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ABSTRACT

In the subset-selection approach to ranking and selection, a decision-maker seeks a subset of simulated
systems that contains the best with high probability. We present a new, generalized framework for
constructing these subsets and demonstrate that some existing subset-selection procedures are situated
within this framework. The subsets are built by calculating, for each system, a minimum standardized
discrepancy between the observed performances and the space of problem instances for which that system is
the best. A system’s minimum standardized discrepancy is then compared to a cutoff to determine whether
the system is included in the subset. We examine the problem of finding the tightest statistically valid cutoff
for each system and draw connections between our approach and other subset-selection methodologies.
Simulation experiments demonstrate how the screening power and subset size are affected by the choice
of standardized discrepancy.

1 INTRODUCTION

We consider the classical ranking-and-selection (R&S) problem of selecting the simulated alternative
(system) with the best expected performance from among a finite set. A well-studied approach to this
problem involves returning a subset of systems to the decision-maker, referred to as subset selection (Gupta
1965; Alam and Rizvi 1966). Instead of selecting a single system as the best, subset selection affords the
decision-maker the opportunity to make a final selection based on secondary considerations, which may
not be captured by the simulation model. The decision-maker can also infer from the size of the subset
whether there are multiple near-optimal systems. As the trend towards ubiquitous parallel computing gives
rise to R&S problems with thousands or even millions of systems, subset-selection procedures are likely
to only grow in importance.

Commercial simulation software like Simio and Arena R© allows users to easily employ subset-selection
procedures in a variety of ways as part of their experiments. Subset selection can be run as a stand-alone
procedure, taking a fixed number of replications from each system and reporting a final subset. Subset
selection can also be used to “clean-up” after running a search (Boesel et al. 2003) or to efficiently screen out
inferior systems before running a more intensive simulation-optimization algorithm (Nelson et al. 2001). In
the latter case, some second-stage R&S procedures reuse replications taken by a first-stage subset-selection
procedure and deliver an overall statistical guarantee on the selected system; the additive decomposition
lemma of Nelson et al. (2001) is an illustrative example.

The development of subset-selection procedures has been somewhat ad hoc, featuring a variety of goals
and assumptions. Many goals are expressed in terms of a class of solutions which should be included in
the returned subset with some specified probability. Examples include retaining the optimal system, one or
all δ -optimal systems, or the m best systems—in terms of expected performance—with high probability.
Arguably, the most popular of these goals is the probability of correct selection (PCS) guarantee, which
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states that the subset contains the best system—or one tagged as the best, if there are ties—with sufficiently
high probability for any problem instance. A closely related goal is to guarantee that the expected false
elimination rate is sufficiently small (Pei et al. 2018).

Gupta (1965) developed the first subset-selection procedure delivering the PCS guarantee, under an
assumption of a known, common variance of systems’ outputs and a common sample size. Subsequent
procedures relaxed these assumptions to handle unknown, unequal variances and unequal sample sizes
(Boesel et al. 2003). Procedures such as these construct the subset based on pairwise comparisons; that is,
the estimated performance of a given system is compared to that of each other system. The PCS guarantee
can be assured by carefully choosing the allowed difference between the estimated performances of paired
systems. In contrast to this approach, we introduce a broader subset-selection paradigm for delivering the
PCS guarantee that encompasses pairwise methods. Our approach provides a new lens through which we
illuminate how subset selection works as well as a rich space within which subset-selection procedures
can be developed and analyzed.

Our framework entails computing an index for each system and comparing it to a cutoff—one chosen
to deliver the PCS guarantee—to determine whether to include that system in the subset. Borrowing ideas
from isotonic regression (Barlow et al. 1972; Robertson et al. 1988; Silvapulle and Sen 2005), we use
as an index the minimum standardized discrepancy between the estimated performances and the space
of problem instances for which that system is one of the best. Plumlee and Nelson (2018) proposed
this discrepancy-based model for a different setting in which only a subset of systems are simulated, and
the decision-maker possesses information relating the expected performances of some systems. Apropos
of that line of research, this paper eliminates the functional information component, yet generalizes the
standardized discrepancies and cutoffs. We also provide deeper insights into the framework’s application
to subset selection and draw connections to existing methods.

