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ABSTRACT

Given a number of stochastic systems, we consider an ordinal optimization problem to find an optimal
allocation of a finite sampling budget, which maximizes the likelihood of selecting the “best” system,
where the “best” is defined as the one with the highest mean. The statistical characteristics of each system
are described by the generalized linear model, where unknown parameters are estimated using maximum
likelihood estimation. To formulate the problem in a tractable form, we use the large deviations theory to
characterize the structural properties of the optimal allocation. Further, motivated by Euclidean information
theory, we obtain an approximate solution for the optimal allocation, which is leveraged to design a
sampling strategy that is near-optimal in a suitable asymptotic sense. The proposed sampling strategy is
computationally tractable, and we show via numerical testing that it performs competitively even in the
presence of model misspecification.

1 INTRODUCTION

Given a finite number of systems, we are concerned with the problem of dynamically learning the unknown
statistical characteristics of the systems to ultimately select the one with the highest mean. This is an
instance of ordinal optimization where a given sampling budget can be efficiently allocated to minimize the
probability of mistakenly selecting a suboptimal system; see, e.g., Ho et al. (2008). An important extension
of the ordinal optimization problem is when the underlying probability distribution for each system is
characterized by known features, as well as an unknown parameter that is common across systems. When
a system is sampled, it is possible to learn about the unknown parameter, which enables us to understand
the statistical characteristics of all systems.

The aforementioned problem arises in many practical settings. A representative example is the adaptive
design of clinical trials (Martin 2010). There are three salient aspects of this problem: firstly, the primary
goal is to select the best drug after the trial, and the performance of drugs during the trial is of secondary
importance; secondly, drugs can be described by a vector of features, e.g., the presence of particular
molecules and the structural properties of chemical compounds; and lastly, the functional relationship
between the drug’s features and the outcome can be discrete (possibly non-numeric) and nonlinear with
respect to the features. This paper focuses on the settings of ordinal optimization described above: the
optimal allocation of sampling budgets that consider multi-dimensional features of systems, where the
performance of each system is characterized by the generalized linear model (McCullagh and Nelder
1989), to minimize the probability of falsely selecting the system with sub-optimal performance.

Unfortunately, as is well documented in the literature of ordinal optimization, the probability of false
selection is not an analytically tractable objective. This is especially so in our problem with the generalized
linear model, where the selection is based on the maximum likelihood estimator of the unknown parameter,
because its exact probability distribution does not admit a tractable form. This situation can be drastically
simplified if one assumes that the estimated parameter is normally distributed. Although this approach
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might help develop practically implementable allocation strategies, the actual performance with respect to
the probability of false selection would be subject to the normality assumption, which often is not exactly
true in general applications; although true, it is difficult to verify in practice. The main contribution of
our work is to formulate the probability of false selection in a tractable form without making such an
assumption on the maximum likelihood estimation.

To that end, our departure point is the large deviations framework: if the underlying probability
distributions belong to an exponential family, and if the sampling budget is sufficiently large, then the rate
function of the maximum likelihood estimator can be expressed using the Kullback-Leibler (KL) divergence,
and the the optimal allocation of the sampling budget can be obtained by maximizing the KL divergence.
This maximization problem, however, rarely admits an analytical solution nor provides structural insights
into the optimal allocation of the sampling budget. Using ideas from Euclidean information theory, we
show that, under mild conditions, the probability of false selection (on a logarithmic scale) can be closely
approximated in a closed form, structured around the statistical characteristics of the best and the second-best
systems.

In spite of the ever-growing importance of the generalized linear model in a wide range of applications,
most of the existing studies focus on the cases with independent systems, where sampling from one system
does not reveal any information about other systems. In the context with independent systems, the existing
literature can be roughly categorized into fixed budget and fixed confidence settings; the goal of the former
setting is to minimize the probability of false selection given a sampling budget, whereas in the latter setting,
the objective is to devise a sampling procedure that satisfies the desired guarantee on the probability of
false selection by taking as few samples as possible; we only mention Audibert et al. (2010) and Even-Dar
et al. (2006) for fixed budget and fixed confidence settings, respectively.

As alluded to earlier, this paper focuses on parametric systems, rather than on independent systems.
In fixed confidence settings, there has been considerable work in the situation where the mean system
performance is described by a linear function of features. Soare et al. (2014) propose a static algorithm
in the situation where the system performance is described by a linear function of features, and Xu et al.
(2018) develop an adaptive algorithm that can make substantial improvement over static ones. Recently,
Kazerouni and Wein (2019) extend the results of Xu et al. (2018) to the case with the generalized linear
model. To our knowledge, our work is the first paper to consider the generalized linear model in a fixed
budget setting.

