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ABSTRACT

Computer simulations of manufacturing processes are in widespread use for optimizing production planning
and order processing. If unforeseeable events are common, real-time decisions are necessary to maximize
the performance of the manufacturing process. Pre-trained AI-based decision support offers promising
opportunities for such time-critical production processes. Here, we explore the effectiveness of deep
reinforcement learning for real-time decision making in a car manufacturing process. We combine a
simulation model of a central production part, the line buffer, with deep reinforcement learning algorithms,
in particular with deep Q-Learning and Monte Carlo tree search. We simulate two different versions of the
buffer, a single-agent and a multi-agent one, to generate large amounts of data and train neural networks
to represent near-optimal strategies. Our results show that deep reinforcement learning performs extremely
well and the resulting strategies provide near-optimal decisions in real-time, while alternative approaches
are either slow or give strategies of poor quality.

1 INTRODUCTION

A major goal of computer simulations of manufacturing processes is the identification of bottlenecks and
the analysis of what-if scenarios. In many cases, the goal is to improve the performance of the production
process by ensuring a smooth production flow. For instance, unfavorable production sequences, machine
breakdowns, or missing supply parts can lead to production stops in large parts of an automotive plant and
induce high costs. Moreover, increasing customer orientation results in higher product diversification which
then increases the variation in the workload at the different assembly stations. Many of such problems,
in particular the order-sequence problem, can be formulated as sequential decision making problems and
mathematically correspond to a Markov decision process (MDP), for which an optimal strategy needs to
be found.

Here, we explore the effectiveness of deep reinforcement learning (DRL) for decision making in a car
manufacturing process by combining a process simulation model of a central production part, the after-paint
line buffer. We propose the use of deep reinforcement learning algorithms to enable decision making in
real-time and thus, provide decision support even when unforeseen events occur.

We consider a concrete car plant. Currently, the re-ordering of cars at the after-paint line buffer is
based on human decisions. Production stops because of overloaded assembly stations are common. The
re-ordering of the cars is challenging due to the facts that 1. the information of the system state is incomplete,
as only limited information about the cars that are about to be re-ordered is available, and 2. the decisions
in the plant have to be made in real-time. We model the after-paint line buffer as an MDP and study in detail
different approaches for solving this MDP with state-of-the-art deep reinforcement learning algorithms.
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The idea of reinforcement learning goes back to the way animals and humans learn through interaction
with their environment. Having no knowledge about the environment at all, they interact with it and
learn following the principle “do more of what was good and less of what was bad”. The combination
of reinforcement learning with deep neural networks has led to a major breakthrough in recent years in
many challenging domains. Deep reinforcement learning has been successfully applied to Atari games
(Mnih et al. 2015; Mnih et al. 2013) and the games Go and Chess (Silver et al. 2016; Silver et al. 2017;
Silver et al. 2018). Successful results have also been obtained for problems of combinatorial optimization
(Mazyavkina et al. 2020) such as solving Rubik’s cube (Agostinelli et al. 2019), vehicle routing (Nazari
et al. 2018), or the traveling salesman problem (Kool et al. 2018). Deep reinforcement learning has
also been applied successfully to scheduling problems, such as resource management (Mao et al. 2016;
Chen et al. 2017) or global production scheduling (Waschneck et al. 2018). Here, we first investigate
the effectiveness of deep Q-learning for optimal decision making at the line buffer. At the entry of the
buffer, for each car a line has to be chosen. Similarly, at the buffer exit, the line from which the next car
is transported to the final assembly unit has to be chosen.

