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ABSTRACT

Using steady state mean estimation as the prototypical context, we present a decision-theoretic framework
for sequentially estimating quantities associated with an observable discrete-time stochastic process. Our
framework includes weights for estimator quality and a linear cost of sampling. We first show that the
optimal time to stop sampling in the hypothetical case when the autocovariance function of the process is
known is the square root of the relative cost and the area under the autocovariance function. This expression
inspires a sequential procedure that uses a partially overlapping batch means estimator to “stand-in” for the
area under the autocovariance function. The sequential procedure is asymptotically optimal in the sense
that the ratio of its risk and that of the optimal risk in the hypothetical scenario approaches unity in a
certain asymptotic regime. The nature of our analysis hints at a general optimality principle that may be
more generally prevalent.

1 INTRODUCTION

Let {Yj, j ∈Z} be a real-valued discrete-time stochastic process, and (Ω,F ,Fk≥1,P) an associated filtered
probability space, representing some phenomenon of interest. Suppose for simplicity that we wish to
estimate the “steady state” mean µ := limn→∞E[n−1

∑
n
j=1Yj], that we assume exists. Suppose also that our

objective is to estimate µ sequentially, that is, as the data Yj, j = 1,2, . . . reveal themselves one by one.
Importantly, we wish to perform such estimation in a manner that might be considered economical in some
reasonable sense.

To make the setting precise, suppose T ∈ Z is a stopping time with respect to the σ -algebra formed by
the process {Yj, j ∈ Z} and ȲT := T−1

∑
T
j=1Yj is the desired estimator of the steady-state mean µ . Thus,

the stopping time T encodes the strategy used to stop the data collection process, so that the estimator
ȲT of µ can be constructed and returned to a user. We will propose a stopping time T and evaluate the
resulting estimator’s quality by analyzing the behavior of the risk function

RT (c) := AE[(ȲT −µ)2]+ cE[T ], (1)

where A and c are known constants representing the trade-off between the increase in quality and the
increase in cost associated with each additional observation. In particular, we will be concerned with the
behavior of RT (c) in relation to the best achievable risk under an idealized scenario that we outline in
Section 2, especially as the constant c becomes small compared to the constant A.

Strictly, we can dispense with the constant A in (1) and let c connote the relative weight of sampling
effort to estimator quality; we have chosen to retain A to conform to the original paper by Ghosh and
Mukhopadhyay (1979). Also, choices other than (1) and summary measures other than the steady state
mean µ might be more reasonable depending on the context. However, as we shall see, much of the
analysis in this paper can be greatly generalized — our choice of the structure of the risk function and the
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summary measure is made largely to ensure that the burden of mathematical exposition does not impede
the transfer of insight to the reader.

We emphasize that, unlike in Ghosh and Mukhopadhyay (1979), we do not assume that the observations
Yj, j = 1,2, . . . are independent and identically distributed, but that {Yj, j ∈ Z} satisfies a certain strong
approximation property:

Sn−nµ = σB(n)+O(n1/2−λ ) a.s.; Sn :=
n

∑
j=1

Yj, (SA)

where µ is the steady state mean introduced earlier, σ ∈R+ is variously called the time-averaged variance
constant (TAVC) or simply the variance parameter (Aktaran-Kalaycı, Alexopoulos, Goldsman, and Wilson
2009), λ ∈ (0,1/2] is a known constant, {B(t), t ∈ [0,∞)} is standard Brownian motion (Billingsley 1995),
and Sn is the partial sum formed by observations from the process {Yj, j ∈ Z}. The assumption in (SA),
while appearing stringent, is widely satisfied — see, for example, Philipp and Stout (1975) and Glynn and
Iglehart (1988).

To clarify what (SA) says about {Yj, j ∈ Z} in terms of satisfying a functional central limit theorem,
and second-order stationarity, we state the following result.
Theorem 1 Let the process {Yj, j ∈Z} satisfy (SA). Also, define the interpolated process {Sn(t), t ∈ [0,1]}
as follows:

Sn(t) :=


0 t = 0;

∑
nt
j=1Yj, nt = 1,2, . . . ,n;

∑
bntc
j=1Yj +(t− bntc

n )Ybntc+1, otherwise.

Then, letting {B(t), t ∈ [0,1]} denote the standard Brownian motion (Billingsley 1995), the following
assertions hold.

(i) Sn(t)− µnt d→ σ
√

nB(t), t ∈ [0,1], as n→ ∞, where d→ here refers to weak convergence on the
space D[0,1] of right continuous functions having left limits;

(ii) if the sequence of sample means {n−1Sn,n≥ 1} is uniformly integrable, that is,

lim
α→∞

sup
n
E
[
|n−1Sn|I

{
|n−1Sn|> α

}]
= 0,

then E[n−1Sn]→ µ as n→ ∞; and
(iii) if the sequence {n(n−1Sn−µ)2,n≥ 1} is uniformly integrable, then nVar(n−1Sn)→ σ2 as n→∞.