2 SUBSET-SELECTION GUARANTEES

Suppose there are k systems under consideration and for each System i, ni replications are obtained,
where n1, . . . ,nk are fixed in advance. Simulating System i produces outputs Xi1,Xi2, . . . ,Xini satisfying the
following distributional assumption:
Assumption 1 For i = 1, . . . ,k, the outputs Xi1,Xi2, . . . ,Xini are independent and normally distributed with
unknown mean µi and known variance σ2

i . Furthermore, outputs from different systems are independent.
The normality component of Assumption 1 is standard in the R&S literature and can be approximately

satisfied by batching outputs and applying the Central Limit Theorem. It allows us to devise specific
procedures that deliver finite-sample statistical guarantees. The other aspects of Assumption 1 are made
solely for ease of presentation; e.g., the proposed methods can be adapted to address the use of common
random numbers (CRN) across systems. We make the (unrealistic) assumption of known variances to more
clearly introduce the main ideas and form connections to other subset-selection procedures. Our methods
can also be modified to handle unknown variances; see Plumlee and Nelson (2018) for a preliminary
treatment and Section 6 for further remarks.

Under Assumption 1, the vector µ = (µ1,µ2, . . . ,µk) uniquely describes the sampling distribution of
the outputs, hence we refer to µ as the problem instance. Given the outputs, µ is estimated by the vector of
sample means, µ̂ , where µ̂i = ni

−1
∑

ni
l=1 Xil for i = 1, . . . ,k. We use subscript [·] to indicate the (unknown)

ordering of the expected performances, i.e., µ[1] ≤ µ[2] ≤ ·· · ≤ µ[k], and we assume without loss of generality
that a larger expected performance is better—thus System [k] is (one of) the best. If multiple systems are
tied for the best, we assume that one of them is arbitrarily tagged as [k].

A subset-selection procedure returning a subset S⊆ {1,2, . . . ,k} delivers the PCS guarantee if

PCS≡ P([k] ∈ S)≥ 1−α for all µ ∈ Rk, (1)

where 1−α is specified by the decision-maker and P denotes the probability measure associated with
taking ni replications from System i for i = 1, . . . ,k, according to Assumption 1. Since the system tagged
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as [k] is chosen arbitrarily from among those tied for the best, the PCS guarantee ensures that for each such
system, the probability it is included in S exceeds 1−α . The PCS guarantee is trivially delivered by a
procedure that always returns S = {1,2, . . . ,k}, however uninformative this may be to the decision-maker.
Our interest is therefore in subset-selection procedures that deliver the PCS guarantee while having a small
expected subset size.

The PCS guarantee is unattainable without knowledge of the family of distributions of the outputs,
or some form of control on their tail behavior, e.g., bounds. Assumption 1, however, allows us to design
subset-selection procedures that deliver it. If the outputs are not normally distributed, then under suitable
conditions, the proposed methods achieve the PCS guarantee asymptotically (as mini=1,...,k ni→∞) via the
Central Limit Theorem.

3 A DISCREPANCY-BASED FRAMEWORK

We present a discrepancy-based framework within which subset-selection procedures can be designed to
deliver the PCS guarantee.

3.1 Overview

The central idea of our approach is to calculate an index for each system and include in the subset all systems
whose indices are below corresponding cutoffs. A given system’s index is intended to reflect how well the
sample data agrees with the hypothesis that that system is one of the best, with smaller values indicating
closer agreement. To mathematically describe this relationship, we introduce the standardized discrepancy
between µ̂ and a vector of performances m = (m1, . . . ,mk), expressed as d(m, µ̂). The standardized
discrepancy is also implicitly a function of the sampling variances, σ2

1 /n1, . . . ,σ
2
k /nk, which play the role

of standardizing differences between components of m and µ̂ .
For each system, we obtain an index by minimizing d(m, µ̂) subject to the constraint that that system

is the best according to m. Let Mi ≡ {m : mi ≥ m j for all j 6= i} denote the set of performance vectors
for which System i is one of the best. The minimum standardized discrepancy (i.e., index) of System i is
defined as

Di(µ̂)≡ min
m∈Mi

d(m, µ̂). (2)

The index Di(µ̂) can be interpreted as the minimum distance between µ̂ and Mi. Smaller values of Di(µ̂)
signify that the sample data more strongly supports the claim that System i is one of the best. As a function
of µ̂ , the index Di(µ̂) is a random variable whose distribution depends on the unknown problem instance.

