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ABSTRACT

Stochastic simulation models are increasingly popular for analyzing complex stochastic systems. However,
the input distributions driving the simulation models are typically unknown in practice and are usually
estimated from real world data. Since the size of real world data tends to be limited, the resulting estimation
of input distribution will contain errors. This estimation error is commonly known as input uncertainty.
In this paper, we consider the stochastic simulation optimization problem when the input uncertainty is
present and assume that both the family and parameters of the input distribution are unknown. Traditional
efficient metamodel-based optimization approaches like Efficient Global Optimization (EGO) do not take
the input uncertainty into account. This can lead to sub-optimal decisions when the input uncertainty level
is high. Here, we adopt a nonparametric Bayesian approach to model the input uncertainty and propose
an EGO-based simulation optimization algorithm that explicitly accounts for the input uncertainty.

1 INTRODUCTION

In many operational systems such as manufacturing, service and financial systems, the decision makers
are typically required to make decisions to optimize some system performances. As the dimension and
complexity of the systems increase, direct experiments conducted on real systems can be quite expensive.
Simulation models are increasingly being used to study these complex systems because they are cheaper and
less risky to implement. Simulation experiments enable users to choose and try different experiment settings
to analyze the system performance, and is also widely used for optimizing these systems. This optimization
via the simulation approach, often known as simulation optimization, aims to find the best settings that
optimize some simulation output values. This in turn can guide the users on the optimal decisions in real
systems. The classical stochastic simulation optimization (minimization) problem is formulated as:

minx∈X Eξ∼Pc [h(x,ξ )], (1)

where x ∈ Rd is the decision variable that we aim to minimize with a continuous box-constraint design
space X , and ξ is a random variable that accounts for the random effects of the system. h is the simulation
output that depends on both x and ξ , and h is stochastic due to the randomness of ξ . For example, in an
inventory problem, the h(x,ξ ) can be the simulated steady-state cost, which is stochastic as it depends on
the random demand ξ . The expectation in (1) is taken with respect to the distribution of ξ , i.e. ξ ∼ Pc.
This Pc is usually referred to as the true input distribution (Zhou and Xie 2015; Wu et al. 2018).

In practice, however, the true input distribution Pc that drives the simulation run is unknown and can
only be estimated from finite real world data. For example, in the inventory problem, the true distribution
(input distribution) Pc for the customers’ random demand is unknown and can only be estimated from
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customers’ historical demand. The estimated input distribution P̂ is usually used as if it were the true input
distribution Pc in the simulation experiments, ignoring the estimation error due to the finite input data. The
typical problem solved while ignoring the estimation error is

minx∈X E
ξ∼P̂[h(x,ξ )]. (2)

If the size n of the real world dataset is small, a poorly estimated P̂ may result. Then the best decision
found by solving (2) can be quite different from that of (1). This uncertainty arising from a finite data
estimation is called input uncertainty. Ignoring the input uncertainty can have a non-negligible impact on
the system performance evaluation as well as simulation optimization (Lam 2016; Wu et al. 2018).

There has been quite a sizeable of literature on solving the stochastic simulation optimization problem
given by (2) without considering input uncertainty. There are three main streams of methods, including
metaheuristics (Ólafsson 2006), gradient-based methods (Kushner and Yin 2003) and metamodel based
methods (Barton and Meckesheimer 2006). Xu et al. (2015) provides a comprehensive review of these
different methods. Metamodels are statistical approximation models of the simulation output response
h(·) that require no strict assumptions on h, and they are usually easy and cheap to develop. Besides,
metamodel-based methods have been shown to be efficient at locating optimal solutions when the simulation
runs are limited. The Gaussian Process (GP) model is a type of metamodel that has received much attention
due to its mathematical convenience and modeling flexibility (Kleijnen 2009; Ankenman et al. 2010).

Although most of the simulation optimization methods can only be applied directly to the case when
input uncertainty is ignored, some recent research have started to take input uncertainty into account in
the simulation optimization problem. Realizing the risk of solving problem (2), Zhou and Xie (2015)
considered a simplified case that Pc can be fully characterized by some unknown input parameter λ c, i.e
Pc = Pλ c . They then considered the input uncertainty arising from not exactly knowing λ c in simulation
optimization and formulated the Bayesian Risk Optimization (BRO) problem as

minx∈X Eλ∼π

[
Eξ∼Pλ

[h(x,ξ )]
]
. (3)

From a Bayesian perspective, Zhou and Xie (2015) viewed λ c as a random variable λ . A prior is posed
on λ and a posterior distribution π for λ is then computed conditional on the real world data. This π is
used to quantify the uncertainty about the true input parameter λ c. Zhou and Xie (2015) pointed out that
BRO outperforms (2) when the real data size n is small and h is sensitive to λ . Wu et al. (2018) further
derived the consistency and asymptotic normality of the BRO solution. Pearce and Branke (2017) and
Wang et al. (2019) proposed Gaussian process based algorithms to solve this BRO problem. However,
all of these proposed algorithms only consider the case when ξ follows a known distribution family and
consider the input uncertainty in the input parameter. For example, in an inventory problem, the random
demand ξ is assumed to follow some parametric distribution, e.g. Pc = exp(λc), where λc is the unknown
true input parameter. The assumption of a known distribution family, however, can be too restrictive in
practice especially for situations where no prior knowledge about the input distribution model is available.