The assertion in (i) follows from Donsker’s theorem (Billingsley 1999, pp. 90). Furthermore, with
some calculation and assuming the process {Yj, j ∈ Z} is second-order stationary (Hoel, Port, and Stone
1972), it can be shown that σ2 appearing in (SA) satisfies

σ
2 =

∞

∑
h=−∞

γ(h), γ(h) := cov(Yj,Yj+h).

We do not prove Theorem 1 but note that an almost identical result appears in Damerdji (1994) without a
proof. Also, to ease exposition of all results that follow, we make the following two further assumptions
about the process {Yj, j ∈ Z}.

A.1 The process {Yj, j ∈ Z} is second-order stationary, implying that for any τ ∈ Z, the process defined
by Xτ

j = Yj+τ and the process {Yj, j ∈ Z} have the same mean and autocovariance functions:

E[Xτ
j ] = E[Yj] =: µ; cov(Xτ

j ,X
τ
j+h) = cov(Yj,Yj+h) =: γ(h), h = 0,±1,±2, . . .

(It is seen by selecting τ =−h that the function γ(·) is symmetric about zero, that is, γ(h) = γ(−h).)
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A.2 The autocovariance function γ(h),h = 0,1,2, . . . is such that

∞

∑
h=0
|h|γ(h)< ∞.

2 A HYPOTHETICAL PROCEDURE

We now consider a hypothetical scenario where the autocovariance function

γ(h) := cov(Yj,Yj+h), h = 0,±1,±2, . . .

is known, implying that the quantities

σ
2 :=

∞

∑
h=−∞

γ(h); σ
2
1 :=

∞

∑
h=−∞

|h|γ(h)

are known. (σ2 and σ2
1 exist by the assumptions in A.1 and A.2.) Let’s now consider only “naive

procedures,” that is, procedures T = n ∈ {1,2, . . . ,} that choose to stop after a pre-specified amount of
sampling n. Among such procedures, the optimal procedure can be identified. We notice that

Rn(c) = Avar(Ȳn)+ cn

= An−1
n

∑
h=−n

(
1− |h|

n

)
γ(h)+ cn,

and treating n as a continuous variable,

dRn(c)
dn

=−A

(
n−2

n

∑
h=−n

(
1− |h|

n

)
γ(h)−n−3

n

∑
h=−n
|h|γ(h)

)
+ c

=−An−2
n

∑
h=−n

(
1−2

|h|
n

)
γ(h)+ c.

Hence the optimal sample size n∗, ignoring non-integrality, solves the equation

−An−2
n

∑
h=−n

(
1−2

|h|
n

)
γ(h)+ c = 0.

Notice, in particular, that

n∗2 ∼ A
c

σ
2 +2

√
A
c

σ2
1

σ
as c→ 0, (2)

where the notation an ∼ bn mean an/bn→ 1 as n→ ∞ for non-negative real-valued sequences {an,n ∈ Z}
and {bn,n ∈ Z}. Notice also that for independent and identically distributed data,

n∗ =

√
A
c

γ(0)

where γ(0) is the asymptotic marginal variance. Furthermore, the incurred risk at the optimal sample size
given by (2) satisfies

Rn∗(c)∼ 2cn∗. (3)

The expression for the asymptotic optimal sample size in (2) suggests that the principal factor affecting
optimal stopping is the variance parameter σ2 := ∑

∞
h=−∞ γ(h), and to a lesser extent the “first moment” σ1

associated with the autocovariance function. The procedure we will outline next reflects this insight.
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batch 1

batch 2

batch 3
1 mn

dn +1 dn +mn

2dn +1

Figure 1: The figure depicts partially overlapping batches. Batch 1 consists of observations ξ j, j =
1,2, . . . ,mn; batch 2 consists of observations ξ j, j = dn + 1,dn + 2, . . . ,dn +mn, and so on, with batch i
consisting ξ j, j = (i− 1)dn + 1,(i− 1)dn + 2, . . . ,(i− 1)dn +mn. There are kn := d−1

n (n−mn) batches in
total, where n is the size of the dataset.