In addition, we also apply a variant of Monte Carlo tree search (MCTS). In contrast to deep Q-learning,
Monte Carlo tree search is not based on thousands of training episodes and an approximation of a value
function, but on the idea to run several simulations starting from the current state, whenever a decision
has to be made. It is well known to be efficient for sequential decision making (Sutton and Barto 2018).
Further, MCTS has also successfully been used in general game playing (Finnsson and Björnsson 2008;
Genesereth and Thielscher 2014). We improve MCTS by integrating pre-trained deep Q-learning networks
as experts. We compare the performance of all DRL approaches to that of suitable heuristics and a
look ahead search, which is based on the well-known planning algorithm A∗. To systematically test the
performance of different approaches, we vary the size of the buffer and the size of the sequence window at
the entry of the buffer. We also consider different multi-agent reinforcement learning approaches to cope
with the problem that decisions are necessary at the exit and entry of the buffer. We find that sophisticated
adaptations of DRL algorithms perform extremely well for the decision making problem at the line buffer.
The quality of the resulting strategies is not only very close to that of the look ahead search, but DRL
also provides near-optimal decisions in real-time whereas the look ahead search becomes slow when the
complexity of the problem increases. We uploaded our implementation and all our experimental results to
a gitlab resource (Gros et al. 2020).

The remainder of the paper is structured as follows: We describe our model in Section 2 and propose
two deep reinforcement learning approaches in Section 3. We introduce heuristics and the look ahead
search in Section 4 and provide the results of a comparison between these and our approaches in Section 5.
We finally draw a conclusion and give an outlook on future work in Section 6.

2 MODEL DESCRIPTION

2.1 Car Manufacturing Process

In this section we consider an important part of the decision-making process in a concrete German car
plant, which is about 50 years old and currently mostly relies on human decisions for optimization. The
production line starts from the chassis and body of the cars, continues with a paint unit, and ends with
the final assembly. The after-paint buffer, which consists of multiple lines, connects the paint and final
assembly unit. As the final assembly is a bottle neck of the production, the order of the cars leaving the
buffer plays a crucial role for the global performance of the plant. A rearrangement of the order in real-time
can significantly improve the throughput of the final assembly unit and prevent production stops triggered
by unexpected time delays at assembly stations.

The after-paint buffer consists of n different lines. Hence, for each car leaving the paint unit, one of
the n different buffer lines is chosen at the entry of the buffer. Within a line cars leave according to FCFS,
i.e. a car can only be taken out from the end of a line and, conversely, can only be put into the beginning

3033



Gros, Groß, and Wolf

(a) State before
selecting a line
(OCU).

(b) After select-
ing second line
(OCU).

(c) State before
selecting a line
(TCU).

(d) After selecting
second line at entry
and first line at exit
(TCU).

Figure 1: Example of both line buffer variants performing a transition. The left part (a,b) displays the
OCU model and the right part (c,d) displays the TCU model.

of a line. Hence, there exist n different possibilities (assuming all lines have space left) for choosing a line
for a car entering the buffer and n possibilities (assuming that all lines are non-empty) for choosing the
next car that leaves the buffer. An illustration of the buffer is given in Figure 1, where the 6 slots (with 2
lines of capacity 3 each) in the center of each picture represent the buffer and the cars at the bottom are
those that will enter the buffer next while the cars on the top are those that just left the buffer and will
enter the final assembly unit next (in the respective order).

In order to evaluate the decisions at the entry and exit of the line buffer, a discrete-event simulation
of the different assembly stations after the buffer is needed. Here, we concentrate on the decision-making
part at the line buffer and use a set of rules to evaluate buffer decisions. These rules are similar to those
that are currently used in the real plant and were derived based on a queuing model of the final assembly
unit. They are based on certain car features and each rule determines how many cars with the same features
are allowed in a certain window of the production sequence. If a rule is violated, delays or even stops at
the final assembly will occur. Currently, in the plant the violation of only a small subset of these rules
is checked by factory workers maintaining a tally list. The goal is to replace these human decisions by
an automated decision system based on reinforcement learning that suggests near-optimal decisions at the
entry and exit of the buffer.