For an arbitrary System i, we consider a deterministic cutoff, denoted by Di, satisfying

P(Di(µ̂)≤ Di)≥ 1−α for all µ ∈Mi. (3)

In words, Condition (3) states that for any problem instance in which System i is one of the best, its index
will be less than its cutoff with high probability. Let the subset S comprise the solutions for which their
index is less than their cutoff, i.e.,

S = {i : Di(µ̂)≤ Di}.
PCS guarantee (1) follows as a direct consequence of choosing the cutoffs so that Condition (3) holds for
all i = 1, . . . ,k.

3.2 Examples of Standardized Discrepancies

As examples of standardized discrepancies, we consider weighted variations of the `1, `2 and `∞ distance
functions:

d1(m, µ̂)≡
k

∑
j=1

√n j

σ j
|µ̂ j−m j|, d2(m, µ̂)≡

k

∑
j=1

n j

σ2
j
(µ̂ j−m j)

2, and d∞(m, µ̂)≡ max
j=1,...,k

√n j

σ j
|µ̂ j−m j|.
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The standardization of each component-wise difference µ̂ j−m j adjusts for the uncertainty about µ j, as
measured by the standard error of µ̂ j. Consequently, for m = µ , these standardized discrepancies are
functions of the pivotal statistics (µ̂ j− µ j)/(σ j/

√n j) which have a standard normal distribution. When
the variances are unknown, there exist analogs of these standardized discrepancies in which the true
variances are replaced with the sample variances; see Plumlee and Nelson (2018) for an analysis of the
unknown-variances analog of d2(m, µ̂).

One can also define standardized discrepancies in a way that imitates subset-selection procedures built
around pairwise differences, e.g.,

dP(m, µ̂)≡ max
j,`=1,...,k

|µ̂ j− µ̂`−m j +m`|√
σ2

j /n j +σ2
` /n`

.

Compared to d∞, dP scales the differences of differences of ( j, `) pairs of components of m and µ̂ by
the standard error of µ̂ j− µ̂`. Changing a single component of m consequently affects k−1 terms in the
maximum for dP(m, µ̂), but only a single term in the maximum for d∞(m, µ̂).

Computing the minimum standardized discrepancy of a given system involves solving the k-dimensional
optimization problem given in Definition (2). For a fixed µ̂ , the standardized discrepancies above are all
convex functions of m, allowing us to exploit the Karush-Kuhn-Tucker conditions and duality (Boyd and
Vandenberghe 2004) to reduce the calculations. The simplified forms of the various minimum standardized
discrepancies—stated in Proposition 1—entail either optimizing a one-dimensional convex function or
enumerating a discrete set of cardinality k.
Proposition 1 For i = 1, . . . ,k,

D1
i (µ̂)≡ min

m∈Mi
d1(m, µ̂) = min

m∈R∑
j 6=i

√n j

σ j
[µ̂ j−m]

+
+

√
ni

σi
|µ̂i−m| , (4)

D2
i (µ̂)≡ min

m∈Mi
d2(m, µ̂) = min

m∈R∑
j 6=i

n j

σ2
j

(
[µ̂ j−m]

+
)2

+
ni

σ2
i
(µ̂i−m)2, (5)

D∞
i (µ̂)≡ min

m∈Mi
d∞(m, µ̂) = max

j=1,...,k

µ̂ j− µ̂i

σ j/
√n j +σi/

√
ni
, and (6)

DP
i (µ̂)≡ min

m∈Mi
dP(m, µ̂) = max

j=1,...,k

µ̂ j− µ̂i√
σ2

j /n j +σ2
i /ni

. (7)

Equations (4) and (5) can be easily solved: Equation (4) by enumerating each µ̂ j and Equation (5) by
computing the derivative of the objective function with respect to m at each µ̂ j and finding the minimizer
within the interval in which the derivative changes sign. In like manner, Equations (6) and (7) can be
computed by enumerating over j = 1, . . . ,k. Equations (6) and (7) also show that D∞

i (µ̂) and DP
i (µ̂) differ

only in the denominators of their constituent terms. In particular, D∞
i (µ̂) standardizes by the sum of the

standard errors of µ̂i and µ̂ j whereas DP
i (µ̂) standardizes by the standard error of their difference.