The ordinal optimization is related to the multi-armed bandit (MAB) problem, insofar as the underlying
distributions of independent systems (arms) are initially unknown but can be learned via sequential sampling;
see, e.g., Lai and Robbins (1985) and the reference therein. An important extension of the MAB problem is
the linear-bandit problem, where the mean of the underlying distribution is characterized by a linear function
of features; see Abbasi-Yadkori et al. (2011) and Li et al. (2010). Although our paper shares an important
common theme with the linear-bandit problem in that it, too, highlights a trade-off between learning and
optimizing, it is worthy noting that the goal of the MAB problems is to maximize the cumulative rewards,
and the reward-maximizing algorithms are not well-suited for the ordinal optimization problem.

The remainder of the paper is organized as follows. In Section 2, we formulate the problem using
large deviations theory. In Section 3, we propose an approximation based on the Euclidean information
theory and provide main theoretical results. In Section 4, we conduct numerical experiments and discuss
the results. Section 5 concludes the paper.

2 PROBLEM FORMULATION

This paper focuses on the problem of minimizing the probability of false selection in a large deviations
framework (Dembo and Zeitouni 2009). In particular, we first introduce model preliminaries and elementary
principles of large deviations in Sections 2.1 and 2.2, respectively, and then formulate the problem in
Section 2.3.
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2.1 Model Preliminaries

We consider k stochastic systems indexed by i = 1, . . . ,k, where each system is characterized by a feature
vector xi ∈Rd which is known to the decision maker and summarizes the available information of the system.
Denote by X = (x1, . . . ,xk) ∈Rd×k the feature matrix. The relationship between the feature vector and the
performance of each system is described by a generalized linear model. In particular, the performance of
system i, denoted by a random variable Yi ∈R, is governed by a distribution that belongs to an exponential
family with a canonical parametrization; see, e.g., McCullagh and Nelder (1989). Specifically, the density
function associated with system i is parametrized by θ ∈ Rd and can be represented as

fi(y;θ) = hi(y)exp
{

ηi(θ
′xi)y−Ai(ηi(θ

′xi))
}
, (1)

where hi(·), ηi(·), and Ai(·) are known functions, whereas the parameter θ is unknown. The mean of the
distribution is denoted by µi(θ), which depends on θ through a strictly increasing link function g ∈ C 2

as µi(θ) = g(θ ′xi), and the standard deviation of the distribution is denoted by σi(θ). Without loss of
generality, we assume that system 1 has the largest mean; that is, µ1(θ)> maxi 6=1 µi(θ), or equivalently,
θ
′x1 > maxi6=1 θ

′xi. For simple exposition, we often write µi = µi(θ) and σi = σi(θ) for each i.
A decision maker is given a fixed sampling budget T , which means T independent samples can be

drawn from the k systems. A sampling policy π is defined as a sequence of random variables, π1, π2,. . .,
taking values in the index set {1, . . . ,k}; the event {πt = i} means a sample from system i is taken at stage
t. Define Yit , t = 1, . . . ,T , as a random sample from system i in stage t, and let Ft be the σ -field generated
by the samples and sampling decisions taken up to stage t (i.e., {(πs,Yiπs)}t

s=1, with the convention that
F0 is the nominal sigma-algebra associated with underlying probability space. The set of non-anticipating
policies is denoted as Π, in which the sampling decision in stage t is determined based on all the sampling
decisions and samples observed in previous stage (i.e., {πt = i} ∈Ft−1 for i = 1, . . . ,k and t = 1, . . . ,T ).

We denote by nit(π) the number of samples from system i up to stage t and let αit(π) be the sampling
rate at stage t; that is, αit(π) = nit(π)/t. The maximum likelihood estimator (MLE) of θ using sampling
observations up to stage t is denoted by θt(π). For brevity, the argument π may be dropped when it is
clear from the context.

2.2 Large Deviations Preliminaries

Define FSi = {θ̃ ∈Rd | θ̃ ′x1 < θ̃ ′xi} for each i 6= 1 and let FS =
⋃

i6=1 FSi. The probability of false selection,
denoted by P(θT (π) ∈ FS), is a widely used criterion for the efficiency of a sampling policy, but it is
not analytically tractable to precisely evaluate P(θT (π) ∈ FS). Hence, we focus on the asymptotic regime
where the sampling budget goes to infinity, in which case P(θT (π) ∈ FS) can be expressed in a closed
form using the large deviations principle.