Without assuming the input distribution family known, modeling input uncertainty in a nonparametric
perspective has been proposed and studied over the years within the simulation community (Lam 2016).
Existing methods, including direct resampling (Barton and Schruben 1993), bootstrap resampling and
uniformly randomized empirical distribution function (Barton and Schruben 2001), and Dirichlet Process
Mixtures (Xie et al. 2019), aim to quantify the input uncertainty and construct confidence intervals of the
simulation output (Song and Nelson 2015). However, none of them considers the impact of this uncertainty
on the results of simulation optimization. To the best of our knowledge, the inclusion of input uncertainty
when neither the input distribution family nor the input parameter is known in the stochastic simulation
optimization problem has not yet been comprehensively explored. In this paper, we focus on modifying a
metamodel-based method, the popular Efficient Global Optimization (EGO) algorithm to efficiently solve
the stochastic simulation optimization problem, when the distribution family of Pc is unknown. Other
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GP-based algorithms, such as Knowledge Gradient (Frazier et al. 2009) and Informational Approach to
Global Optimization (Villemonteix et al. 2009) can also be adjusted to account for input uncertainty. Here,
we use EGO as it is straightforward to calculate and is the most commonly used GP-based simulation
optimization algorithm. Our proposed algorithm can be viewed as an extension of Wang et al. (2019)
whose algorithms can only be applied when the input distribution family is known.

The rest of this paper is organized as follows. Section 2 formulates the Nonparametric Bayesian
Risk Optimization (NBRO) problem, and introduces the nonparametric Bayesian approach to modeling the
unknown input distribution. Section 3 provides the modified EGO algorithm to solve NBRO. In Section 4,
we conduct experiments on an inventory problem. Section 5 concludes and future directions are discussed.

2 NONPARAMETRIC BAYESIAN RISK OPTIMIZATION (NBRO)

In this section, we will extend the BRO problem to the case when the input distribution family is unknown
and term the problem as Nonparametric Bayesian Risk Optimization (NBRO) problem.

2.1 Nonparametric Bayesian Risk Optimization (NBRO)

In order to hedge the risk of ignoring input uncertainty in solving (2), instead of using the estimated P̂, we
model Pc with a posterior P∼ π and aim to solve the following problem:

minx∈X g(x) = EP∼π

[
Eξ∼P[h(x,ξ )]

]
. (4)

The outer expectation in (4) is taken with respect to the posterior of P. The inner expectation is taken
with respect to the distribution of ξ . The problem given by (4) is similar to the BRO problem (3) in Wu
et al. (2018) where the distribution family for P is assumed known. Different from Wu et al. (2018), we
consider a more general case that the distribution family is unknown. As we do not have any parametric
assumptions on P, we call problem (4) as Nonparametric Bayesian Risk Optimization (NBRO) problem.

2.2 Nonparametric Bayesian Modeling of the Input Distribution

In the following, we introduce the nonparametric Bayesian approach to modeling the unknown input
distribution. Recall Pc is the true input distributions from which the real world data is collected. Denote
the real world data set as Dn = {ξ1, · · · ,ξn}.

From the frequentist perspective, the empirical distribution function P̂ is used to estimate Pc: P̂(t) =
1
n ∑

n
i=1 I(ξi ≤ t). However, the empirical distribution function P̂ can be rather inaccurate when the real

world data size n is limited. An alternative way to estimate Pc is from a Bayesian perspective, where we
model Pc as a random variable P. Specifically, a prior π0(P) is first assumed on P which reflects our initial
belief on Pc. Then given the real world data Dn, the posterior distribution of P is updated as π(P|Dn) which
is our current knowledge on Pc after observing Dn. As n gets larger and larger, the posterior distribution
π(P|Dn) will be more and more concentrated around the true input distribution Pc. When n tends to be
infinity, the posterior π(P|Dn) will recover Pc (Gelman et al. 2013).

