered non-greedy (exploratory). In
the ε-greedy action-selection strategy, theoretically, the non-greedy action is typically selected with some
probability (ε) that is decayed as the algorithm makes progress, and this probability converges to 0 in the
limit. There are multiple ways to implement this strategy in practice. Two such ways are discussed next.
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• Algebraic Decay: With probability (1− Bk

k ), select the greedy action and with probability Bk

k(|A (i)|−1) ,

select any of the other (non-greedy) actions in A (i), such that

lim
k→∞

Bk

k
= 0.

An example for the function Bk that satisfies the above conditions is Bk = 1/|A (i)|, but any function
that satisfies the above limit should work.

• Geometric Rate of Decay: Another approach is to geometrically decay the rate of exploration.
Mathematically, this means with probability (1−Bk), select the greedy action and with probability

Bk

(|A (i)|−1) , select any of the other (non-greedy) actions in A (i), such that

Bk = Bk−1
τ and lim

k→∞

Bk = 0,

where τ ∈ (0,1) should be close to 1. An example for the above is B0 = 1/|A (i)| and τ = 0.9999.

Every learning rate in RL must typically converge to zero and the two learning rates in two timescale
settings must satisfy the following condition:

limsup
k→∞

β k

αk = 0, where (5)

αk and β k are the learning rates in the kth iteration on the faster and slower timescale respectively.

4 NUMERICAL CONVERGENCE

The Bounded AC for infinite horizon discounted reward MDPs was tested on a small-scale problem with
two states and two actions in each state. The discount factor, λ , was set to equal 0.8. The rest of the inputs
for the MDP simulated were as follows:

TPM1 =

[
0.7 0.3
0.4 0.6

]
;TPM2 =

[
0.9 0.1
0.2 0.8

]
;TRM1 =

[
16 5
75 120

]
;TRM2 =

[
80 10
6 1

]
.

In the above, TPMa denotes the one-step transition probability matrix of action a and TRMa denotes the one-
step immediate reward matrix for action a. In order to synchronize this notation with the previously defined
notation in subsection 2.1 on one-step transition probabilities and reward, note that T PMa(i, j) = p(i,a, j)
and T RMa(i, j) = r(i,a, j), where Z(i, j) denotes the element in the ith row and jth column of matrix, Z.
The action set for each state is A = {1,2}. Table 1 shows the results of implementing the bounded AC
using ε-greedy action-selection, via a geometric decay, and dynamic programming (DP) on the problem.
In the geometric decay of exploration, the following tuning parameters were used: B0 = 0.5 and τ = 0.999.
The following learning rates were found to yield the best results:

α
k =

logk
k

; β
k =

A
k+B

,

with A = 5 and B = 10. Using A = 1 and B = 0 leads to a popular rule, 1/k, which did not perform in a
satisfactory manner on this simple problem in terms of generating the value function; there is prior evidence
of weak behavior of this rule in RL (Gosavi 2008). For problems with a larger dimension, higher values of
A and B are generally required (Lawhead and Gosavi 2019). It is not difficult to show that these learning
rates satisfy the ratio condition in Equation (5) as follows:

lim
k→∞

β k

αk = lim
k→∞

A/(k+B)
logk/k

= lim
k→∞

A
(1+ B

k )logk
= 0.
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The bounded AC was run for kmax = 10,000 iterations in a simulator written in MATLAB on a 64-bit, 2.5
GHz windows operating system. The program terminated in less than 0.1 second.

The outputs from the computer program are described next. Pkmax(i,a) denotes the actor’s value
for state-action pair, (i,a), delivered by the algorithm; and these values are: Pkmax(1,1) = −48.3020;
Pkmax(1,2) = 3.9944; Pkmax(2,1) = 24.3354; and Pkmax(2,2) = −31.1489. These values imply that the
optimal action in state 1 is 2 and that in state 2 is 1; this stems from the fact that Pkmax(1,2)> Pkmax(1,1)
and Pkmax(2,1)> Pkmax(2,2). This policy coincides with the optimal policy delivered by the DP algorithm.
Figures 2 and 3 depict the critic values generated for states 1 and 2 respectively, during the run-time of
the algorithm. The optimal policy is determined within 10 iterations of running the algorithm; however,
additional iterations are needed before the actor’s and critic’s values stabilize. While the critic’s values and
the value function of DP do not match perfectly, which is usually true of ε-greedy exploration (Gosavi
2004b), what is more significant here is whether the optimal (or near-optimal) policy is delivered by the
algorithm. Further, ε-greedy techniques make the convergence properties easier to handle mathematically,
as the equilibrium (limiting) solution can be shown to satisfy or approach the solution of the Bellman
optimality equation (Equation (2)), which guarantees optimality, but is not used within the updating schemes
of the AC. As mentioned above, the Bellman equation for a fixed policy (Equation (1)) is used within the AC,
and due to its linear nature, it is known to have advantages from the perspective of function approximation.
Nonetheless, guiding the critic’s values into the vicinity of optimal values should be investigated in the
future, potentially via algebraic decay of the exploration rate.