Consider a fixed vector α = (α1, . . . ,αk) ∈ ∆k−1, where ∆k−1 = {(α1, . . . ,αk)|∑k
i=1 αi = 1, αi ≥ 0},

and we let π(α) = (π1(α),π2(α), . . .) ∈F0 be a deterministic allocation rule such that αiT samples out of
the total T samples are allocated to system i, ignoring minor technicalities associated with αiT not being
an integer. In this section, we fix π = π(α) and omit π in function arguments for simple exposition. The
probability of false selection can be bounded as

max
i6=1

P(θT ∈ FSi)≤ P(θT ∈ FS)≤ (k−1)max
i6=1

P(θT ∈ FSi) . (2)

Joutard (2004) shows that the maximum-likelihood estimator θT satisfies the large deviations principle in
the following form:

1
T

logP(θT ∈ FSi)→−ρi(α) as T → ∞.

Further, the function ρi(α) satisfies

ρi(α) = inf
{

Iθ (θ̃ ;α)
∣∣ θ̃ ∈ FSi

}
, (3)
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where

Iθ (θ̃ ;α) =− inf
λ∈Rd

{
lim

T→∞

1
T

logE

[
exp

(
T

∑
t=1

λ
′
∇θ log fπt (Yπt ;θ)

)]}
.

Hence, from (2) it can be seen that

1
T

logP(θT ∈ FS)→−ρ(α) as T → ∞

where ρ(α) = mini6=1{ρi(α)} which is referred to as the rate function for the probability of false selection.
We let α∗ = argmaxα∈∆k−1{ρ(α} and ρ∗ = ρ(α∗).

2.3 Problem Formulation

The observations in Section 2.2 suggest that, if the sampling budget T is allocated in proportion to a vector
α ∈ ∆k−1, then P(θT ∈ FS) behaves roughly similar to exp(−ρ(α)T ) for large values of T . Hence, ρ(·) is
an appropriate measure of efficiency associated with the probability of false selection. Define the relative
efficiency RT (π) for a policy π ∈Π to be

RT (π) =
ρ(αT (π))

ρ∗
.

A policy π is called efficient if RT (π) is close to one. We aim at finding an allocation policy π that
maximizes the relative efficiency given a sampling budget T :

sup
π∈Π

E [RT (π)] . (4)

It is difficult, if not impossible, to find an exact solution to the stochastic dynamic programming problem
(4) due to the curse of dimensionality. In addition, the objective function RT (π) is not known a priori
because the parametric structure of the underlying distributions, as well as the parameter θ , is unknown. In
this situation, one would need to explore the objective function while simultaneously maximizing it within
a sampling budget given. We alternatively focus on asymptotically optimal sampling policies such that

E[RT (π)]→ 1 as T → ∞. (5)

Since RT (π)∈ [0,1] by definition, it can be seen from the bounded convergence theorem that (5) is achieved
if αT (π)→ α∗ in probability as T → ∞. Hence, in the remaining part of the paper, we aim to design
a sampling strategy that sequentially learns the unknown parameter θ using sample observations, while
simultaneously making the allocation αT (π) close to α∗.

Notational convention. It will be convenient to define κ = (κ1, . . . ,κk), where κi = θ ′xi, so that
µi(θ) = g(κi). Also, u(x) = o(v(x)) implies |u(x)/v(x)| → 0 as v(x)→ 0. We may suppress α in function
arguments if it is clear from the context. We use Newton’s notation for differentiation, i.e., if u is a function
of x, then

u̇ =
∂u
∂x

and ü =
∂ 2u
∂x2 .

All vectors are column vectors and we use z′ to denote the transpose of a vector z. The Euclidean norm
of a vector z is denoted by ||z||.

3 EUCLIDEAN APPROXIMATION FOR THE RATE FUNCTION

In a general setting, the rate function ρ(·) for the probability of false selection does not admit a closed
form, so one would need to solve a bi-level optimization problem to obtain α∗ = argmaxα∈∆k−1{ρ(α)}; the
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inner layer to evaluate ρi(α) in (3) for each i and α and the outer layer to maximize ρ(α) = mini 6=1{ρi(α)}
over α ∈ ∆k−1. This may pose significant computational challenges, especially when the problem instance
is large in terms of the parameter dimension (d) and the number of systems (k). This is particularly
problematic in practical applications where the estimate of θ is sequentially updated according to sample
observations, so that the bi-level problem needs to be solved repeatedly over the sampling horizon.