There exist several nonparametric Bayesian models for estimating a distribution, such as the Dirichlet
distribution, the Dirichlet Process and the Dirichlet Process Mixtures (Xie et al. 2019). Here, we use the
conjugate Dirichlet process prior as it is more flexible than the Dirichlet distribution and more computational
efficient than the Dirichlet Process Mixtures (Hjort et al. 2010; Ferguson 1973). The Dirichlet process prior
can be parameterized by the concentration parameter α and the base distribution P0, denoted as DP(α,P0).
The base distribution P0 is a distribution that can be thought of as a prior guess for Pc. α controls how
tightly concentrated the prior is around P0. The larger the concentration parameter, the more concentrated
the prior is around P0. Therefore, high values of α imply high confidence in P0 and low values of α represent
vague beliefs. The concentration parameter α can be thought of as the number of “initial” data to obtain P0.
Given the real world data ξ1, ...,ξn ∼ Pc and the chosen Dirichlet process DP(α,P0) as the prior, we can

derive the posterior distribution that is also a Dirichlet process: π(P|ξ1, ...,ξn)∼ DP(α +n,
αP0+∑

n
j=1 δξ j

α+n ).
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With P ∼ π(P|ξ1, ...,ξn), our knowledge about Pc as well as the corresponding input uncertainty can be
quantified. Popular sampling method such as the algorithm of the stick-breaking process (Hjort et al. 2010)
can be used to efficiently generate the samples from the posterior.

3 AN EFFICIENT APPROACH TO NBRO: A GAUSSIAN PROCESS BASED ALGORITHM

If we write the inner expectation in (4) as f (x,P) = Eξ∼P[h(x,ξ )], then problem (4) is equivalent to

minx∈X g(x) = EP∼π [ f (x,P)]. (5)

Note that f (x,P) can only be estimated through noisy simulation outputs h(x,ξ ). In addition, the design
space X is continuous. Hence it is impossible to evaluate at all possible design-distribution points (x,P)
to get full information about the surface of f (x,P). Here we focus on the goal of making the best use of
the finite simulation runs to solve (5). With limited budget, Gaussian process based algorithms have been
shown to be efficient and effective in solving simulation optimization problems (Frazier 2018).

In order to use the GP-based optimization algorithms to solve (5), a GP model for g(x) is required. As
we focus on the limited budget case, it is not possible to obtain observations of g(x) from direct simulation
methods such as those suggested in Chick (2001), Zouaoui and Wilson (2003) which require a large number
of simulations at each design point. Therefore, the simulation output on g(x) is not readily available and
only the noisy simulation output on f (x,P) is observable. In this case, we would like to first obtain the
GP model F(x,P) for f (x,P), and develop an approximation for g(x). Then we apply this approximation
of g(x) in the EGO algorithm to propose an efficient approach to solve problem (5).

3.1 Stochastic GP Model for f (x,P)

Let y(x,P), h(x,ξ ) where ξ ∼ P be the stochastic simulation output at (x,P), and we assume that y(x,P)
is a realization of a random process that can be described by the following model:

y(x,P) = f (x,P)+ ε,

where ε is the stochastic noise that is assumed to follow a normal distribution with mean 0 and finite
constant variance, i.e. ε ∼N(0,σ2

ε ). The expected simulation output f (x,P) = E[y(x,P)] (for the simplicity
of notation, the expectation without subscript is with respect to ε hereafter) is further assumed to be
modeled as a Gaussian process (GP) F with mean β0 and stationary covariance function ΣF , denoted as
F ∼ GP(β0,ΣF). The covariance function ΣF is used to measure the spatial correlation of F between any
two points (x,P) and (x′,P′): ΣF((x,P),(x′,P′)) = Cov(F(x,P),F(x′,P′)) = τ2RF((x,P),(x′,P′);θ), where
RF is the correlation function, τ and θ are the model parameters.

Suppose the initial sample size is s · r, i.e. we can evaluate f (x,P) through simulation at s distinct
design-distribution pairs, denote as {(x1,P1), · · · ,(xs,Ps)}. At each (xi,Pi), r replicates of the simulation
are conducted. Denote the simulation output at (xi,Pi) at the jth simulation replicate as y j(xi,Pi), and
the simulation output sample mean is computed as ȳ(xi,Pi) =

1
r ∑

r
j=1 y j(xi,Pi). Then denote the available

observed simulation output sample mean vector as Ȳs = {ȳ(x1,P1), · · · , ȳ(xs,Ps)}. Conditional on Ȳs, F can
be updated and the posterior distribution Fs(x,P), F |Ȳs ∼ GP(ms,ks) can be obtained. ms and ks are the
conditional mean and conditional covariance of Fs(x,P) respectively:

ms(x,P) = τ2RF((x,P), ·;θ)T [τ2RF(θ)+Σε ]
−1Ȳs,

ks((x,P),(x′,P′)) = τ2RF((x,P),(x′,P′);θ)− τ4RF((x,P), ·;θ)T [τ2RF(θ)+Σε ]
−1RF((x′,P′), ·;θ).