These four discrepancy-based methods always return a non-empty subset, since the index of the system
with the largest sample mean is always zero (take m = µ̂) and the cutoffs must be nonnegative to satisfy
Condition (3). We discuss details of cutoffs in Section 6.

3.3 Useful Properties of Standardized Discrepancies

For the upcoming results, we require that the standardized discrepancy satisfy the following conditions,
both of which are satisfied by d1, d2, d∞, and dP.

(C1) Shift Invariance: For any c ∈ R, d(m, µ̂) = d(m+ c1k, µ̂ + c1k) where 1k is a k-vector of ones.
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(C2) Monotonicity: Di(µ̂) is monotone decreasing in µ̂i and monotone increasing in µ̂ j for all j 6= i.

Condition (C1) states that if all of the sample means were shifted by the same amount, shifting all
components of m likewise would yield the same standardized discrepancy. It is intended to align with
the shift invariance of the normal distribution stipulated by Assumption 1. Condition (C2) articulates the
intuition that, ceteris paribus, observing sample data for which a given System i looks better or another
System j looks worse should strengthen our belief that System i is one of the best, i.e., decrease its index.

A closely related property to Condition (C2) is that if a given system looks worse than another in terms
of estimated performance, while having less uncertainty about its expected performance, then it should
have a larger index. Proposition 2 affirms that this property is satisfied by the standardized discrepancies
we have considered.
Proposition 2 For d1, d2, d∞, and dP and any Systems i and j, if µ̂i ≤ µ̂ j and σ2

i /ni ≤ σ2
j /n j, then

Di(µ̂)≥ D j(µ̂).
If the same cutoff were used for all systems, we could exploit Proposition 2 to more efficiently construct

the subset, without having to compute the indices for all systems. When a given system is added to the
subset, we can also include all systems with larger estimated performances and larger sampling variances.
Conversely, when a given system is left out of the subset, we can screen out all systems with smaller
estimated performances and smaller sampling variances.

4 CONNECTIONS

The discrepancy-based framework has several notable connections to existing subset-selection procedures
and other statistical methodologies.

4.1 Gupta’s Procedure and Extended Screen-to-the-Best

As previously mentioned, the classic procedure of Gupta (1965) delivers the PCS guarantee under the
assumption of a common, known variance, σ2, and a common sample size, n. The subset returned by
Gupta’s procedure is defined as

SGupta ≡
{

i : µ̂i ≥ µ̂ j−Wi j for all j 6= i
}

where Wi j = h
√

2σ/
√

n,

and h is the 1−α quantile of the maximum of k−1 standard normal random variables with common pairwise
correlations of 1/2 (Kim and Nelson 2006). By adding in the trivially satisfied inequality µ̂i ≥ µ̂i−Wii
and rearranging terms, we obtain

SGupta =
{

i : µ̂ j− µ̂i ≤Wi j for all j = 1, . . . ,k
}
=

{
i : max

j=1,...,k

µ̂ j− µ̂i√
σ2/n+σ2/n

≤ h

}
. (8)

By substitution from Equation (7), SGupta = {i : DP
i (µ̂)≤ h}. Gupta’s procedure is therefore a special case

of the discrepancy-based approach with standardized discrepancy dP and cutoff Di = h for all i = 1, . . . ,k.
Further dividing both sides of the inequality in Equation (8) by

√
2 shows that Gupta’s procedure also

corresponds to the choice of standardized discrepancy d∞ and cutoff Di = h/
√

2 for all i = 1, . . . ,k.
Another well-known subset-selection procedure that delivers the PCS guarantee using pairwise com-

parisons is the Extended Screen-to-the-Best (ESTTB) procedure of Boesel et al. (2003). The procedure is
designed to handle unknown, unequal variances and unequal sample sizes. For a known-variances version
of the procedure, the returned subset is defined as

SESTTB ≡
{

i : µ̂i ≥ µ̂ j−Wi j for all j 6= i
}

where Wi j = zβ

√
σ2

i
ni

+
σ2

j

n j
,
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and zβ is the β quantile of the standard normal distribution and β = (1−α)1/(k−1). Similar manipulations
of the inequalities show that SESTTB = {i : DP

i (µ̂) ≤ zβ}. The known-variances version of the ESTTB
procedure is therefore a special case of the discrepancy-based approach with standardized discrepancy dP

and cutoff Di = zβ for all i = 1, . . . ,k.