Table 1: Performance of the bounded AC and DP: h∗(i) denotes the optimal value function obtained from
DP for state i, while V kmax(i) denotes the critic value, i.e., value function, for state i obtained from the AC.

h∗(1) V kmax(1) h∗(2) V kmax(2)
384.3288 355.7634 432.6622 376.2387
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Figure 2: The behavior of the critic value for state 1, V k(1), as the algorithm makes progress.

5 CONVERGENCE PROPERTIES

The first result presented below is that related to stochastic approximation on two timescales (Borkar 2009).
In such a setting, two sets of vectors are updated simultaneously, but different learning rates are used for
each set; the learning rates are chosen in a manner such that the sequence defined by the slower learning rate
divided by the faster learning rate converges to zero. Before the result is presented formally, some notation
needs to be defined. Let ~Xk denote the vector of iterates on the faster time scale and ~Y k the same on the
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Figure 3: The behavior of the critic value for state 2, V k(2), as the algorithm makes progress.

slower time scale, assuming there are N1 and N2 iterates on the faster and slower timescales respectively.
Further, the iterates generate the following sequence:{Θ1

1,Θ
2
1, . . .} and {Θ1

2,Θ
2
2, . . .}, where Θk

1 denotes the
iterate from the faster time scale updated in the kth iteration while Θk

2 denotes the iterate from the slower
time scale updated in the kth iteration. Thus for k = 1,2, ...: Θk

1 ∈ {1,2, . . . ,N1} and Θk
2 ∈ {1,2, . . . ,N2}.

The two-timescale algorithm under asynchronous updating can now be described as: For l = 1,2..,N1 and
l2 = 1,2, ..,N2:

Xk+1(l1) = Xk(l1)+α
k(l1)

[
G
(
~Xk,~Y k

)
(l1)+wk

1(l1)
]

I(l1 = Θ
k
1);

Y k+1(l2) = Y k(l2)+β
k(l2)

[
F
(
~Xk,~Y k

)
(l2)+wk

2(l2)
]

I(l2 = Θ
k
2);

(6)

where

• αk(.) and β k(.) are the learning rates on the faster and slower time-scale respectively in the kth
iteration

• G(., .) and F(., .) denote the transformations driving the faster and slower time-scale updates
respectively

• ~wk
1 and ~wk

2 denote the noise vectors in the kth iteration on the faster and slower time scales respectively

The following conditions will be assumed to be true of the stochastic approximation algorithm.
Condition 1. Boundedness of iterates: The iterates ~Xk and ~Y k remain bounded with probability 1 (wp1).
Condition 2. F(., .) and G(., .) are Lipschitz continuous.
Condition 3. Conditions on noise: For l1 = 1,2, . . . ,N1, l2 = 1,2, . . . ,N2, and for every k, the following
should be true about the noise terms:

E
[
wk

1(l1)|F k
]
= 0; E

[(
wk

1(l1)
)2
∣∣∣∣F k

]
≤ z1 + z2||~Xk||2 + z3||~Y k||2;

E
[
wk

2(l2)|F k
]
= 0; E

[(
wk

2(l2)
)2
∣∣∣∣F k

]
≤ z′1 + z′2||~Xk||2 + z′3||~Y k||2;

where z1, z2, z3, z′1, z′2, and z′3 are scalar constants and ||.|| could be any norm.
Condition 4. Learning rate conditions of stochastic approximation: The learning rates satisfy the usual
tapering size conditions for every l1 = 1,2, . . . ,N1 and l2 = 1,2, . . . ,N2:

∞

∑
k=1

α
k(l1) = ∞;