It is important to note that decisions at the line buffer are needed in real-time, because cars that leave
the paint unit and appear at the entry of the buffer arrive in an order that does not correspond to the original
two-week-plan of the plant. The reason for this is that unforeseeable permutations of cars occur within the
body and paint units.

2.2 Control Units

In the sequel, we will consider two different models. A simpler model with a single control unit, where
only one line decision has to be made, and a more complex model, in which lines are chosen at the entry
and exit of the buffer:

One Control Unit (OCU). In this variant of the model, we assume that the buffer is always filled
and there are no empty spots. We restrict the decision making to a central control unit, selecting a line
that is used for both, car removal and insertion. That is to say, if a car is put into the beginning of a line,
the last car is automatically taken out (see Figure 1, (a) and (b)).
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Two Control Units (TCU). With allowing distributed decision making, we assume one control unit
at the entry and one at the exit of the buffer. Thus, for every step, two decisions have to be made, which
can be seen as decisions of two “agents”: One agent has to decide which car is taken out at the exit of the
buffer and another agent chooses a line at the entry of the buffer for the next car (see Figure 1, (c) and (d)).

2.3 Markov Decision Process

We model the decision-making process at the line buffer as a Markov decision process and consider T
different types of cars. In the sequel, we sketch the different components of the MDP that describes the
line buffer. For a formal and detailed definition of the transition probabilities of the MDP we refer to a
related technical report in our gitlab (Gros et al. 2020).

States. To describe the current state of the system, we only monitor the type of each car in the
following three parts of the system: (i) the input sequence of cars, (ii) the buffer, and (iii) the output
sequence of cars.

The input and output sequence are one-dimensional lines of cars that have to be sorted into the buffer
and cars that have already left the buffer. All of these lines in the buffer have the same capacity. If a line
is empty, no car can be taken out and if a line is already filled, no car can be put in. The cars are always
moved to the last free spot of a line, i.e. there are no empty spots between cars within one line but only
in the beginning.

Transitions. A transition of the process corresponds to two consecutive steps in the real system:
1. the last car of the line chosen for output leaves the corresponding line in the buffer and appears at the
front of the output sequence and the last car of the output sequence is dropped, 2. the car at the front of
the input sequence enters the buffer line chosen for input; the input sequence is complemented with a new
car (we choose uniformly among the T types).

The order of these two steps ensures that a car just chosen from the input sequence cannot be taken
out in the same step as cars have to be physically moved from the entry of the buffer to the exit. However,
the opposite, inserting a car into a line that is full in the beginning of the step and a car was just taken out
of, is possible.

Rewards. The rules that ensure optimal throughput at the final assembly are basically distance rules,
i.e. the lengths of the sequences until a car type is allowed to reappear in the output sequence. For each
type, we choose a minimal distance and if in the output sequence a smaller distance appears for a certain car
type, a negative reward is given. The value of this penalty is also car-type specific. After every transition,
the output sequence is modified in the just specified way. With that altered output sequence, violation of
the rules and therefore resulting penalties can be determined.

Variations. The length of the input (LI) and output sequence (LO), as well as number (n) and capacity
(c) of the buffer lines are variables of our model and can be varied. Note that a larger window of the input
and output sequence increases the information at the decision point and therefore theoretically allows to
learn better strategies. We also allow to vary the number of car types (T) (i.e. distinguishable cars w.r.t.
the given rules) and the initial ratio (iR) of filled and empty spots in the buffer. Each of these parameters
gives options to increase the complexity of the problem.

3 DEEP REINFORCEMENT LEARNING

Our goal is to use deep reinforcement learning to train one agent (OCU model) or two agents (TCU model)
for decision making. As we want our agents to decide as optimal as possible, they aim to maximize the
expected cumulative reward of the MDP’s episodes. As (ideally) the manufacturing process runs nonstop 24
hours per day, the task is a continuing one (Sutton and Barto 2018) and the accumulated future reward, the
so called return, of step t is therefore given by Gt = ∑

∞
i=t γ i ·Ri+1, where we assume that Ri+1 is the reward

obtained during the transition from the state Si of the process at time i to state Si+1 for i ∈ {0,1, . . .} and
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γ is a discount factor with γ ∈ [0,1] (Sutton and Barto 2018). We adapt two different deep reinforcement
learning approaches to train decision making agents.