4.2 Bayesian Subset Selection

The subset-selection approach to R&S has alternatively been studied from a Bayesian perspective using
various loss functions (Miescke 1979; Hamilton et al. 2008). Under the Bayesian interpretation, the
decision-maker places a prior distribution on the problem instance and, after taking replications, applies
the standard Bayesian updating to obtain a posterior distribution on the problem instance. The posterior
probability of correct selection of System i, denoted by pPCSi, is the probability—under the posterior
distribution—that System i is one of the best, i.e., the posterior probability that µ ∈Mi. One can construct
a subset SBayes for which the posterior probability that SBayes includes at least one of the optimal systems
exceeds 1−α as follows:

1. For Systems i = 1, . . . ,k, calculate pPCSi.
2. Sort systems in descending order by pPCSi.
3. Add systems to SBayes until the sum of the pPCSi terms for i ∈ SBayes first exceeds 1−α .

Provided the posterior distribution on µ has a density, the posterior probability that an arbitrary subset
A ⊆ {1, . . . ,k} includes one of the optimal systems is exactly ∑i∈A pPCSi. From this property, it can be
shown that the algorithm above produces the smallest subset that satisfies the desired probability statement.

The discrepancy-based and Bayesian methods for subset selection both assign an index to each system
and form subsets accordingly. For a given System i, the indices D2

i (µ̂) and pPCSi have much in common:
Both are functions of the sample means and sampling variances that satisfy Pareto relationships with respect
to these quantities (e.g., Proposition 2 herein and Proposition 4 of Eckman 2019). Furthermore, both terms
are related to

f (m; µ̂) =
k

∏
j=1

1√
2π

√
n j

σ2
j

exp

(
−
(m j− µ̂ j)

2

2σ2
j /n j

)
,

when regarded as a function of m. The function d2(·, µ̂) equals −2log f (·; µ̂) plus a constant, therefore
for System i, the minimizer of d2(m, µ̂) for m ∈Mi is the same as the maximizer of f (m; µ̂) for m ∈Mi.
On the other hand, f (m; µ̂) is the density of a multivariate normal distribution with mean vector µ̂

and covariance matrix Σ = diag(σ2
1 /n1, . . . ,σ

2
k /nk). Under the conjugate reference prior with independent

beliefs, f (m; µ̂) is precisely the posterior distribution of µ having observed µ̂ (DeGroot 2004). In summary,
the Bayesian subset-selection approach evaluates pPCSi by integrating the density f (m, µ̂) over Mi, while
the discrepancy-based approach evaluates D2

i (µ̂) by effectively maximizing f (m, µ̂) over Mi.

4.3 Isotonic Regression and Hypothesis Tests

Using the d2 standardized discrepancy for subset selection involves minimizing a weighted sum of squares
subject to order restrictions, a problem referred to as isotonic regression within the statistics community
(Silvapulle and Sen 2005). In particular, m∗ = argminm∈Mi

d2(m, µ̂) is called the isotonic regression of µ̂

with weights n1/σ2
1 , . . . ,nk/σ2

k , subject to the order restrictions describing System i as one of the best.
The d2 standardized discrepancy is also closely related to testing the null hypothesis that µ1 = · · ·= µk

against the alternative hypothesis that µ ∈Mi. In particular, the index D2
i (µ̂) resembles the standardized

residual sum of squares under the alternative hypothesis,

RSS≡ min
m∈Mi

k

∑
j=1

n j

σ2
j

n j

∑
l=1

(X jl−m j)
2,

2977



Eckman, Plumlee, and Nelson

which appears in various test statistics. It can be shown that m∗ is also the minimizer in RSS; Section
3.2.1 of Silvapulle and Sen (2005) provides a full derivation based on writing out the loglikelihood for the
outputs under Assumption 1 and making use of the sufficiency of µ̂ . It follows from the same argument
that m∗ is also the maximum likelihood estimator of µ under the alternative hypothesis.