In order to address the aforementioned issues, we derive a proxy ρE(α) for the rate function ρ(α) for
each α , hereafter referred to as the Euclidean approximation of the rate function. As it turns out, this proxy
is sufficiently tractable and serves as a close approximation under certain conditions. To this end, we first
show that the function Iθ (θ̃ ;α) is closely related to the Kullback-Leibler divergence (Kullback 1997).
Lemma 1 (An upper bound and its tightness) For any α ∈ ∆k−1 and θ̃ ∈ Rd ,

Iθ (θ̃ ;α)≤ Īθ (θ̃ ;α) :=
k

∑
i=1

αiDKL( fi(·; θ̃)|| fi(·;θ)),

where DKL( fi(·; θ̃)|| fi(·;θ)) is the Kullback-Leibler divergence between the two density functions parametrized
by θ̃ and θ , respectively. Further, the upper bound Īθ (θ̃ ;α) is tight when θ̃ is close to θ ; formally,

Īθ (θ̃ ;α)− Iθ (θ̃ ;α) = o
(
||(θ̃ −θ)′X||2

)
as (θ̃ −θ)′X→ 0.

The proof of the preceding lemma follows from the same logical steps in the proof of Theorem 3.2
of (Arcones 2006), which will be omitted. According to the preceding lemma, the function Iθ (θ̃ ;α) can
be closely approximated by its upper bound Īθ (θ̃ ;α) as long as θ̃ differs by only a small amount from θ .
If θ̃ lies in the vicinity of θ , the following lemma establishes that the upper bound Īθ (θ̃ ;α), and hence
Iθ (θ̃ ;α), can be approximated by a quadratic function.
Lemma 2 (Quadratic approximation) For any α ∈ ∆k−1 and θ̃ ∈ Rd ,

Iθ (θ̃ ;α) = IEθ (θ̃ ;α)+o
(
||(θ̃ −θ)′X||2

)
,

where

IEθ (θ̃ ;α) =
k

∑
i=1

αi
(
µi(θ̃)−µi(θ)

)2

2σ2
i

. (6)

We omit the proof of Lemma 2 since it is straightforward by the standard argument using a second
order Taylor expansion: we refer interested readers to Chapter 2.6 of Kullback (1997). Lemmas 1
and 2 suggest that Iθ (θ̃ ;α) can be approximated by IE

θ
(θ̃ ;α) if θ̃ is sufficiently close to θ . Recall that

ρi(α) = inf{Iθ (θ̃ ;α) | θ̃ ∈ FSi}. If the infimum is achieved near θ , then one may intuit that ρi(α) can be
approximated by ρE

i (α) := inf{IE
θ
(θ̃ ;α) | θ̃ ∈ FSi}, which is formalized in the next proposition.

Proposition 1 (Euclidean approximation) For each i 6= 1,

ρi(α) = ρ
E
i (α)+o(δ 2

i ),

where δi := θ ′(x1−xi),

ρ
E
i (α) =

(θ ′(x1−xi))
2

2(x1−xi)′Σ(θ ;α)(x1−xi)
, (7)

and

Σ(θ ;α) :=

(
k

∑
i=1

αi

σ2
i
(ġ(θ ′xi))

2xix′i

)−1

.
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Proof of Proposition 1. Fix j 6= 1 and let θ ∗ be the minimizer of (3) for system j. Define

θ̄ = argmin
{

IEθ (θ̃ ;α)
∣∣ θ̃ ∈ FS j

}
. (8)

In this proof we interchangeably use Iθ (θ̃ ;α) and Iκ(κ̃;α) since the former depends on θ and θ̃ only
through κ = θ ′X and κ̃ = θ̃ ′X. Also, define IEκ(κ̃;α) = ∑

k
i=1 αi(g(κ̃i)−g(κi))

2/(2σ2
i ). Then, it is equal to

IE
θ
(θ̃ ;α) if κ = θ ′X and κ̃ = θ̃ ′X. For simplicity of notation, we let κ∗i = (θ ∗)′xi, κ̄i = θ̄ ′xi, µ∗i = g(κ∗i ),

and µ̄i = g(κ̄i). Also, we fix α ∈ ∆k−1 and omit it in function arguments for clarity of exposition.
Step 1. We show that κ∗ and κ̄ are not too far from true κ . The Lagrangian function for (3) is

L(θ̃ ,λ ) = Iθ (θ̃)+λ θ̃ ′(x1−x j) for θ̃ ∈Rd . Then, from the first-order condition for θ ∗ and the chain rule,

k

∑
i=1

αix′i
∂DKL( fi(·; κ̃i)|| fi(·;κi))

∂ κ̃i

∣∣∣
κ̃i=κ∗i

=−λ (x1−x j)
′. (9)

Using (1) and the fact that A′i(ηi(κi)) = g(κi), we have that

∂DKL( fi(·; κ̃i)|| fi(·;κi))