3.1 Deep Q-learning

Deep Q-learning is based on the idea to build a neural network that, for all states and available actions,
approximates action-values, which can be used to find the best action for a given state and thus the optimal
policy. For a fixed policy π , a state s, and an action a, the action-value qπ(s,a) gives the expected return
that is achieved by taking action a in state s and following the policy π afterwards, i.e.

qπ(s,a) = Eπ [Gt |St = s,At = a] = Eπ

[
∑

∞
k=0 γkRt+k+1

∣∣St = s,At = a
]
.

If the policy π is optimal, i.e. it maximizes the expected return, then we write q∗(s,a) for the optimal
action-value. Intuitively, the optimal action-value q∗(s,a) is equal to the expected sum of the reward that
we receive when taking action a from state s, and the (discounted) highest optimal action-value that we
receive afterwards, which gives the Bellmann optimality equation (Mnih et al. 2015)

q∗(s,a) = E [Rt+1 + γ ·maxa′ q∗ (St+1,a′) |St = s,At = a] ,

where At is the action chosen in step t. In the following, the terms optimal action-value function, value
function and Q-value will be used interchangeably.

The idea of value-based reinforcement learning methods is to find an estimate Q(s,a) of the optimal
action-value function. The simplest approach is to use the Bellmann equation to iteratively update the
estimation. For a given observed state St+1 = s′ and reward Rt+1 = r, the expectation is then estimated by
successively adjusting the current Q-value

Qi+1(s,a) = Qi(s,a)+α · (r+ γ ·maxa′ Qi(s′,a′)−Qi(s,a)) ,

where α ∈ (0,1) is the learning rate.
When the state space is too large for using tables that store Q(s,a) and learning each individual Q(s,a)

takes far too long, function approximations provide a suitable representation of Q(s,a). Artificial neural
networks have become popular for function approximation since they can express complex non-linear
relationships and are able to generalize. We consider a neural network with weights θ estimating the
Q-value function as a deep Q-network (DQN) (Mnih et al. 2013). We denote this Q-value approximation
by Q(s,a;θ) and optimize the network w.r.t. the target

y(s,a;θ) = E [Rt+1 + γ ·maxa′ Q(St+1,a′;θ) | St = s,At = a] . (1)

Hence, the corresponding loss function in iteration i is

L(θi) = E
[
(y(St ,At ;θ−)−Q(St ,At ;θi))

2
]
. (2)

where θ− refers to the parameters from some previous iteration. We approximate ∇L(θi) and optimize the
loss function by stochastic gradient descent (Mnih et al. 2015). To avoid an unstable training procedure,
we use a fixed target (Mnih et al. 2015), i.e. y(St ,At ;θ−) does not depend on θi but corresponds to the
weights that were stored C steps earlier in the iteration. Also, the target network is updated by performing
a soft update, i.e. θ− = (1− τ) ·θ + τ ·θ−p with τ ∈ (0,1).

Another DQN improvement that we apply is experience replay (Mnih et al. 2015). The standard
assumption for stochastic gradient descent is that the samples are independent and identically distributed.
When learning from sequences (trajectories of the MDP), this assumption is violated as the consecutive
states depend on former action choices. Therefore, instead of directly learning from observed behavior,
we store all experience tuples et = (st ,at ,rt+1,st+1) in a data set D. When adapting the network weights,

3036



Gros, Groß, and Wolf

we sample uniformly from that buffer to decorrelate the samples from which we learn, i.e. in Eq. (1) and
(2) we estimate the expectation w.r.t. St ,At ,Rt+1,St+1 ∼ Unif(D). We remark also that experience replay
has greater data efficiency.