5 COMPARATIVE ANALYSIS

We compare the four discrepancy-based methods and the Bayesian subset-selection method to better
understand how they form subsets and how effective they are at screening out inferior systems.

5.1 Acceptance Regions

We consider a simple example with k = 3 systems to illustrate how the choice of standardized discrepancy
leads to different subsets. The sampling variances are set as σ2

1 /n1 = 1, σ2
2 /n2 = 2, and σ2

3 /n3 = 3, and
1−α is set as 0.95. We fixate on System 1 and determine the values of µ̂ for which System 1 would
be included in the subset. The resulting regions can be interpreted as valid acceptance regions for a null
hypothesis that µ ∈M1 at a significance level α = 0.05.

By exploiting the shift invariance of the normal distribution, it is possible to plot these acceptance
regions in R2 with µ̂1− µ̂2 and µ̂1− µ̂3 along the axes, as in Figure 1. The upper-right orthant corresponds
to sample data for which System 1 looks the best, i.e., M1. Hence for all four standardized discrepancies,
D1(µ̂) = 0 in this region. In Figure 1, the acceptance regions are the areas up and to the right of the
plotted curves. The boundaries correspond to the contours of D1(·) at which D1(µ̂) = D1, where D1 is
the smallest cutoff satisfying Condition (3), discussed in greater detail in Section 6. The geometry of the
standardized discrepancies manifests in the boundaries in the lower-left orthant: piecewise-affine for d1,
curved for d2, and rectangular for d∞ and dP. Although similar in shape, the acceptance regions for d∞

and dP differ slightly due to the unequal sampling variances. In the upper-left and lower-right orthants,
where µ̂2 ≥ µ̂1 ≥ µ̂3 and µ̂3 ≥ µ̂1 ≥ µ̂2, respectively, the boundaries are parallel to the axes for these four
acceptance regions. This follows from Equations (4)–(7) in which for any system j such that µ̂ j ≤ µ̂i,
reducing µ̂ j does not change the index of System i.

We similarly analyze the Bayesian subset-selection method described in Section 4.2, determining the
values of µ̂ for which System 1 is included in the subset. As plotted in Figure 1, the acceptance region
for the Bayesian subset-selection method somewhat resembles that of d2, with a curved boundary in the
lower-left orthant. Other portions of the boundary, however, are jagged due to the discrete construction of
SBayes as a function of pPCS1, pPCS2, and pPCS3. The boundary comprises five curves, each of which
describes certain values of µ̂ for which a small perturbation in the estimated performances would change the
composition of the subset. For instance, one of the curves corresponds to pPCS1 = α , pPCS2 ∈ [α,1−2α],
and pPCS3 ∈ [α,1− 2α], while another corresponds to pPCS3 = 1−α and pPCS1 ≥ pPCS2. It can
also be seen from the nonconvex shape of the acceptance region that the indicator function of the event
{System 1∈ SBayes} is not monotone in the sample means, as is the case for the discrepancy-based methods.

5.2 Inclusion Probabilities and Subset Size

We evaluate the effectiveness of the various methods in terms of their probabilities of screening out inferior
systems and retaining the best system, as well as the distributions of their subset sizes. We fix a problem
instance with k = 20 systems and µi =−(1/4)(i−1)5/4 for i = 1, . . . ,20, so that System 1 is the unique
best (with µ1 = 0) and the expected performances become slightly more spread out as the systems get
worse. A common sample size of ni = 5 for i = 1, . . . ,20 is assumed and the known variances are randomly
generated as σ2

i ∼ χ2
10 for i = 1, . . . ,20, independent across systems and fixed across macroreplications.

We perform 10,000 macroreplications of each subset-selection method: generating sample data, com-
puting indices or posterior probabilities, and forming subsets. On a given macroreplication, common
random numbers are used across all methods, i.e., they form subsets based on the same sample data. The
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Figure 1: Boundaries of acceptance regions for including System 1 in the subset for the four standardized
discrepancies and Bayesian subset selection for k = 3 systems and 1−α = 0.95.

discrepancy-based methods are designed to deliver PCS guarantee (1) for 1−α = 0.95, while the Bayesian
subset-selection method likewise uses 1−α = 0.95 as a target posterior PCS for its subset. The tightest
cutoffs are estimated via Monte Carlo using 5000 replications; see Section 6 for full details.