The conditional mean ms can be used to approximate f (x,P). ks((x,P),(x′,P′)) is the conditional
covariance between any two design-distribution pairs, and the conditional variance of F is ks((x,P),(x,P)).
Besides, τ2RF((x,P), ·;θ)T = [Cov[F((x,P)),F((x1,P1))], · · · ,Cov[F((x,P)),F((xs,Ps))]]

T is a s×1 vector,
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and τ2RF(θ) is the s× s covariance matrix across the s observed points. Σε = Diag{1
r σ2

ε · · · , 1
r σ2

ε }= 1
r σ2

ε I
is an s×s matrix. The σ2

ε can be estimated with pooled variance of the simulation outputs and the parameters
β0, τ and θ can be estimated with the maximum log-likelihood method (Williams and Rasmussen 2006).

For the stochastic GP model Fs(x,P), we also need to properly choose the correlation function between
(x,P) and (x′,P′). We assume x and P are independent of each other. Denote the correlation function as
RF((x,P),(x′,P′)= rX (x,x′)rM (P,P′)where rX (x,x′) and rM (P,P′) are correlation kernels. The correlation
kernels need to be symmetric and positive definite. For rX (x,x′), there are many choices including the
squared exponential, Matern correlation kernels etc. In this article, we adopt the most widely-used squared
exponential correlation kernels, i.e. rX (x,x′) = exp{−(x− x′)2/2v2

1} (Williams and Rasmussen 2006).
For rM (P,P′), we use the following form: rM (P,P′) = exp{−D2(P,P′)/2v2

2}, where D2(P,P′) is some
closeness measure between P and P′ that can lead to positive definite correlation kernels.

There are several candidates for the closeness measure, such as the total variation, the squared Hellinger
distance, the Jenson-Shannon divergence (these three are f-divergence measures proposed by Hein and
Bousquet (2005)) and the quadratic Wasserstein distance (Bachoc et al. 2017). In this paper, we choose
the Wasserstein distance over the three f-divergence measures because it can more accurately capture the
differences in the characteristics of different distributions. The f-divergence measures only consider the
point-wise difference between input distributions, while the Wasserstein distance considers both the mass
difference point-wisely and the difference between points. Here we use a simple example to illustrate.
Let us consider the three distributions, denoted as A,B,C respectively in Figure 1. The distance between
B and A and the distance between C and A are the same in terms of the three f-divergence measures,
while the Wasserstein distance between C and A is larger than the Wasserstein distance between B and
A. The Wasserstein distance intuitively is more reasonable as the difference of the mean values between
C and A (4−2 = 2) is larger than that between B and A (2.5−2 = 0.5) and the difference of the median
values between C and A (5−1 = 4) is also larger than that between B and A (2.5−2 = 0.5). Formally,
the quadratic Wasserstein distance is defined as: D2 (P,P′) = infτ∈γ(P,P′) E(z,z′)∼τ [|z− z′|2, where γ(P,P′) is
the set of the distribution of (z,z′) whose marginal distributions are P and P′. The Wasserstein distance
can be calculated efficiently with the algorithm provided by Peyré and Cuturi (2019).
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Figure 1: Comparison of Wasserstein distance and the three f-divergence measures.

3.2 Approximation for g(x)

With Fs(x,P) obtained as an estimated model for f (x,P), here, we further derive an approximation model
for g(x) = EP∼π [ f (x,P)]. Specifically, we consider the following process:

Gs(x) = EP∼π [Fs(x,P)]. (6)
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By rewriting (6) as the limit of Riemann sums (De Oliveira and Kone 2015), it can be shown that Gs(x)
is still a GP. The mean and covariance of Gs(x) can be derived as follows.

E[Gs(x)] =
∫

P E[Fs(x,P)] ·π(P|Dn)dP =
∫

P ms(x,P) ·π(P|Dn)dP, (7)

Cov[Gs(x),Gs(x′)] =
∫

P
∫

P′ π(P|Dn)π(P′|Dn)ks((x,P),(x′,P′))dP′dP. (8)

The integration in (7) and (8) can be estimated numerically. Specifically, samples of {P1, · · · ,PNMC} can be
generated from π(P|Dn) to compute:

E[Gs(x)]≈ µs(x) = 1
NMC

∑
NMC
i=1 ms(x,Pi),

Cov[Gs(x),Gs(x′)]≈ cs(x,x′) = 1
N2

MC
∑

NMC
i=1 ∑

NMC
j=1 ks((x,Pi),(x′,Pj)).

In fact, we have µs(x) = E
[

1
NMC

∑
NMC
i=1 Fs(x,Pi)

]
and cs(x,x′) = Cov( 1

NMC
∑

NMC
i=1 Fs(x,Pi),

1
NMC

∑
NMC
j=1 Fs(x′,Pj)).