We generate our experience tuples by exploring the state space epsilon-greedily, that is, with a chance
of 1− ε during the Monte Carlo simulation we follow the policy that is implied by the current network
weights and otherwise choose a random action (Mnih et al. 2015).

3.2 Deep Q-learning for the Line Buffer

When we combine Monte Carlo simulations of the line buffer MDP with deep Q-learning, several challenges
arise. A suitable encoding for the MDP state has to be found as well as suitable layers for the neural
network. Further challenges are related to the balance between exploration and exploitation and in the case
of the TCU model, a training strategy for two cooperating agents has to be developed.

3.2.1 One Control Unit.

The OCU model relies on a single agent for decision making. Hence, a single neural network is trained
which gets the state s and an action a of the MDP as an input. We considered different window sizes
for the input sequence at the entry of the buffer and different buffer sizes. To encode s we use a one hot
encoding, which is a popular boolean vector representation in the context of deep learning. For each slot
in and around the buffer and each car type, the entry 1 at the corresponding position of the input vector
indicates that there is a car of a certain type (otherwise the entry is 0). Additionally, we one hot encode
whether there is a car at all. Note that integer values for encoding the car type are harder to process by
the network than boolean values.

We use fully connected layers in our neural network because more sophisticated network structures
are only needed for complex inputs such as images. After testing several different network structures we
found that 4 hidden layers with 128 nodes each are most efficient for our case study in terms of training
time and quality of the solution (further details are omitted). As we varied the window sizes of the entry
as well as the buffer size, the size of the input layer of the network depends on these parameters, while
the size of the output layer is equal to the selected number of lines.

Although our manufacturing process technically is a continuing model, we turn it into an episodic
task by organizing the training in episodes with 100 cars to be inserted in each episode. We trained our
agents by playing 30,000 episodes without prior knowledge. Therefore, at the beginning it is useful to
act more exploratively, while during the training exploitation is growing in importance. Thus, we do
not use an exploration constant ε , but decrease ε during training. In beginning of the training we set
ε0 = εstart and decrease it by a constant factor λ < 1 in every episode i until a threshold εend is reached,
i.e. εi+1 = max(εi ·λ ,εend). This results in a training process, where the focus lies on exploration in the
beginning and on exploitation in the end. Our training with the specified network structure and number
of episodes can be done within a few hours. We plot the training progress and the selected ε for a buffer
with four lines and LI = 7 in Figure 2 (a). Each point in the plot refers to one training episode.

3.2.2 Two Control Units

For the TCU model, we have to consider two control units for distributed decision making. Hence, we
additionally need to handle training of two agents cooperating with each other. We present three different
approaches to tackle this issue.

Vanilla Multi-Agent DQN. The easiest approach is to simply try to train two agents simultaneously.
One of the agents is responsible for inserting into, the other agent for removing cars from the buffer.
However, the DQN approaches that we use work well under the assumption that the environment does
not change, i.e. the transition probabilities of the MDP do not change. But if another agent is involved,
state transitions and rewards are affected and the environment evolves dynamically. Hence the agent must
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keep track of the other learning agents, possibly resulting in an ever-moving target (Busoniu et al. 2008;
Schwartz 2014). For some training runs, e.g. the one displayed in Figure 2 (b), the plots suggest, that the
agent is not learning anything at all.

Curriculum Reinforcement Learning (CC). To handle the former, we roughly follow the idea
of curriculum learning (Bengio et al. 2009). In contrast to Gupta et al. (2017) we neither define the
curriculum by increasing the number of agents, nor do we increase the complexity of the environment.
Instead, we create the following iterative curriculum: to address the problem of changing environments,
we alternate the training of the agent at the entry and exit of the buffer. When one agent is trained, the
other one decides according to a fixed strategy. In the first iteration, we start by training the agent at the
exit and use a random strategy for the agent at the entry. In following iterations, we use the policy that
was just trained in the former iteration.