Figure 2 shows the estimated probability that each system is included in the subset—estimates are
each accurate to within ±0.01 with 95% confidence. The reported inclusion probabilities are noticeably
not monotone in the true means due to the random (therefore unordered) variances associated with the
systems. The inclusion probabilities for the four standardized discrepancies tend to closely track across all
systems, with an apparent ordering, from high to low, of d1, d2, dP, and d∞. The Bayesian subset-selection
procedure, which we reiterate is not designed to deliver the frequentist PCS guarantee (1), has considerably
smaller inclusion probabilities, especially for systems that are not far from the best. For each of the
discrepancy-based methods, the probability of retaining the best system is at or above 99% (see Table 1),
reflecting the inherent conservativeness of the PCS guarantee. In contrast, the Bayesian subset-selection
procedure retains the best system on about 92% of the macroreplications, somewhat below the nominal
coverage sought by the frequentist procedures.

Figure 3 shows the empirical cumulative distribution function (ecdf) of the subset size, |S|, for each
method. Again, the estimated probabilities are accurate to within ±0.01 with 95% confidence. The ecdfs
of the d∞ and dP standardized discrepancies are virtually indistinguishable, with those of d1 and d2 being
noticeably to the right. This indicates that the latter two standardized discrepancies are less effective at
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Figure 2: Inclusion probabilities for the four standardized discrepancies and Bayesian subset selection.

Table 1: Coverage of Best System and Average Subset Size

d1 d2 d∞ dP Bayesian
P(1 ∈ S) 0.999±0.001 0.996±0.001 0.993±0.002 0.993±0.002 0.917±0.005
E[|S|] 10.73±0.04 10.18±0.03 9.84±0.04 9.92±0.4 5.27±0.03

screening out inferior systems on this particular problem instance. Here too, we see that the Bayesian
subset-selection method results in appreciably smaller subsets, as evidenced by the leftward shift in its ecdf
relative to the others. In terms of average subset sizes, those of the discrepancy-based methods are about
10–11 systems while that of the Bayesian subset-selection procedure is roughly half of that, as reported in
Table 1.

6 OPTIMAL CUTOFFS

We now turn to the problem of identifying a cutoff Di satisfying Condition (3). Plumlee and Nelson (2018)
derive a uniform cutoff, i.e., one to be used for all systems, by using the fact that if System i is optimal,
then µ ∈Mi. By setting m = µ in Definition (2), one obtains a random variable that upper bounds Di(µ̂)
with probability 1 and whose distribution is independent of the unknown µ . This distribution also does
not depend on the sampling variances for the standardized discrepancies we have considered, e.g., for the
d2 standardized discrepancy,

D2
i (µ̂) = min

m∈Mi

k

∑
j=1

n j

σ2
j
(µ̂ j−m j)

2 ≤
k

∑
j=1

n j

σ2
j
(µ̂ j−µ j)

2 d
= χ

2
k , (9)

where χ2
k is a chi-squared random variable with k degrees of freedom and d

= denotes equality in distribution.
Thus a uniform cutoff of D2

i = χ2
1−α,k, the 1−α quantile of a χ2

k random variable, ensures the PCS guarantee.
Analogous uniform cutoffs can be derived for the d1, d∞, and dP standardized discrepancies. When the
bounding random variable does not follow a tractable parametric distribution, simulation can still be used
to estimate the quantile, provided Di(µ̂) is cheap to compute.
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Figure 3: Empirical cumulative distribution function of the subset size for the four standardized discrepancies
and Bayesian subset selection.

These uniform cutoffs tend to be overly conservative, with simulation experiments suggesting that for
1−α = 0.95, P([k] ∈ S) ≥ 99.5% for as few as k = 10 systems, with the overcoverage growing more
extreme as the number of systems increases. Instead of a uniform cutoff, we investigate tighter cutoffs for
each system that incorporate knowledge of the sampling variances. From Condition (3), we see that the
smallest value Di can take is the maximum 1−α quantile of Di(µ̂) over all µ ∈Mi. Although this would
seem to be a difficult quantity to determine, Proposition 3 states that, under certain assumptions, one need
only compute the 1−α quantile of Di(µ̂) for µ = 0k.
Proposition 3 Let ρ(i,µ) denote the 1−α quantile of Di(µ̂) given µ . If Assumption 1 and Conditions
(C1) and (C2) hold, then maxµ∈Mi ρ(i,µ) = ρ(i,0k).