∂ κ̃i

∣∣∣
κ̃i=κ∗i

= ġ(κ∗i )
(
ηi(κ

∗
i )−ηi(κi)

)
= ġ(κ∗i )η̇i(κ̂

∗
i )(κ

∗
i −κi) (10)

for some κ̂∗i between κi and κ∗i . Define the matrix Σ̂(κ∗) := Σ̂(κ∗;α) = (∑k
i=1 αiġ(κ∗i )η̇i(κ̂

∗
i )xix′i)−1, which

is well-defined since ġ(·), η̇i(·)> 0. From (9) and (10), and using the fact that (κ∗i −κi) = (θ ∗−θ)′xi, we
deduce that

(θ ∗−θ)′ =−λ (x1−x j)
′
Σ̂(κ∗). (11)

For each i, by multiplying xi on both sides of (11), we obtain

κ
∗
i −κi =−λ (x1−x j)

′
Σ̂(κ∗)xi. (12)

If λ = 0, then the preceding equation implies that κ∗i = κi for each i, which is a contradiction. Hence,
λ > 0 and (θ ∗)′(x1− x j) = κ∗1 −κ∗j = 0 by complementary slackness. Further, multiplying (x1− x j) on
both sides of (11) gives

λ =
κ1−κ j

(x1−x j)′Σ̂(κ∗)(x1−x j)
. (13)

Combining (13) into (12), the following holds for each i:

κ
∗
i −κi =

(κ1−κ j)(x1−x j)
′Σ̂(κ∗)xi

(x1−x j)′Σ̂(κ∗)(x1−x j)
,

from which we establish that there exists a constant B∗ < ∞ such that |κ∗i −κi| ≤ B∗|κ1−κ j| for each
i = 1, . . . ,k. Using the same logical steps for (8), it can be easily seen that

κ̄i−κi =
(κ1−κ j)(x1−x j)

′Σ̌(κ̄)xi

(x1−x j)′Σ̌(κ̄)(x1−x j)
, (14)

where Σ̌(κ̄) := Σ̌(κ̄;α) =
(
∑

k
i=1(αi/σ2

i )ġ(κ̄i)ġ(κ̌i)xix′i
)−1

and κ̌i is a constant between κ̄i and κi satisfying
g(κ̄i)−g(κi) = ġ(κ̌i)(κ̄i−κi). Thus, |κ̄i−κi| ≤ B̄|κ1−κ j| for some constant B̄ < ∞.

Step 2. We claim that ρ j(α) = IE
θ
(θ̄)+o(δ 2

j ). To this end, observe that |Iθ (θ
∗)− IE

θ
(θ̄)| ≤ |Iθ (θ

∗)−
IE
θ
(θ ∗)|+ |IE

θ
(θ ∗)− IE

θ
(θ̄)|. From Lemma 2, we know that |Iθ (θ

∗)− IE
θ
(θ ∗)|= o(||κ∗−κ||2). Further, using

the observations from Step 1 that |κ∗i −κi| ≤ B∗|κ1−κ j| for each i = 1, . . . ,k, we establish that

|Iθ (θ
∗)− IEθ (θ

∗)|= o(δ 2
j ) (15)
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due to the Lipschitz continuity of g(·). Since |Iκ(κ̃)− IEκ(κ̃)| = o(δ 2
j ) for any κ̃ and IEκ(·) satisfies the

conditions of Proposition 6.1 of Bonnans and Shapiro (1998), we deduce that the minimizers, κ∗ and κ̄ ,
satisfy ||κ∗− κ̄||= o(δ j). From the definition of IE

θ
(·) in (6), one can write that

|IEθ (θ ∗)− IEθ (θ̄)|= |IEκ(κ∗)− IEκ(κ̄)| ≤
k

∑
i=1

∣∣∣∣∣αi(g(κ∗i )−g(κi))
2−αi(g(κ̄i)−g(κi))

2

2σ2
j

∣∣∣∣∣= o(δ 2
j ). (16)

The last equality follows since g(·) is Lipschitz continuous and max(|κ∗i −κi|, |κ̄i−κi|)≤max(B∗, B̄)|κ1−κ j|
from Step 1. Combining (15) and (16), we deduce that ρ j(α) = Iθ (θ

∗) = IE
θ
(θ̄)+o(δ 2

j ).
Step 3. We finally show that IE

θ
(θ̄) = ρE

j (α)+ o(δ 2
j ). Recall that µi(θ̄)− µi(θ) = g(κ̄i)− g(κi) =

ġ(κ̌i)(κ̄i−κi). Hence, we can write that

IEθ (θ̄) =
k

∑
i=1

αi(µi(θ̄)−µi(θ))
2

2σ2
i

=
k

∑
i=1

αi(ġ(κ̌i))
2(κ̄i−κi)