Furthermore, as
Ĝs(x) = 1

NMC
∑

NMC
i=1 Fs(x,Pi) (9)

is a finite sum of Gaussian random variable, Ĝs(x) is a Gaussian process with mean µs(x) and covariance
cs(x,x′). The above Ĝs(x) can then be used to approximate Gs(x) and used as the approximation model
for g(x). Ĝs(x) is our current knowledge about the surface of g(x) after the initial evaluations. The MC
samples Pi in (9) can be generated from the posterior π with the algorithm of the stick-breaking process.

3.3 EGO with Input Uncertainty to Select (xs+1,Ps+1)

In this section, we aim to modify a popular global optimization algorithm, the Efficient Global Optimization
(Jones et al. 1998), to guide the sequential selection of (xs+1,Ps+1) for the next evaluation.

3.3.1 Overview of EGO

EGO was first introduced to solve the deterministic simulation optimization problem when the simulation
outputs are deterministic. EGO starts by evaluating at an initial sets of points to estimate a GP model and
then takes sequential steps to search the space. The sequential evaluation point is determined by maximizing
the Expectation Improvement (EI) criterion based on the GP model. The EI criterion measures the expected
improvement of the new function evaluation over the current best evaluations. It not only aims to choose
points that can reduce the objective function value most, but also considers the uncertainty at unobserved
points, enabling it to balance the search within local areas of current optimizer and unexplored areas away
from previously observed points. The optimal is finally determined by the minimum of the simulation
output at the already sampled points.

3.3.2 Modified EGO with Input Uncertainty

In order to adapt the EGO for stochastic optimization problem and account for the input uncertainty to
solve (5), we need to answer two questions: 1) what is the current best values of g(x) and 2) what is the
predictive distribution of g(x) after a new hypothetical evaluation is generated.

Recall that in section 3.2, we have derived a GP model Ĝs(x) for g(x) with the predictive mean µs(x).
Here, we estimate the current best values upon which we aim to improve, denoted as T , as the best predictive
mean µ(x) over already sampled design points, i.e. T = min{µs(x1), · · · ,µs(xs)}.

To answer the second question, we need to derive the predictive distribution Ĝs+1(x) conditional on
evaluation at any arbitrary point (xs+1,Ps+1), which is denoted as Ĝs+1(x|xs+1,Ps+1). Before obtaining
the predictive distribution Ĝs+1(x|xs+1,Ps+1), we need to first derive the predictive distribution Fs+1(x,P)
conditional on evaluation at (xs+1,Ps+1), denoted here as Fs+1((x,Pi)|xs+1,Ps+1). Then we have

Ĝs+1(x|xs+1,Ps+1) =
1

Nmc
∑

Nmc
i=1 Fs+1((x,Pi)|xs+1,Ps+1). (10)
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Suppose we denote the evaluation value at (xs+1,Ps+1) to be ys+1, where ys+1 = y(xs+1,Ps+1) is a
sample value of the stochastic simulation output. Conditioning on this output, we can derive the conditional
distribution Fs+1((x,P)|xs+1,Ps+1,ys+1)∼ GP(m′s+1,k

′
s+1) with the following mean and covariance:

m′s+1(x,P) = ms(x,P)+
ks((x,P),(xs+1,Ps+1))

ks((xs+1,Ps+1),(xs+1,Ps+1))+
1
r σ2

ε

[ys+1−ms(x,P)]

= ms(x,P)+
ks((x,P),(xs+1,Ps+1))√

ks((xs+1,Ps+1),(xs+1,Ps+1))+
1
r σ2

ε

Z,

k′s+1((x,P),(x
′,P′)) = ks((x,P),(x′,P′))− ks((x,P),(xs+1,Ps+1))ks((x′,P′),(xs+1,Ps+1))

ks((xs+1,Ps+1),(xs+1,Ps+1))+
1
r σ2

ε

,

where Z ∼N (0,1) is the standard normal random variable. Then from equation (10), we can obtain the
distribution of Ĝs+1(x|xs+1,Ps+1,ys+1) whose conditional mean and covariance are

E
[
Ĝs+1(x|xs+1,Ps+1,ys+1)

]
= 1

Nmc
∑

Nmc
i=1 m′s+1(x,Pi)

= 1
Nmc

∑
Nmc
i=1 ms(x,Pi)+Z 1

Nmc
∑

Nmc
i=1

ks((x,Pi),(xs+1,Ps+1))√
ks((xs+1,Ps+1),(xs+1,Ps+1))+

1
r σ2

ε

∼N

(
1

Nmc
∑

Nmc
i=1 ms(x,Pi),

(
1

Nmc
∑

Nmc
i=1

ks((x,Pi),(xs+1,Ps+1))√
ks((xs+1,Ps+1),(xs+1,Ps+1))+

1
r σ2

ε

)2
)
,

Cov[Ĝs+1(x|xs+1,Ps+1,ys+1), Ĝs+1(x′|xs+1,Ps+1,ys+1)] =
1

N2
mc

∑
Nmc
i=1 ∑

Nmc
j=1 k′s+1((x,Pi),(x′,Pj)).

