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ABSTRACT 

Assembly processes have the most influencing and long-term impact on the production volume and cost in 
the aerospace industry. One of the most crucial factors in aircraft assembly lines design during the 
conceptual design phase is ramp-up planning that synchronizes the production rates at the globally 
dispersed facilities. Inspired by a pilot study performed with an aerospace company, this paper introduces 

a hybrid simulation-optimization approach for addressing an assembly production chain ramp-up problem 
that takes into account: (1) the interdependencies of the ramp-up profiles between final assembly lines and 
its upstream lines; (2) workforce planning with various learning curves; (3) inter-plant buffer and lead-time 
optimization, in the problem formulation. The approach supports the optimization of the ramp-up profile 
that minimizes the times the aircraft assemblies stay in the buffers and simultaneously attains zero backlog. 
It also generates the required simulation-optimization data for supporting the decision-making activities in 

the industrialization projects.  

1 INTRODUCTION 

Industrialization projects of a manufacturing supply chain involve many complex decisions over various 
phases in order to satisfy the strategic objectives of the company. These design decisions include equipment 
sizing, layout, level of automation, workload allocations, internal and external logistics planning, to name 
but a few. For the industrialization projects in the aerospace industry, the assembly processes have the most 

influencing, long-term impact on both the production volume and cost – nearly 30% of the overall 
production cost is estimated to be spent on assembly and up to 80% of final aircraft cost is determined 
during the conceptual design phase (Mas et al. 2013).  

For the industrialization engineers, their works during the conceptual design phase involve the splitting 
of the conceptual assembly definition into a logistics plan, assembly lines design, layout planning, and their 
evaluations. In a global supply chain network, since the logistic plan represents a large proportion of the 

total cost, how workloads can be optimally allocated to the geographically dispersed facilities has to be 
carried out in the early phase. But in the later design phase, after the assembly processes are well-defined 
for different lines in a production network, more focus will be put to the calculations of the workforce to 
achieve the capacity required to fulfill the demand. This is particularly important to the labor-intensive 
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aircraft industry in which most of the assembly operations are performed by human workers so that the total 
cost of the required workforce will contribute to a significant percentage in the total manufacturing cost. 

For the workforce calculations, especially in high-tech, complex processes like aircraft assembly, their 

special skills, and learning factors must be considered already in the conceptual design phase. Notably, the 
learning curve of the assembly workers represents the impact of their experience on the production costs, 
product quality as well as productivity. For the last, when their experience is gained through repetitive tasks, 
the quantity produced per period can be gradually increased until the targeted steady-state production rate 
can be reached. This is called production ramp-up, which is very commonly applied in industries that 
involve complex manual assembly tasks for making automotive or aircraft. And particularly for these 

industries where productions take place at their globally dispersed facilities, involving long-haul 
transportations of semi-assemblies from upstream to downstream plants, ramp-up planning must take into 
account the interdependencies between the ramp-ups in the distributed plants (Becker et al. 2016).  

Instead of some continuously ascending production ramp-ups, plateau or staircase-like ramp-up curves 
are planned so that the production capacity is increased stepwise for multiple periods, whereas in each 
period, the output level is constant before the capacity is increased in the next “ramp-up”. This is an 

important characteristic because learning occurs during ramp-ups, which leads to the improvement of not 
only productivity but also product quality, i.e., reduction in errors (Glock and Grosse 2015). In a study for 
the ramp-up planning for new product introductions in the automotive industry, Wochner et al. (2016) 
identified the lack of appropriate quantitative decision support in ramp-up management except for a few 
optimization-based models, e.g., (Becker et al. 2016). In their systematic review of decision-support models 
for production ramp-up phase that apply mathematical optimization or simulation approaches, Glock and 

Grosse (2015) have found various decision-support methods that consider learning effects and increasing 
customer demand rates in time, but decision-support models for worker assignment and work-flow 
management during ramp-ups are rare. Their analysis also revealed that most of the studies developed 
analytical models to support decision-making during ramp-ups, and that works that employed simulation 
approaches are very few. They concluded that there is “a significant potential for future research to develop 
comprehensive simulation studies of ramp-up processes,” especially in generating further insights into the 

complexities of production ramp-ups.  
The importance of developing conceptual simulation models of complex manufacturing systems for 

evaluations of alternative designs and decision-making support, rather than relying on experience, have 
been emphasized in the simulation literature (Fowler and Rose 2004; Moris et al. 2008; Ng et al. 2011; 
Vasudevan and Devikar 2011). In a recent WSC article, Allen et al. (2018) presented a hybrid simulation 
and analytical modeling approach to capture the impact of increasing demand and capacity constraints on 

the operational and financial performance of an aerospace supply chain. But, traditionally, the conceptual 
design phase for aircraft industrialization projects has not been supported by knowledge-based and 
predictive technologies like modeling, simulation, and optimization to the same extent when compared to 
the other aspects of aircraft development (Mas et al. 2013). To the knowledge of the present authors, 
studying the production ramp-ups using any simulation-optimization approaches, especially for aircraft 
manufacturing, has not been found in the literature. This can be supported by a recent student project 

conducted for an aerospace company in Sweden (Blom and Svensson 2019), which reported that papers on 
ramp-up, from both a production and an aerospace perspective, are virtually non-exist, and, therefore, 
identified as a research gap.  