3 PROPOSED SEQUENTIAL ESTIMATOR

The hypothetical optimal procedure in the previous section suggests a procedure that might be effective in
a real context where the autocovariance function γ(h),h = 0,±1,±2, . . . , is not known. Specifically, when
the relative cost A/c is large, the hypothetical procedure suggests that the optimal sample size is simply the
square root of the relative cost multiplied by the sum of autocovariances. Since the sum of autocovariances
σ2 is unknown, one might expect that a successful sequential procedure might continuously monitor an
estimate σ̂2

T of σ2 := ∑
∞
h=−∞ γ(h), constructed perhaps using a method such as fully overlapping batch

means (Aktaran-Kalaycı, Goldsman, and Wilson 2007), and then stopping when the collected amount of
data exceeds the product of the square root of A/c and σ̂2

T , that is,

T := min{n≥
√

A
c

(
σ̂n +n−β

)
}, (4)

where σ̂2
n is an estimate of σ2 = ∑

∞
h=−∞ γ(h), the exact nature of which we will detail next, and β > 0 is

some positive constant. The expression in (4) thus implicitly mimics (2) after slightly inflating the estimate
of σ2 to account for the “early stopping” effect (Chow and Robbins 1965; Glynn and Whitt 1992) that
invariably accompanies sequential stopping procedures.

3.1 Estimating TAVC

The proposed procedure estimates the steady-state mean µ as ȲT := T−1
∑

T
j=1Yj, where T is specified

through (4). In this section, we briefly outline the partially overlapping batch means procedure to estimate
the TAVC σ2. Overlapping batch means as a method to estimate TAVC is a well studied area — see
especially Aktaran-Kalaycı et al. (2009) for an overview.

Define the batch means Ȳj, j = 1,2, . . . ,kn, depicted in Figure 1, as follows.

Ȳi :=
1

mn

(i−1)dn+mn

∑
j=(i−1)dn+1

Yj, i = 1,2, . . . ,kn := 1+
n−mn

dn
; 1≤ mn < n; 1≤ dn ≤ mn. (5)

The i-th batch mean Ȳi is thus the sample mean of mn < n consecutive observations, and the last mn−dn
observations of each batch overlaps with the previous batch. When dn = 1 we say the batches are fully
overlapping and when dn = mn we say that the batches are non-overlapping. For convenience, we ignore
the possible non-integrality of the number of batches kn := 1+(n−mn)/dn. Also, we use the following
notation for convenience:

εn :=
mn

n
; δn := 1− dn

mn
.

In practice, mn and dn are conveniently chosen; for instance, when the batch size is chosen as a fixed fraction
ν of the total data size and we use fully overlapping batches, we get εn = ν n and δn = 1− εn. Likewise,
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when the batch size is chosen as a fixed fraction ν of the total data size and we use non-overlapping
batches, we get εn = ν and δn = 0.

Given (5), we estimate the variance parameter as the sample variance of the batch means:

σ̂
2
n (β1,β2) :=

1
kn

kn

∑
j=1

(Ȳj− Ȳ )2, Ȳ := k−1
n

kn

∑
j=1

Ȳj = n−1
n

∑
i=1

Yi +En. (6)

The estimator Ȳ of the steady-state mean µ appearing in (6) is the average of the individual batch means
Ȳj, j = 1,2, . . . ,kn and is sometimes called the batching estimator. As implied in (6), the batching estimator
of the steady-state mean µ deviates from the sectioning estimator n−1

∑
n
i=1Yi by some “end effect” En. It

is easy to see that when batches are non-overlapping, that is, when δn = 0, the end effect En = 0 and the
batching, sectioning estimators coincide.

3.2 Asymptotic Properties of the TAVC Estimator

It seems intuitively clear that the characteristics of the stopping time T and the quality of the estimator ȲT
will be heavily dictated by the properties of the estimator in (6). Since the strong approximation assumption
(SA) holds, it seems reasonable that σ̂2

n should converge in some precise sense to the corresponding
quantities formed by the Brownian motion; following the notation of Damerdji (1994), we thus let

Ā j = m−1
n

mn

∑
i=1

B(( j−1)dn + i)−B(( j−1)dn +(i−1))

= m−1
n B(( j−1)dn +mn)−B(( j−1)dn), j = 1,2, . . . ,kn.

and
Ā = n−1(B(n)−B(0)) = n−1B(n).

to “stand-in” for Ȳj and Ȳ , respectively. We then have the following result that characterizes the behavior
of the estimator σ̂2

n under certain conditions on the batch size sequence and the extent of the overlapping
in the batches.
Theorem 2 Suppose the strong approximation assumption (SA) and Assumptions A.1–A.2 hold.

1. Let non-overlapping batches be used, that is, δn = 0. Let the batch sizes {mn,n ≥ 1} be chosen
such that for some a ∈ (0,∞),

∞

∑
n=1

ε
a
n < ∞; εn :=

mn

n
. (7)

Then
σ̂

2
n

a.s.→ σ
2.