2

2σ2
i

=
k

∑
i=1

αi(ġ(κ̌i))
2(κ1−κ j)

2((x1−x j)
′Σ̌(κ̄)xi)

2

2σ2
i ((x1−x j)′Σ̌(κ̄)(x1−x j))2

=
(κ1−κ j)

2

2(x1−x j)′Σ(κ)(x1−x j)
+o(δ 2

j ),

where the third equality follows from (14) and the last equality holds since Σ̌(κ̄) = Σ(κ) + o(1) and
ġ(κ̌i) = ġ(κi)+o(1) as δ j→ 0. Consequently, the desired result follows.

Proposition 1 indicates that the Euclidean approximation ρE(α) = min j 6=1{ρE
j (α)} can be used as a

proxy for the rate function for the probability of false selection. An important property of the approximation
is that ρE(·) is concave, and therefore, the first order conditions would be sufficient to characterize the
maximizer αE := argmaxα∈∆k−1{ρE(α)}.

It is worthy noting that both functions, ρ(α) and ρE(α), tend to zero for each α ∈ ∆k−1 as δ approaches
zero. Hence, Proposition 1 is not sufficient to guarantee the convergence of the maximizers, α∗ and αE,
respectively, in the limit as T → ∞. To strengthen Proposition 1, we consider a class C of system
configurations, each characterized by θ ∈ Rd such that σi(θ)/ġ(θ ′xi) ∈ [ωmin,ωmax] for some positive
constants ωmin ≤ ωmax for each i. This regularity condition rules out trivial cases where the probability
of false selection approaches one (as σi(θ)→ 0) or zero (as σi(θ)→ ∞ or ġ(θ ′xi)→ 0). For any system
configuration in C, it can be seen that ρE

i (α) is quadratic with respect to δi for each i 6= 1, so there exists
a constant c > 0 such that ρE(αE)≥ ρE(αeq)≥ cδ 2, where αeq = (1/k, . . . ,1/k). From Proposition 1 we
deduce that ρ(α∗)≥ c̃δ 2 for some constant c̃ > 0. Therefore, both ρ(α∗) and ρE(αE) are not dominated
by o(δ 2), which enables us to establish the following theorem which suggests that the maximizers α∗ and
αE coincide in the limit as the gap in means between the best and second-best systems approaches zero.
Theorem 1 (Validity of the Euclidean Approximation) Consider a class C of system configurations and
define δ = mini 6=1{θ ′(x1−xi)} for each configuration in C. If g(·) is continuously differentiable, then

ρ(αE)

ρ(α∗)
→ 1 as δ → 0.

Several remarks on Theorem 1 are in order. First, the proximity between ρ(αE) and ρ(α∗) depends
essentially on the gap in means between the best and the second-best systems; specifically, in the (possibly
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Table 1: Average CPU time (sec) of estimating α∗ and αE 100 times with different distributions and gaps
(δ ). The negative inverse link function and logistic link function are applied to the cases of exponential
distribution and Bernoulli distribution, respectively.

Exponential dist. Bernoulli dist.
Allocation δ = 0.1 δ = 0.3 δ = 0.1 δ = 0.3

α∗ 11.40 35.91 7.05 22.55
αE 0.13 0.09 0.09 0.07

unlikely) event that the true best system is not selected, the second-best system is most likely to be the best
one. Therefore, if a sufficiently large sampling budget is given, the optimal allocation must be designed to
inform more about the statistical difference between these two systems than about other pairs. The validity
of focusing on top-two systems is discussed in the context of ordinal optimization with independent systems
(i.e., each system is not parametrized by features); see, e.g., Shin et al. (2018), Russo (2020).

Second, in the context of ordinal optimization, the effect of model misspefication regarding the GLM
can be significantly alleviated. Specifically, the Euclidean approximation ρE(·) is structured around the
local behavior of the functions ηi(·) and Ai(·), rather than their global behavior. That is, although these two
functions can be significantly misspecified, the performance in terms of the probability of false selection
can be competitive as long as they are close to the true model in the vicinity of the parameter θ . In
Section 4, we report the performance of the sampling policies based on the Euclidean approximation in
the presence of model misspecification.