Inspired by a pilot study carried out with a major European aircraft manufacturer, this paper introduces 
a hybrid simulation-optimization approach for addressing an aircraft assembly production chain ramp-up 
problem that takes into account: (1) the interdependencies of the ramp-up profiles between a final assembly 

line (FAL) and the Pre-FAL lines; (2) workforce planning with various learning curves; (3) inter-plant 
buffer optimization and lead-time optimization, in the problem formulation. After this introductory section, 
the rest of the paper is organized as follows. Section 2 gives some concepts from Supply Chain Science for 
a generic supply chain model and relevant objectives to the aerospace industry. Section 3 details our 
proposed hybrid simulation-optimization approach for generating the Pre-FAL ramp-up profile and its 

3046



Ng, Bernedixen, Andersson, Bandaru and Lezama 

 

 

related simulation output data for supporting decision making. The simulation-based optimization results 
of finding the minimum inter-plant buffer capacity with the consideration of variability like breakdown and 
repair in the lines to make the study more generalized are presented in Section 4. Finally, conclusions and 

future work are included in Section 5.  

2 SUPPLY CHAIN SCIENCE  

In supply chain science (Hopp 2008), a manufacturing supply chain is defined as a goal-oriented network 
of production processes and stocks used to deliver goods to customers. As illustrated in Figure 1, a stock 
point represents the inter-plant storage that stores the products at the end of a plant to fulfill the demand 
from a down-stream customer within a serial supply chain. Despite the apparent simplicity of using only a 

few entities, such kind of demand-stock-production (DSP) networks can be used to represent any complex 
manufacturing value chains (Pound et al. 2014).  

Figure 1: A demand-stock-production network and trade-offs among its design/operating objectives. 

In such a DSP network, trade-offs among several key performance objectives like throughput, lead-
time, stock inventory and backlog (i.e., total no. of tardy jobs after due-dates) can be related in the form of 
efficient frontier (EFs) as illustrated in Figure 1. While it is solely a strategic decision for manufacturing 
executives/managers to decide where they want to be to achieve the business objectives suitable for their 
company, e.g., absolutely minimum inventory cost versus highly responsive with no backlog using an EF, 

the task of obtaining one is far from trivial. First, they need an input-output model to predict the performance 
of their supply-chain network under different inventory settings. Second, but maybe even more challenging, 
is when a large number of stock points and different sources of variability in the network are involved, the 
generation of such an EF is intractable for most of the analytical modeling and optimization methods so 
that some more advanced technologies are needed. As argued in previous studies, we advocate the use of 
some combinations of simulations, either discrete-event simulations (Ng et al. 2011) or system dynamics 

(Bandaru et al. 2015), and multi-objective optimization, as an efficient way to address such a non-trivial 
task of generating EF curves for supporting the design (Ng et al. 2016) and/or improvement (Pehrsson et 
al. 2016) of complex manufacturing networks. As a matter of fact, Pound et al. (2014) have suggested that 
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a high-level modeling program like discrete-event simulation is needed when the manager is facing the 
complexity of demand and product variations that cannot be handled by the mathematics introduced in 
Factory Physics.   

One of the most important principles emphasized in the Factory Physics framework is the corrupting 
influence of variability. Expressed as the “variability law”, increasing variability always degrades the 
performance of a manufacturing system. In a production line, variability can be caused by machine 
breakdown (availability issues), quality problems (scrap and rework), setups due to technological or logistic 
constraints, as well as natural work-task variations by human workers (manual assembly processes), to 
name a few. In a supply chain network, these production-level variations can contribute to the variability 

like material shortages and delays. The advantage of using simulation-based multi-objective optimization 
(SMO) is that the corrupting effect on the EFs can be visualized graphically (see Figure 1). A more 
comprehensive review of using SMO for supply chain systems design can be found in (Aslam et al. 2011). 