Cross Product Learning (CP). Instead of training two agents for distributed decision making, we
can also train an agent that decides both, the line at the entry and the line at the exit. For this, we enlarge
the input of the neural network. The number of actions increases to n2, where n is the number of lines
in the buffer. As DRL is known to not scale well with the number of available actions, we expect the
performance of this approach to be good as long as the number of lines is small but to strongly decrease
with an increasing number of lines. The achieved results in training look similar to the DQN for OCU
(see Figure 2 (c)).

3.3 Monte Carlo Tree Search

MCTS is based on the idea to build a search tree, starting with the current state as root, and to run several
simulations, whenever a decision is about to be made.

Balancing between exploration of the state space and exploitation of the return MCTS follows a certain
branch of the tree. Every node of the tree consists of the visit count N, the average of the observed returns
V , and the exploration/exploitation coefficient U . The approach is performed in four different steps (Sutton
and Barto 2018). (i) Selection: starting in the current state, traverse the tree, i.e. choose actions and execute
them, until a leaf of the node is reached. (ii) Expansion: if the leaf is not reached for the first time,
expand the leaf by adding all possible children. Choose one of the new leaves. (iii) Simulation: from the
selected leaf node run a simulation following a rollout policy until a terminal state is reached. (iv) Back
propagation: traverse the tree backwards, updating the average return and the visit counts.

When the limit of the tree depths is reached, which can either be specified by visits or by time, MCTS
chooses the action that was visited most often (and not, as may be expected, the one with the highest
average value) (Silver et al. 2017). The child of the tree can be set as a new root for upcoming decisions
to be made.
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(b) TCU: Vanilla MA.
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(c) TCU: CP.

Figure 2: Training for LI = 7 and n = 4 for both, OCU and TCU.
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In order to keep the balance between exploration and exploitation, Schadd et al. (2008) adjust the standard
UCT selection coefficient (Kocsis and Szepesvári 2006) such that it is more suitable for environments
without adversaries and rewards within larger intervals other than [−1,1]. Building on their approach
and making some changes on our own, we decided to use U =Vi +Ri +0.5 ·

√
logN/Ni, where Ni is the

children’s visit count (N = ∑i Ni) and Ri the reward obtained reaching it.

3.4 MCTS for the Line Buffer

For the combination of the line buffer MDP and MCTS, we do not need to distinguish between the different
control units. The tree-structure that is build to decide on the next action is capable of switching between
insertion and removal.

For the expansion, we use the following strategy: When the selected input depth, that is equal to the
length of the input sequence LI , is reached, we stop expanding the tree. It follows that the tree is at most
as deep as the window of the input sequence.

While classical MCTS then applies a rollout policy as soon as a leaf is visited for the first time, we
instead make use of our already trained deep Q-networks. Whenever a leaf is reached, we do not perform
a rollout but instead use the pre-trained DQN as an expert to estimate the expected return from this state
s on, i.e. maxa′ Q(s,a′). This idea is similar to the AlphaGo Zero approach (Silver et al. 2017), except
that our expert network was trained prior with deep Q-learning and does not change during MCTS. We
propose two different versions for this DQN query.

MCTS-Expert (MCTSE). While traversing the tree, we randomly choose a type for the next
unknown car of the input sequence. Hence, the DQN-estimates that we use within the tree depend on
different random (completions of the) input sequences.

MCTS-Expert+ (MCTS+
E ). We fill the input sequence with the cars of the true input sequence of

the current episode, i.e. we assume here that we have more information about the input sequence than
the information given by the current MDP state. Hence, we expect MCTS+

E to perform better than used
expert networks. In comparison to classical MCTS, our approach based on a DQN query saves time that
can now be spent on exploring and building the tree instead of performing Monte Carlo simulations for
rollout. However, its disadvantage is that poor decisions of the deep Q-network partially carry over to the
MCTS algorithm.