∞

∑
k=1

(
α

k(l1)
)2

< ∞;
∞

∑
k=1

β
k(l2) = ∞;

∞

∑
k=1

(
β

k(l2)
)2

< ∞.
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In addition, the learning rates must satisfy the timescale ratio condition for every (l1, l2) pair defined in
Equation (5). Further, the learning rates must also satisfy the evenly distributed and ideal tapering size
assumptions defined in Borkar (2009).
Condition 5a. ODE condition: For any fixed value of ~y ∈ℜN2 , the ODE

d~x
dt

= G(~x,~y) (7)

has a globally asymptotically stable equilibrium point which is a function of ~y and will be denoted by
Ω(~y), where Ω : ℜN2 →ℜN1 . Further, the function Ω(~y) has to be Lipschitz continuous in ~y.
Condition 5b. ODE condition: The following ODE has a globally asymptotically stable equilibrium ~y∗

d~y
dt

= F (Ω(~y),~y) . (8)

Theorem 2 Consider the two-timescale asynchronous algorithm defined in Equation (6). Assume that
Conditions 1 through 5 hold. Then, wp1, the sequence of iterates

{
~Xk,~Y k

}∞

k=1
converges to (Ω(~y∗),~y∗).

The above result will be exploited to establish convergence of the bounded actor-critic via the following
result.
Theorem 3 Consider the AC algorithm defined via the updates in Equations (3) and (4). W p1, the algorithm
will deliver the Bellman-optimal policy in the limit.

Proof. (Sketch) Note that in the algorithm, N1 = |S | · |A | and N2 = |S |. Further, the action chosen in
state i in the kth iteration depends on the action-value matrix Pk, which can be represented via a vector
that will be denoted as ~Pk. In the analysis, ~Xk ≡ ~Pk and ~Y k ≡ ~V k; further l1 ≡ (i,a) and l2 ≡ i. All the
conditions are now inspected and shown to hold true under some assumptions. The following presents a
sketch of the proof for verifying the conditions. First, the transformations and the noise terms have to be
defined in the context of the algorithm under consideration:
Transformations for the Actor: The transformations G(., .) and G′(., .) associated to the actor update are
defined as follows:

G
(
~Pk,~V k

)
(i,a) =

|S |

∑
j=1

p(i,a, j)
[
r(i,a, j)+λV k( j)−V k(i)

]
−Pk(i,a) ∀(i,a); (9)

G′
(
~Pk,~V k

)
(i,a) =

|S |

∑
j=1

p(i,a, j)
[
r(i,a, j)+λV k( j)

]
−V k(i) ∀(i,a);

which implies that G
(
~Pk,~V k

)
(i,a) = G′

(
~Pk,~V k

)
(i,a)−Pk(i,a) ∀(i,a). (10)

Another transformation g′(., .) is defined as follows, noting that the transformation g′(., .) is over the sample
of which G′(., .) computes the expectation:

g′
(
~Pk,~V k

)
(i,a) =

[
r(i,a,ξ k)+λV (ξ k)

]
−V k(i),

where ξ k is the random state reached when action uk(i) is chosen in state i in the kth iteration. Now, a
noise term has to be defined as:

wk
1(i,a) = g′

(
~Pk,~V k

)
(i,a)−G′

(
~Pk,~V k,

)
(i,a) ∀(i,a).
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Then, one can write the actor updating transformation in the algorithm (Equation (3)) as:

Pk+1(i,a) = Pk(i,a)+α
k
[
g′
(
~Pk,~V k

)
(i)−Pk(i,a)

]
∀(i,a).

Now, using the relation defined in Equation (10), one can re-write the above as:

Pk+1(i,a) = Pk(i,a)+α
k
[
G
(
~Pk,~V k

)
(i)+wk

1(i,a)
]
∀(i,a). (11)

Transformations for the Critic: The action selected in state i in the kth iteration will be denoted by uk(i)
in this case. The transformations F(., .) and F ′(., .) associated to the critic update are defined as follows :

F
(
~Pk,~V k

)
(i) =

|S |

∑
j=1

p(i,uk(i), j)
[
r(i,uk(i), j)+λV k( j)

]
−V k(i) ∀i;

F ′
(
~Pk,~V k

)
(i) =

|S |

∑
j=1

p(i,uk(i), j)
[
r(i,uk(i), j)+λV k( j)