Last but not least, the maximization of ρE(·) is computationally tractable. Specifically, it is much more
efficient to find the maximizer αE for the Euclidean approximation ρE(·) than to find the maximizer α∗ for the
rate function ρ(·), because the latter entails a bi-level optimization. Table 1 illustrates the computation time
of maximizing the rate function ρ(·) and its approximation ρE(·). Furthermore, according to Theorem 1,
the Euclidean approximation is particularly merited in situations when the means of the top two systems
are sufficiently close to each other, in which case the benefit in terms of computational efficiency comes
without much sacrifice in performance with respect to the probability of false selection.

4 NUMERICAL EXPERIMENTS

In this section, we numerically examine the performance of our approximate solution based on the Euclidean
approximation developed in the previous section. The numerical experiments include a series of tests using
normal and Bernoulli distributions. We estimate the probability of false selection P(θT ∈ FS) using the
Monte Carlo simulation, and our criterion for the number of simulation trials, denoted by N, is as follows:√

PT (1−PT )

N
≤ PT

10

where PT is the order of magnitude of P(θT ∈ FS). This leads to the standard error for each estimate of
the probability at least 10 times smaller than the estimate, and makes the confidence level high enough to
guarantee the results. Accordingly, we use 104 trials in our experiments.

4.1 Normal Distribution

We consider two system configurations, Ξ1 and Ξ2, each of which consists of six systems whose performances
follow normal distributions equipped with a linear link function g(z) = z and known variances σ2

i = 1 for
i = 1, . . . ,k. The system configurations Ξ1 and Ξ2 are governed by parameters θ = (0.2,0.1,0.05,0.1)′ and
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θ = (−0.3,0.2,0.1,0.2)′, respectively. The common feature matrix associated with Ξ1 and Ξ2 is given by

X =


1 1 1 1 1 1
2 2 2 1 3 1
2 2 1 1 1 0
2 1 1 2 0 1

 .
Thus, the mean vectors for configurations Ξ1 and Ξ2 are µ = (0.70,0.60,0.55,0.55,0.55,0.40)′ and µ =
(0.70,0.50,0.40,0.40,0.40,0.10)′, respectively. The gap between the best and the second-best systems is
represented by δ = mini6=1{θ ′(x1−xi)}, where δ = 0.1 in configuration Ξ1 and δ = 0.2 in configuration Ξ2.

In order to substantiate our theoretical outcomes, we temporarily assume that the allocation decisions
can be made with the knowledge of true θ and consider static allocation rules characterize by a vector
α , where system i is sampled αiT times. For each configuration, we analyze and compare four allocation
vectors α ∈ {αE,αE

Bernoulli,α
E
logistic,α

eq} defined as follows:

1. the Euclidean approximation αE when the link function g and the density functions fi are known;
2. the Euclidean approximation αE

Bernoulli when the link function g is known but the density functions
fi are misspecified as Bernoulli distributions;

3. the Euclidean approximation αE
logistic when the density functions fi are known but the link function

g is misspecified as a logistic function ĝ(z) = ez/(1+ ez); and
4. the equal allocation αeq when the link function g and the density functions fi are known.

We note that αE = α∗ in the linear-normal case, so αE is the allocation that maximizes the rate function
for the probability of false selection.

Figure 1 depicts the performance of the static allocation rules. In all cases, the static allocation rule
based on αE outperforms the other rules. It is important to observe that the allocation rules based on
misspecified distribution (αE

Bernoulli) and misspecified link function (αE
logistic) perform competitively with αE,

especially in configuration Ξ1 that features small gap between the best and the second-best systems. These
confirm our theoretical findings that, as long as the gap δ is small, the misspecification of distributions and
link functions does not have any significant effect on the performance in terms of the probability of false
selection, largely owing to the fact that the rate function ρ(·) = ρE(·) depends only on the mean µi(θ) and
variance σ2

i (θ) of each system.
Motivated by the observations under the static allocation rules, we develop a dynamic sampling policy

using our Euclidean allocation αE, which is computationally tractable and practically applicable. This
policy is denoted by πE(n0,m) which is described in Algorithm 1, where the parameter n0 indicates the
number of initial samples for each system and m is the batch size. When the distribution functions and link
functions are misspecified, one may similarly define dynamic sampling policies, denoted by πE

normal(n0,m)
and πE

linear(n0,m), respectively. For ease of exposition, we assume that m is a submultiple of T − kn0.
Although a mathematical proof is not included in the paper, we numerically observe that under our policy,
α̂E

t approaches αE as T increases if n0/T < mini{αE
i }, which implies that the policy is asymptotically

optimal as T → ∞ and δ → 0 according to Theorem 1.
In Figure 2, we present the probability of false selection under our dynamic sampling policy in