Proof of Proposition 3. For ease of presentation, we temporarily let Di(µ̂,µ) denote the random variable
Di(µ̂) given the problem instance µ . Fix an arbitrary problem instance µ ∈Mi and express the sample means
as µ̂ j = µ j +(σ j/

√n j)Z j for j = 1, . . . ,k where Z1, . . . ,Zk are independent and identically distributed (i.i.d.)
standard normal random variables. By Condition (C2), Di(µ̂,µ) is monotone increasing in µ̂ j for all j 6= i.
Therefore Di(µ̂,µ) is first-order stochastically dominated by Di(µ̂,µi1k). Consequently, ρ(i,µ)≤ ρ(i,µi1k).

By Condition (C1), d(m, µ̂) = d(m−µi1k, µ̂−µi1k). It follows that

Di(µ̂,µi1k) = min
m∈Mi

d(m, µ̂) = min
m∈Mi

d(m−µi1k, µ̂−µi1k) = min
m′∈Mi

d(m′, µ̂−µi1k),

where the last equality holds because for any m ∈Mi, m− µi1k ∈Mi, i.e., subtracting µi from all of the
values does not change the fact that the ith component is the largest. Then since, under problem instance
µi1k, µ̂ j = µi +(σ j/

√n j)Z j for all j = 1, . . . ,k, we have that µ̂−µi1k = ((σ1/
√

n1)Z1, . . . ,(σk/
√

nk)Zk).

Therefore Di(µ̂,µi1k)
d
= Di(µ̂,0k), implying that ρ(i,µi1k) = ρ(i,0k). Since the problem instance µ was

arbitrary, maxµ∈Mi ρ(i,µ) = ρ(i,0k).

Proposition 3 implies that the tightest cutoffs for all solutions can be estimated simultaneously by
running the following procedure:

1. Generate i.i.d. realizations of µ̂ where µ̂i ∼ N(0,σ2
i /ni) for i = 1, . . . ,k, independent.
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2. For each µ̂ , compute Di(µ̂) for all i = 1, . . . ,k.
3. For i = 1, . . . ,k, set Di to be the empirical 1−α quantile of the Di(µ̂) terms.

When the variances are unknown, uniform cutoffs can be derived in a similar fashion to Inequality (9).
Obtaining tighter cutoffs, however, remains a challenging problem. The result of Proposition 3 that µ = 0k
represents a worst-case configuration of expected performances still holds, but µ no longer completely
characterizes the problem instance. A worst-case configuration of sampling variances must also be determined
if Step 1 of the estimation algorithm above is to be carried out. An inexact, yet practical, resolution is to
nevertheless run the algorithm having plugged in the observed sample variances for the unknown quantities.
We leave the task of exploring other methods for deriving valid, tighter cutoffs for future research.

7 CONCLUSION

Subset selection is just one approach to simulation optimization; for a general reference on simulation
optimization, see Fu (2015). It is a workhorse screening method for output analysis due to its ability to
accommodate unequal sample sizes and deliver a fixed-confidence guarantee without needing an indifference-
zone specification. We present a general discrepancy-based framework for constructing subsets that deliver
the frequentist PCS guarantee. This new paradigm offers insightful connections to existing subset-selection
methods through different choices of standardized discrepancies and cutoffs. We also analyze properties
of specific standardized discrepancies and derive simple expressions for the associated indices of systems.
Experimental results suggest that standardized discrepancies motivated by the `∞ distance function yield
smaller subset sizes for problem instances in which the expected performances are spread out.

The proposed framework generalizes several well-known subset-selection methods, yet others, e.g.,
Bayesian subset selection, cannot be easily recast in terms of discrepancies and cutoffs. Although the
discrepancy-based methods do not naturally lend themselves to fully sequential procedures, splitting α

across stages may offer an acceptable compromise. Future work in this area entails extensions to handle
common random numbers and unknown variances, including finding tighter cutoffs.
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