We restrict MCTS to a maximal number of visits and a maximal computation time. Whenever one of
both criteria is met, we stop the tree search and return the current result.

4 HEURISTICS AND LOOK AHEAD SEARCH

In this section, we present two alternative approaches for optimization. One is based on heuristics and the
other one is based on a look ahead search and used to determine an accurate approximation of the optimal
solution, which is time consuming but useful for a comparison with the DRL results.

4.1 Heuristics

We propose heuristics with the goal of providing a baseline (random heuristic) and an approach that is
similar to human decision making. We therefore compare our results to the following heuristics.

Random Heuristic (RH). Randomly select a valid line of the buffer.
Greatest Distance Out Heuristic (GDH). Randomly select among the lines, where the to be removed

car has the maximal distance to other cars with the same type in the output sequence.
Greatest Similarity In Heuristic (GSH). Randomly insert the car among the lines that have the

highest number of cars with the same type.
Sorting Heuristic (SH). Insert the car according to a pre-defined ordering. If not possible, insert it

into the next higher available line.
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For OCU, we compare our results to RH and GDH. For the TCU setting, we use RH and GDH at
the buffer entry and RH, GSH, and SH at the exit. We compare our DRL approaches to all 6 possible
combinations.

4.2 Look Ahead Search (LAS)

Computing the optimal strategy for the MDP is difficult because standard approaches such as value iteration
are infeasible. To approximate the optimal solution, we define a look ahead search. For a given length of
the input sequence window, it computes the optimal decision as follows. It considers all possible action
sequences (decisions at the buffer entry and exit) until the given input sequence is completely inserted into
the buffer. It then selects the best action for the next step only. After inserting one car, the input line is
filled again and new information is available. Therefore, the look ahead search can be applied again to
select the next best decision given the current information.

Our look ahead search basically is a reimplementation of the well known planning algorithm A∗, tailored
to our plant model without further heuristics. For the given input sequence, we create an optimal plan
according to the reward function and return the first action of that plan. Needless to say that the runtime
is growing exponentially with increasing number of lines and increasing size of input sequence.

5 EVALUATION

To evaluate our trained decision making agents, we sample 1,000 episodes with a sequence length of
100 cars. For all experiments, we use T = 8 car types, a line capacity of c = 3, and an output sequence
with length LO = 4. We run experiments for n = 2 and n = 4 and vary the length of the input windows
LI ∈ {1,3,5,7,9}. All experiments were made for both variants of the model (OCU, TCU). For TCU we
used iR = 0.6. All measurements were made on a machine with an Intel(R) Core(TM) i7-6700 CPU @
3.40GHz processor with 16 GB of RAM.

Additionally to comparing our agents to heuristics and LAS, we applied LAS with an increasing input
window length. We report the maximal possible window size (we write LASX for a maximal size X) until
the computation timed out (0.5s per decision). This approach can benefit from having more information
and might therefore perform even better than the optimal strategy for the fixed input window.

5.1 One Control Unit

In Figure 3 we plot the penalty per car and the time per decision averaged over the 100,000 cars of all
episodes, where the decisions are based on a pre-trained neural network as explained in the previous section.
We show results for increasing window sizes of the input sequence and consider n = 2 and n = 4.

DQN. For smaller window sizes, DQN performs better than LAS and only slightly worse otherwise,
because DQN is trained on a model where the next car of the input sequence is chosen uniformly while
LAS does not look any further than the input window. It clearly outperforms all heuristics, but taking only
slightly more time while the runtime of LAS increases dramatically with the input window size.

MCTSE . For n = 2 MCTSE is performing similar to DQN, having a slightly increased performance,
especially for LI ∈ {7,9}. The runtime increases similarly to LAS. For n = 4, MCTSE is not only constantly
outperforming LAS, but even accomplishes better scores than the best possible LAS (LAS12). The runtime
increases until 50 ms and remains at this value afterwards, due to the time exploration limit. For small
windows, it is further taking more time to decide than LAS. For some input sequence lengths, MCTSE
obtains the best results of all approaches.