It can then be derived that Ĝs+1(x|xs+1,Ps+1)∼N
(
µ ′s(x),σ

′2
s (x)

)
, where

µ
′
s(x) =

1
Nmc

∑
Nmc
i=1 ms(x,Pi),

σ
′2
s (x) =

(
1

Nmc
∑

Nmc
i=1

ks((x,Pi),(xs+1,Ps+1))√
ks((xs+1,Ps+1),(xs+1,Ps+1))+

1
r σ2

ε

)2

+ 1
N2

mc
∑

Nmc
i=1 ∑

Nmc
j=1 k′s+1((x,Pi),(x,Pj).

If we only consider the updated value at xs+1 caused by a new evaluation at (xs+1,Ps+1), then the
expected improvement over the current best values, the proposed EI based infill criterion, is given by

EIT (xs+1,Ps+1) = EĜs+1(xs+1|xs+1,Ps+1)
[(T − Ĝs+1(xs+1|xs+1,Ps+1))

+|Ȳs]

= ∆Φ

(
∆

σ ′s (xs+1)

)
+σ

′
s (xs+1)φ

(
∆

σ ′s (xs+1)

)
,

where ∆ = T − µ ′s (xs+1), and T = min{µs(x1), · · · ,µs(xs)} is the estimated current best value for g(x)
as mentioned above. Although the function value of g(x) at xs+1 is unknown, we have the distribution
Ĝs+1(xs+1|xs+1,Ps+1) to account for the uncertainty of g(xs+1). Hence, the improvement given by T −
Ĝs+1(xs+1|xs+1,Ps+1) is averaged with respect to this marginal distribution Ĝs+1(xs+1|xs+1,Ps+1). Since
Ĝs+1(xs+1|xs+1,Ps+1) is a normal random variable, the EI function can be computed analytically.

The next design-distribution pair is then selected as argmax(xs+1,Ps+1) EIT (xs+1,Ps+1), i.e. the point that
can on average improve the objective function value most. r simulation replications is used to evaluate this
point (xs+1,Ps+1) to obtain simulation output ȳ(xs+1,Ps+1). The GP model is updated and next sequential
evaluation point is selected again based on the EI criterion. This sequential evaluation is iterated until the
total simulation budget N× r is exhausted. Denote VN = {x1, · · · ,xN} as the set of all design points visited
when the budget is exhausted, the minimizer of the predictive mean µN(x) of ĜN(·) over the VN , is returned
as the final approximated minimizer, i.e x̂∗ = argminx∈VN µN(x). As more and more points are evaluated,
the estimated model Ĝ(·) can better approximate the objective function g(x), and consequently the accuracy
of x̂∗ is also improved. Algorithm 1 below outlines the general steps for our proposed algorithm.
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Algorithm 1 Modified EGO Algorithm with Input Uncertainty
1: Given i.i.d. real world data Dn = {ξ1,ξ2, · · · ,ξn} of size n and the Dirichlet process prior DP(α,P0)

on the input distribution P, derive the posterior π(P|Dn);
2: Initialization: Generate {x1,x2, · · · ,xs} using Latin Hypercube Sampling from Uniform distribution

with support X and generate {P1,P2, · · · ,Ps} randomly from π(P|Dn) to obtain an initial set of
design-distribution sample pairs {(x1,P1),(x2,P2), · · · ,(xs,Ps)}. Denote Vs = {x1, · · · ,xs};

3: Run the simulation experiment at these initial sample points with r replications at each point and obtain
the observed output sample mean vector Ȳs = [ȳ(x1,P1), ȳ(x2,P2), · · · , ȳ(xs,Ps)]

T ;
4: Validation: Based on Ȳs, construct a stochastic GP model Fs(x,P); Perform cross-validation (e.g.

Leave-one-out cross validation) to ensure that the metamodel is valid;
5: while s≤ N−1 do . N× r is the total budget
6: Generate P1, · · · ,PNMC from π(P|Dn); Derive the model Ĝs(x,P)∼ GP(µs,cs) for g(x);
7: Select sequential design-distribution point (xs+1,Ps+1) : use the modified EGO algorithm;
8: Run simulation experiments at (xs+1,Ps+1) with r replications and obtain the observed output mean

ȳ(xs+1,Ps+1), set Ȳs+1 = [Ȳs, ȳ(xs+1,Ps+1)]
T ;

9: Update: update the stochastic GP model Fs(x,P) based on Ȳs+1;
10: Set Vs+1 = Vs∪ xs+1 and set s = s+1;
11: return x̂∗ = argminx∈VN µN(x).