Furthermore, for any t ∈ (0,∞) and ν ∈ (0,∞),

P(| σ̂
2
n

σ2 −1|> t)≤ C(ν)

tν
ε

ν
n ,

where C(ν) is uniformly bounded.
2. Let fully-overlapping batches be used, that is, δn = 1− 1

n , and suppose mn→ ∞ as n→ ∞. Then

σ̂
2
n

d→ σ
2

Λ(β1),

where

Λ(β1) :=
1
β1

∫ 1−β1

0
(B(t +β1)−B(t)−β1B(1))2 dt.
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Theorem 2 characterizes the asymptotic behavior of TAVC for the two extreme cases of non-overlapping
and fully-overlapping batch means. (We will not explain the cryptic notation Λ(β1,1) here but only state
that Λ(β1,1) is a special case of a two-parameter random variable that results from more general batching
procedures.) Notably, we see that strong consistency is ensured only if the condition (7) is satisfied, that
is, when the batches are non-overlapping, the batch sizes go to infinity but not too fast. As we shall see,
risk optimality depends crucially on the TAVC estimator exhibiting strongly consistent behavior, and that
too with the tail risk decaying sufficiently fast.

We do not provide a proof of Theorem 2 but instead refer the reader to (Glynn and Whitt 1991; Damerdji
1994; Aktaran-Kalaycı et al. 2009) for clear indications on how to obtain the result.

4 OPTIMALITY OF THE PROPOSED SEQUENTIAL ESTIMATOR

We are now ready to fully characterize the quality of the proposed sequential estimator. Crucial to such
characterization is the nature of the stopping time (4), specially on how its moments behave. If the moments
of T become large because of excessive early stopping behavior, this is bound to affect the risk of the
resulting sequential estimator, potentially making it sub-optimal. The following theorem, analogous to the
lemma appearing on page 640 of Ghosh and Mukhopadhyay (1979), fully characterizes the behavior of
the stopping time T .
Theorem 3 Suppose the strong approximation assumption (SA) holds. Let non-overlapping batches be
used in constructing σ̂2

n . Let the batch sizes {mn,n≥ 1} be chosen such that for some κ > 0, the following
condition holds.

lim
n→∞

nκ
εn = 0. (8)

Then, the following assertions hold.

1. P(T < ∞) = 1;
2. T is ↓ in c; limc→0 T = ∞ a.s.;
3. limc→0 T/n∗ = 1 a.s.;
4. limc→0E[(T/n∗)m] = 1 for any m > 0;

Proof Sketch. The proof of the first part follows in a straightforward manner from the expression in (4)
and since σ̂2

n → σ2 a.s. as n→∞ (Grams and Serfling 1973). The second part of the theorem also follows
in a straightforward manner from the expression in (4). The third part of the theorem follows upon noticing
that √

A
c

σ̂T ≤ T ≤
√

A
c

(
σ̂T−1 +(T −1)−β

)
.

A proof of the last part of the theorem is nuanced and relies heavily on the tail-probability bound that
appears in the first part of Theorem 2.

We finally conclude with the main theorem of the paper which asserts that the risk associated with the
proposed estimator is asymptotically optimal in the sense that the ratio of its risk to that of the optimal
risk in the hypothetical scenario described in Section 2 tends to unity as c becomes small.
Theorem 4 If σ2 > 0 and 0 < β < 1/4, then

lim
c→0

Rn∗(c)
RT (c)

= 1,

where the expression for Rn∗(c) appears in (3).

Proof Sketch. A proof of this theorem relies heavily on Theorem 3 and starts with the arguments of the
proof of Theorem 1 in Ghosh and Mukhopadhyay (1979).
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5 SUMMARY AND CONCLUDING REMARKS

We have outlined a simple sequential procedure to estimate the steady-state mean of a discrete time
stochastic process. The procedure mimics the optimal stopping procedure for a hypothetical context where
the time-averaged variance constant of the stochastic process is known, and estimates the time-average
variance constant using an appropriate batching procedure. Interestingly, such sequential estimation of the
steady-state mean turns out to be risk optimal when the relative cost of sampling is small and the batches
used in the batching procedure satisfy a certain condition that stipulates that they are neither too large nor
too small.

It should be clear that while we have treated only the steady-state mean context here, the analogous
procedure for other quantities, e.g., steady-state quantile, follows in a very direct fashion — follow the
same stopping procedure after substituting the batch means Ȳj with the batch estimator of the quantity of
interest. In contexts involving quantities other than the steady-state mean, different “centering” choices
become available — see Dong and Nakayama (2020), Asmussen and Glynn (2007). Also, how to correctly
“center” the estimator for the time-averaged variance constant in such contexts turns out to be non-trivial.
Nevertheless, our outlined procedure seems to lay out a general blueprint for constructing risk-optimal
estimators in sequential simulation contexts.
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