MCTS+
E . For n = 2, MCTS+

E is clearly performing best but does not reach the approximated maximal
score of LAS20. For n = 4, both MCTS+

E and MCTSE perform better than LAS12. Similar to MCTSE ,
runtime is increasing with input length until reaching 50 ms.
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Figure 3: Results for the OCU model.

Considering the runtime overall, we can see that computing LAS20 lasts several times the time that
the other algorithms take. While the runtime of LAS increases with input sequence, MCTSE and MCTS+

E
have a runtime upper bound and DQN as well as the heuristics can decide nearly instantaneously.

5.2 Two Control Units

In the multi-agent setting of TCU, we see in Figure 4 that the approaches for training deep Q-networks
show different performances.

Vanilla Multi-Agent DQN. Considering the easiest approach to train two agents simultaneously,
we see that the training is very unstable (solid blue line DQN), which was already apparent from Figure 2.
The agents partly even perform worse than the heuristics. From the return of the training episodes, we
conclude that further training is necessary to reach a better performance, if so at all. After training, the
runtime is negligible compared to the heuristics.

Curriculum Reinforcement Learning. Applying an iterative curriculum gave very good results.
The agents clearly outperform all other DQNs and perform similarly to LAS with the same information
depth for both examined number of lines. The decision time per car is roughly equal to vanilla DQN.

Cross Product Learning. Already for n = 2, the CP-approach does not exploit the additional
information from the increasing window size as its performance decreases for larger windows. It performs
better for n = 4 since the task of reordering 8 different car types is much easier with 4 lines than with 2.
Still, CP outperforms the heuristics by far and the runtime is slightly higher in comparison to vanilla DQN.

MCTSE . For both MCTS approaches, we use the networks of curriculum learning as experts, as
they were the best of the deep Q-networks. In contrast to OCU, for n = 2 MCTSE is not achieving better
results than the CC-network. This is particularly surprising, as that same network is used as an expert.
Still, the performance is better than CP trained agents.

MCTS+
E . Just as for the OCU, MCTS+

E overall achieves the best results. For n = 2 it is in parts
slightly worse than LAS, while for n = 4 it is again similar to our best approximation LAS7.

For both MCTS approaches, the runtime is increasing with input size. For small windows, it is further
taking more time to decide than LAS. Due to the time exploration limit, time is not further increasing after
reaching the upper bound.
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Figure 4: Results for the TCU model.

6 CONCLUSION AND FUTURE WORK

We investigated the usefulness of deep reinforcement learning approaches in the context of a car manufacturing
process, for which an optimal sequence order is crucial. By simulating an MDP model of the after-paint
buffer in order to train a deep Q-network, we obtained near-optimal decisions at the entry and exit of the
buffer in real-time. For our comparison, we implemented a look ahead search, which is computationally
expensive but yields an accurate approximation of the optimal strategy.

We also proposed a combination of deep Q-networks and Monte Carlo tree search, which is more
costly than deep Q-learning, but yields strategies of even higher quality and can be seen as a method that
lies between a costly planning procedure and pre-trained Q-networks.

We remark that our proposed reinforcement learning approaches are able to handle unexpected changes
in the production process as long as the corresponding state is known from training.

Although our studies are limited, it is our believe that deep reinforcement learning is generally suited
for similar optimization problems.

As future work, we plan to systematically explore the performance of DRL for manufacturing processes
with multiple agents for decision making arranged hierarchically or along the production line.

Another line of future work is related to the integration of deep reinforcement learning approaches
into complex discrete-event simulations such as a detailed simulation of other plant units (e.g. the final
assembly unit). We believe that deep reinforcement learning is a powerful tool for complex sequential
decision making problems emerging in computer simulations of real-world manufacturing applications that
require real-time decisions.
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