4 EMPIRICAL PERFORMANCE: AN INVENTORY PROBLEM

In this section, we focus on the inventory problem of Fu and Healy (1997) that has been widely used to
test the empirical performance of simulation optimization algorithms (Jalali et al. 2017; Wang et al. 2019).
We will first examine the empirical convergence of our proposed modified EGO algorithm in obtaining the
optimal value of the NBRO objective function. We will then compared the performance of our approach
which explicitly accounts for input uncertainty with the approach which overlooks input uncertainty. This
is to further highlight the importance of considering the NBRO problem when input uncertainty is high.

4.1 The Inventory Simulator and Experiment Setting

In the inventory problem of Fu and Healy (1997), a company manages the inventory of a single product with
a periodic review policy. At the end of each period (e.g. each week), the company will check the inventory
position with the following rule: if the inventory position is above the basic ordering level (denoted as s),
the company will not order; If the inventory position is below s, the company will order the difference
between the order-up-to level (denoted as S) and the inventory position. The decision variable x = [s,S]
is two dimensional. The customer demand, denoted as ξ is stochastic and is independently identically
distributed according to a distribution P across different periods. The cost include the fixed ordering cost
= 100, unit cost = 1, holding cost = 1, and back-order cost = 100. The candidate decision space is
{x = [s,S]|s ∈ [10000,22500],S ∈ [22600,35000]}. All these parameters used in this experiment are set the
same as in Jalali et al. (2017). The simulator is coded in Python, and has been validated by comparing with
that of Jalali et al. (2017). The length of simulation run is set to be 1000 periods with a warm-up length of
100 periods per simulation. The simulator output is the steady-state cost which is the cost averaged over the
900 (= 1000−100) periods. For a given decision x and a given demand distribution P, each simulation run
produces an output y(x,P) = h(x,ξ ),ξ ∼ P. The expected steady-state cost (expected simulation output)
for a given decision x and a given demand distribution P is denoted as f (x,P).

We assume the true distribution of the demand Pc as exp(λ c), where λ c = 0.0002 is the true input
parameter value. The true expected steady-state cost function is denoted as f (x,Pc). Ideally, we aim to
solve the problem of minx f (x,Pc). When the true demand distribution Pc is exponential, the expected
cost function has a closed-form and the optimal decision can be calculated analytically. The expected cost
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function is given by

f (x,Pc = exp(λ c)) = 1
100

[ 1
λ c +

[
100+ s− 1

λ c +0.5λ c(S2− s2)+ 101
λ c e−λ cs

]
/[1+λ c(S− s)]

]
. (11)

In practice however, the Pc is unknown (i.e. both the exponential distribution and the value of λ c

is unknown). Instead, only a finite set of real data Dn = {ξ1, · · · ,ξn} ∼ Pc can be observed. Therefore,
we cannot use the analytical form in (11) to calculate the optimal decision x∗ = argminx f (x,Pc) directly.
What is available is the simulator, from which the simulation output y(x,P) can be obtained for a given
decision x and a given demand distribution P.

Under the NBRO approach, we model Pc as a random variable P. We assume a Dirichlet prior for P
with α = 1 and P0 = uniform(0,max(ξ1, ...ξn)) (as recommended in Gelman et al. (2013)). Then we solve
the problem of minx g(x) = EP∼π [ f (x,P)]. As the exact form of f (x,P) and g(x) is unknown, our proposed
GP algorithm first builds a GP model Fs(x,P) for f (x,P) and then constructs a GP model Ĝs(x) for g(x).
Both Fs(x,P) and Ĝs(x) are updated sequentially as additional points are selected to be evaluated by our
proposed EGO algorithm. When the total budget is exhausted, the optimal solution is returned based on
µN(x), the predictive mean for g(x), as follows: x̂∗ = argminx∈VN µN(x).

4.2 Empirical Convergence of the Proposed Algorithm

We first test the efficiency of our proposed algorithm in solving the NBRO problem given by (5). We define
gGAP = |minx g(x)−g(x̂∗)|. As g(x) is not directly observable, we approximate it with 1

10000 ∑
10000
i=1 ȳ(x,Pi),

where ȳ(x,Pi) is the average of 1000 simulation outputs at (x,Pi), and we use a grid search over a large set
of the design points to obtain minx g(x). The gGAP is used to test whether the solution of our proposed
GP algorithm is able to converge to the optimal solution of g(x).

We follow the suggestion of Jones et al. (1998) to use the number of 10×d = 30, where d = 3 is the
dimension of the function, as the initial design sample size and sequentially select additional 100 points.
For evaluation on each point (x,P), we use r = 10 replications to determine the value of ȳ(x,P). Therefore,
the total budget is (30+100)×10 = 1300. We conduct 100 macro-replications and calculate the mean of
the gGAP values and its 95% confidence interval. The number of real world data is n = 10. The results are
shown in Figure 2. The figure shows that as the iteration (budget) increases, the optimal values returned
by our algorithm is able to get close to the optimal values of the g(x). At the end of the experiment, the
mean of the gGAP is less than 1, which has reduced more than 95% compared with that at beginning of
the experiment.