3 AIRCRAFT ASSEMBLY RAMP-UP PLANNING 

3.1  An Aircraft Assembly Production Network 

With the same entity conventions used in Figure 1, Figure 2 depicts the flow between the Pre-FALs and the 

FAL as a DSP network. In comparison to a generic supply chain network, there are certain noticeable 
differences. First, there are no inter-station buffers in the modeled plants because FALs are mostly designed 
as synchronous, meaning that all the workstations have the same cycle time or takt (Ríos et al. 2012). 
Second, the end of the line is called “end buffer”, instead of a stock point, because, in principle, it is an area 
that the aircraft assemblies are waiting, if needed, to be transported to FAL. In the pilot study, we considered 
the deterministic case in which there is no variability in the assembly plants. This is a reasonable assumption 

when considering the aerospace industry usually employs the capacity buffer (Pound et al. 2014) 
management strategy to ensure the 100% on-time delivery (OTD), or equivalently, zero backlog. On the 
other hand, any waiting of the finished aircraft assemblies at a stock point or buffer is too costly, so that an 
optimization approach that can determine the minimum waiting time in the buffers, but without causing 
delayed deliveries to the customers (i.e., zero backlog), is necessary.  

 

 

Figure 2: Aircraft assembly as a DSP network. 

The IDEF0 diagram in Figure 3 outlines our proposed hybrid simulation-optimization approach. It 
includes the following linked activities which will be further described in the subsequent sub-sections:  

1. Using the desired start date at the FAL, pre-determined FAL ramp-up profile, and the different 
industrial calendars, a recursive Mixed-Integer Linear Programming (MILP) model has been 
developed to determine the optimal Pre-FAL ramp-up profile to minimize the times that the 

aircraft assemblies stay in their end buffers (see Section 3.2 for more details).  
2. Based on optimized ramp-up profiles and the assembly line design, run deterministic 

simulations using FACTS Analyzer that is chosen for its tightly integrated simulation and 
optimization functions (Ng et al. 2011). 
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3. Using the simulation output data to generate the report with the information needed to support 
the decision-making activities of the industrial engineers/managers (Section 3.3, Figures 6-9). 

4. SMO for generating the EF with respect to multiple objectives like backlog, buffer sizes, and 

lead times when variability must be considered and fine-tune the ramp-up profiles (Section 4).  
  

Figure 3: The hybrid simulation-optimization methodology represented in an IDEF0 diagram. 

3.2  Pre-FAL Ramp-up Profile Optimization 

As mentioned, a supply chain that involves productions on globally dispersed facilities has to consider 
different industrial calendars for the precise planning and control of the production at each site to effectively 
utilize their resources. Commonly, companies need the most downstream facility to work at a certain pace 
in order to be able to meet the demands of their customers. When new complex products are to be produced 
that involves a stepwise ramp-up profile of the production pace at the most downstream facility, this 
problem becomes even harder. Due to differences in the industrial calendars, e.g., holidays not occurring 

simultaneously at different sites, upstream sites need their own ramp-up profile that shortens lead-times and 
minimizes the required inventories, while still being able to supply the downstream site on time. An 
example with only two transportation linked facilities with two different industrial calendars is shown in 
Figure 4.  

The downstream site should follow a ramp-up profile that increases the rate of production in three steps. 
Knowing these production rates and when the production of the first job should start, it is possible to go 

upstream for every job (1, 2, …), considering available production hours in both calendars and the 
transportation time, and calculate when the individual jobs should be ready for transport. Figure 5 presents 
an example of where blue dots represent the times when each individual job needs to be ready for transport, 
and red segments represent production rates. The irregularities among the blue dots clearly illustrate the 
effects different calendars have on the input rate profile of the downstream site when the retro-planning is 
done. Therefore, the problem then amounts to finding the set of production rates (red lines) that minimizes 

the sum of the vertical distance between each blue dot and the red segments while at all times keeping the 
blue dots below the red segments; otherwise, jobs can be late for transport. 
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Figure 4: Schematic illustrations of the retro-planning between two facilities.  

In addition, any valid solutions to the problem should meet the following requirements: 
 Production rate changes need to happen at the start of a new job, e.g., a job cannot be processed 

halfway with one rate and then the remainder with a different rate at a certain station. 
 Production rates should always increase; i.e., it is not allowed to change from one rate to a lower 

one. 

 Two production rate changes cannot happen too close to each other; there needs to be a minimal 
time 𝐺 between any two consecutive rate changes. 

 

Figure 5: Illustration of how to find production rates (red lines) from the job due-dates for 
transport/delivery (blue dots). 