Algorithm 1. For all cases, we use 20% of the total sampling budget for the initial samples (i.e., n0 = 0.2T/k)
and each batch size is set equal to m = 0.1T . As in the previous experiments, we use 104 simulation
trials. Compared to the static allocation cases, except for the fact that the probability of false selection
has decreased, we obtain a similar result. Specifically, in configuration Ξ2 with a relatively large gap (δ )
between the best and non-best systems, the dynamic sampling policies with misspecification, πE

Bernoulli and
πE

logistic, perform significantly poorly compared to πE. However, the performance gap becomes negligible
in configuration Ξ1 with small δ .
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Algorithm 1 Dynamic sampling policy πE(n0,m)

1: Take n0 samples of Yi for each system i
2: Set t = kn0
3: while t < T do
4: Find the maximum likelihood estimator θt and sample variance s2

it for each i
5: Compute α̂E

t = argmaxα∈∆k−1{ρE
t (α)}, where ρE

t (α) is defined in (7) with θ = θt and σ2
i = s2

it
6: Generate a sample vector (n1t , . . . ,nkt) from the multinomial distribution with parameters (m, α̂E

t )
7: Take nit samples of Yi for each i and set t = t +m
8: end while
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Figure 1: Probability of false selection under static allocation rules, plotted as a function of the sampling
budget in a log-linear scale. The left and right panels correspond to the two configurations Ξ1 and Ξ2,
respectively, with five static allocation rules characterized by αE,αE

Bernoulli,α
E
logistic, and αeq.
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Figure 2: Probability of false selection under dynamic sampling policies, plotted as a function of the
sampling budget in a log-linear scale. The left and right panels correspond to the two configurations Ξ1
and Ξ2, respectively, with four sampling policies: πE, πE

Bernoulli, πE
logistic, and πeq.

4.2 Bernoulli Distribution

We next repeat a similar experiment assuming that system performances follow Bernoulli distributions
equipped with a logistic link function. We consider two system configurations, Ξ3 and Ξ4, each of which con-
sists of six systems whose performances follow Bernoulli distributions equipped with a logistic link function.
The underlying distributions under Ξ3 and Ξ4 are governed by parameters θ = (0,−0.125,−0.1,−0.075)′
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Figure 3: Probability of false selection under static allocation rules, plotted as a function of the sampling
budget in a log-linear scale. The left and right panels correspond to the two configurations Ξ3 and Ξ4,
respectively, with five static allocation rules characterized by α∗,αE,αE

normal,α
E
linear, and αeq.
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Figure 4: Probability of false selection under dynamic sampling policies, plotted as a function of the
sampling budget in a log-linear scale. The left and right panels correspond to the two configurations Ξ3
and Ξ4, respectively, with four sampling policies: πE, πE

normal, πE
linear, and πeq.

and θ = (0,−0.375,−0.3,−0.225)′, respectively. The common feature matrix is given by

X =


1 1 1 1 1 1
0 1 1 1 2 2
0 0 1 1 1 1
0 0 0 1 1 2

 .
For configuration Ξ3, the means are µ = (0.50,0.47,0.44,0.43,0.40,0.38)′, and those for configuration Ξ4
are µ = (0.50,0.41,0.34,0.29,0.22,0.18)′, and the gap δ between the best and the second-best systems is
0.125 in configuration Ξ3 and 0.375 in configuration Ξ4.

For each configuration, we compare five allocation vectors α ∈ {α∗,αE,αE
normal,α

E
linear,α

eq}, where
αE

normal is the allocation when the distribution is misspecified as normal distributions and αE
linear is the

allocation when the link function g is misspecified as a truncated linear function, ĝ(z) = min{z+,1}. In
Figures 3 and 4, we report the estimated probability of false selection under static allocation rules and
dynamic sampling policies, respectively, in which similar consequences can be obtained as in Figures 1
and 2. In Figure 4, we do not consider a dynamic sampling policy based on the true rate function ρ(·) for
two reasons: the effect of maximizing ρE(·) instead of ρ(·) is not significant in the case with a small gap,
as is illustrated in Figure 3; and the computational complexity for maximizing ρ(·) (see Table 1) makes it
difficult to implement such a policy within a reasonable amount of time.
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5 CONCLUDING REMARKS

In this paper, we develop a mathematically rigorous framework for determining the optimal allocation of
sampling budget when the underlying random variables are characterized by the generalized linear model.
Perhaps the strongest conclusion from our results is that, if the average performance gap between the best
and the second-best systems is small, the rate function for the probability of false selection is structured
around the first two moments of the system performances. This structural property facilitates construction of
dynamic sampling policies that are computationally efficient, representing a fertile area of future research.
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