Figure 2: Empirical performance of our algorithm with respect to the number of budget in terms of gGAP.
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4.3 Comparison of the NBRO with the Approach Ignoring the Input Uncertainty

As mentioned in section 1, when Pc is unknown, it is typical in practice to ignore the input uncertainty and
directly use an estimated P̂ as if it were Pc. This approach then solves (2), ignoring the input uncertainty.
In the following, we term this approach as the Plug-In (PI) approach. The empirical cumulative distribution
computed on the real data: P̂(t) = 1

n ∑
n
i=1 1ξi≤t is commonly chosen. The PI approach can be solved using

the sequential kriging optimization (SKO, an variant of EGO proposed by Huang et al. (2006)), in which
a GP model is built for f (x,P) with predictive mean denoted as f̂ (x,P). The obtained optimizer is given
by x̂∗ = argminx∈V ′N f̂ (x, P̂), where V ′N is the set of all evaluated design points.

In the following, we will compare the NBRO approach which explicitly considers the input uncertainty
with the PI approach to see the potential benefits of the NBRO. We define GAP = |minx f (x,Pc)− f (x̂∗,Pc)|.
GAP directly measures the loss incurred from the estimated minimizer x̂∗. We use also 100 macro-replications
with different initial Latin Hypercube design points for each macro-replication. For a given macro-replication,
the two approaches start with the same initial design points. 20 points are selected sequentially after the
initial design. Therefore, the total budget is (30+20)×10 = 500. Here we consider the performance of
the two approaches under different input uncertainty levels, which can be roughly controlled by the number
of the real world data. We consider four cases of this number n, with n set at 10, 50, 100 and 1000. The
comparison results are summarized and shown in the box plots in Figure 3.

We use Mood’s median test (Mood 1954) with a significant level of 0.05 to test whether there are
significant differences between the GAP medians of the two approaches. The mood’s median test shows that
the difference is not significant when n = 1000, but is significant for n = 10,50 and 100. When n = 1000,
the GAP values for both approaches tend to be zero, and the variance of this measure is small. This can
be expected because as n increases, the input uncertainty level will decrease. When n tends to infinity (i.e.
the input uncertainty vanishes), both the π(P|Dn) and P̂ will be similar to Pc. As a result, both the NBRO
and the PI approaches will reduce to the true problem (1) , and hence it is expected that the minimizers
from both approaches converge. However, when n = 10 and 50, the performance of the NBRO approach
is significantly better than the PI approach. When n = 100, the proposed NBRO approach achieves both a
smaller median and variance than its counterpart. Although for this data size, the median of PI approach
is not very large, we observe that its variance is large, indicating that this approach is highly dependent on
P̂. This result is consistent with our motivation of proposing NBRO in section 1.

In summary, the proposed NBRO approach with the modified EGO algorithm which explicitly considers
input uncertainty is more robust to the input uncertainty level compared with the PI approach which ignores
it. This proposed approach is able to provide a smaller overall median GAP and variance performances. This

Figure 3: Boxplot of the GAP values for the two approaches (NBRO and PI) under different levels of input
uncertainty. The black solid lines within the boxes represent the medians.
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further illustrates that our approach can be effective in hedging the risk that arises from input uncertainty
in simulation optimization, especially when this uncertainty is high.

5 CONCLUSION

In this paper, we consider the stochastic simulation optimization problem when the input distribution is
unknown. We first formulate the nonparametric Bayesian risk optimization (NBRO) problem and propose
to use a nonparametric Bayesian approach to model the input uncertainty. Then the Efficient Global
Optimization algorithm is extended to solve this NBRO problem. From the results of the empirical
experiment, we find that: 1) Our proposed algorithm can empirically converges to the optimal value of
the NBRO objective function g(x). This essentially shows that our proposed algorithm which uses a fast
approximation, can locate the global minimizer of the NBRO problem accurately, and can be applied to
efficiently solve the NBRO problem; 2) Compared with an approach that ignores the input uncertainty, our
algorithm is able to obtain solutions closer to the optimal value of f (x,Pc). Besides, NBRO appears to be
more robust to the input uncertainty level, which illustrates the benefits of considering the NBRO as the
objective in stochastic simulation optimization when input uncertainty is present.

There are several future work directions. Firstly, in this work, we use the quadratic Wasserstein distance
as the distance measure for two distributions in the GP model. The sensitivity of the performance of our
GP algorithm with respect to different distance measures will need further investigation. Secondly, it will
be interesting to compare the performance of our approach with other parametric approaches to modeling
the input uncertainty.
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