]
∀i;

which implies that F
(
~Pk,~V k

)
(i) = F ′

(
~Pk,~V k

)
(i)−V k(i) ∀i. (12)

Another transformation f ′(.) is defined as follows, analogous to g′(.) above:

f ′
(
~Pk,~V k

)
(i) =

[
r(i,uk(i),ξ k)+λV (ξ k)

]
∀i,

where ξ k is the random state reached when action uk(i) is chosen in state i in the kth iteration. Now, the
noise term for the critic update can be defined as:

wk
2(i) = f ′

(
~Pk,~V k

)
(i)−F ′

(
~Pk,~V k,

)
(i) ∀i.

Then, one can write the updating transformation in the algorithm for the critic (Equation (4)) as:

V k+1(i) =V k(i)+β
k
[

f ′
(
~Pk,~V k

)
(i)−V k(i)

]
.

Now, using the relation defined in Equation (12), one can re-write the above:

V k+1(i) =V k(i)+β
k
[
F
(
~Pk,~V k

)
(i)+wk

2(i)
]
. (13)

Conditions 1−4: Condition 1 has been established in Lawhead and Gosavi (2019). Condition 2 is true since
these transformations are linear functions. The conditional second moment of each noise term in Condition
3 remains bounded because the iterates themselves are bounded. Under ε-greedy action selection, the GLIE
(Greedy in the Limit with Infinite Exploration) property holds, which implies that all the state-action pairs
are tried infinitely often (Singh et al. 2000) and so the conditional mean of both noise terms in Condition
3 equals zero. The assumptions in Condition 4 can be shown to hold under suitable learning rates.
Condition 5: For a fixed set of values for the vector ~V k, the update defined in (11) behaves like a
Robbin-Monro scheme seeking to estimate the expectation of a constant from samples and hence converges
(Bertsekas and Tsitsiklis 1996), implying G(~P∞,~V ∞) = 0. Details are omitted. Thus, the ODE in (7) has a
unique globally asymptotically stable equilibrium. The equilibrium will be a linear function of ~V and will
hence be Lipschitz continuous in ~V . Transformation F(., .) is the classical dynamic programming operator
(of value iteration) and is known to be contractive (Puterman 1994). Hence, the update defined in (13)
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converges, implying F(~P∞,~V ∞) = 0. Thus, the ODE in (8) has a unique globally asymptotically stable
equilibrium. From Theorem 2, one now has convergence to a fixed point for each class of iterates wp1.

While the above shows that the algorithm converges, what remains to be shown is that it does so to
the optimal solution. Since the action used in the critic update, u(.), is greedy in the limit, for each i ∈S :

u∞(i) ∈ argmax
b∈A (i)

P∞(i,b) = argmax
b∈A (i)

|S |

∑
j=1

p(i,b, j) [r(i,b, j)+λV ∞( j)−V ∞(i)] (14)

= argmax
b∈A (i)

|S |

∑
j=1

p(i,b, j) [r(i,b, j)+λV ∞( j)] . (15)

In the above, note that the relation in (14) follows from the fact that in the limit, the actor values converge,
implying G(., .) = 0, i.e., from Equation (9), one has that

P∞(i,b) =
|S |

∑
j=1

p(i,b, j) [r(i,b, j)+λV ∞( j)−V ∞(i)] ∀(i,b).

Note that (14) and (15) are equivalent because a constant is being subtracted. Finally, relationship (15)
implies that the Bellman optimal action is selected in the limit for each i ∈S .

6 CONCLUSIONS

The paper revisited the domain of actor-critic (AC) algorithms for discounted cost under the infinite time
horizon. The classical algorithm (Barto et al. 1983) is known to produce unboundedness of the actor’s
values. However, the algorithm is growing in popularity (Grondman et al. 2012). This paper studied a
bounded version of the discounted reward AC in which the actor’s values remain naturally bounded without
a projection and with an ε-greedy action selection. The algorithm was shown to have satisfactory numerical
convergence on a problem whose optimal solution is known. Further, a proof of theoretical convergence
was sketched. Future work in this area will study three extensions: (i) experimenting with a real-world
semi-MDP problem via the bounded AC, (ii) testing a suitable function-approximation scheme for the
algorithm, and (iii) fully developing the convergence proof sketched here.
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