3050



Ng, Bernedixen, Andersson, Bandaru and Lezama 

 

 

The problem can easily be formulated into a MILP-problem when it is known at which jobs the 
production rate change should occur. However, that is not the case here where those are among the desired 
outputs. Hence, a regression analysis method, known as multivariate adaptive regression splines (MARS), 

introduced by Friedman (1991), is being resorted to optimize the number of production rate increase stages 
and when, i.e., at which jobs, these rate increases should happen. MARS is used to construct a model of a 
function:  

 
𝑦 = 𝑓(𝑥1, … , 𝑥𝑛) + 𝜖  

 
where 𝑦  represents the response variable, {𝑥𝑖}1

𝑛 ∈ 𝔻 ⊂ ℝ𝑛  the predictor variables and 𝜖  a stochastic 
component with expected mean 0 that represent relationships not captured by any of the predictor variables. 
The constructed MARS model is mathematically expressed as: 

 

𝑓(𝒙) = ∑ 𝑎𝑚𝐵𝑚(𝒙)

𝑀

𝑚=1

 

where, {𝑎𝑗}
1

𝑀
are the coefficients for the basis functions  𝐵𝑚 in the following form: 

𝐵𝑚(𝒙) = ∏[𝑠𝑘𝑚 ⋅ (𝑥𝑣(𝑘,𝑚) − 𝑡𝑘𝑚)]
+

𝐾𝑚

𝑘=1

 

where, 𝐾𝑚  represent the number of splits for 𝐵𝑚 , 𝑠𝑘𝑚 = ±1 the direction of the step function [ ]+ , 
𝑣(𝑘, 𝑚) the index of the split predictor variable and 𝑡𝑘𝑚 the value of the predictor variable at the split (also 
referred to as the knot location). MARS is divided into a forward and a backward phase. In very general 

terms, the forward phases search for the best knot locations in a recursive manner, like: 

Algorithm 1 

1. Let ℂ be the set of all candidate knot locations and 𝑀𝑚𝑎𝑥 the maximum 
number of basis functions. 

2. Evaluate each knot location in ℂ by computing the basis function 
coefficients that minimize a lack-of-fit (𝐿𝑂𝐹) function (usually the 
squared error loss). 

3. Keep the best knot location and exclude it from ℂ. 
4. Terminate if 𝑀𝑚𝑎𝑥 is reached. 
5. Go to 2. 

 
In order not to end up with an over-fitted and unnecessarily complex model, the backward (pruning) 

phase will remove any introduced knots that do not significantly worsen the fit of the model, even if they 

are removed, in a stepwise manner. What constitutes a significant reduction in the accuracy of the model is 
decided by a modified form of the generalized cross-validation criterion by Craven and Wahba (1979). For 
a more in-depth description of MARS the interested reader is referred to the excellent and in-depth 
description found in (Friedman 1991). 

The input to our problem consists of a sequence of shipping times 𝕊 = {𝑠1, … , 𝑠𝑝} when individual jobs 
ℙ = {1, … , 𝑝} should be ready for transportation. In terms of MARS this represents a function with a single 

predictor variable (𝑛 = 1, 𝐾𝑚 = 1). Now, by letting the response variable 𝑦 be the shipping times and the 
job number be our predictor variable 𝑥 the MARS procedure will ensure that rate changes only happen at 
the change from one job to the next, fulfilling the first requirement. Using the squared error loss as the 𝐿𝑂𝐹 
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will not work for our problem since it will not prevent jobs from being late for transport. Instead, we 
formulate our 𝐿𝑂𝐹 function as a MILP-problem that computes the basis function coefficients that minimize 
the total distance between our model 𝑓(𝑥), 𝑥 ∈ ℙ and 𝕊 while enforcing that no jobs are late for transport: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑(

𝑝

𝑗=1

𝑠𝑗 − 𝑓(𝑗))

𝑠. 𝑡.    𝑓(𝑗) − 𝑠𝑗 < 0, ∀𝑗 ∈ ℙ

(1) 

 

Finally, when considering the required monotonically increasing production rates, using the fact that 
the slopes of our piecewise linear model 𝑓(𝒙) actually represent the production rates, it can be expressed 
as in Equation (2) and added as an additional constraint to Equation (1): 
 

𝑓(𝑗 + 2) − 𝑓(𝑗 + 1) 

𝑗 + 2 − (𝑗 + 1)
−

𝑓(𝑗 + 1) − 𝑓(𝑗)

𝑗 + 1 − 𝑗
=

𝑓(𝑗 + 2) − 2𝑓(𝑗 + 1) + 𝑓(𝑗) < 0, ∀𝑗 ∈ {1, … , 𝑝 − 2} (2)

 

 

Actually, this represents decreasing slopes (<0). But, considering our choice of the response variable 
and predictor variable, the axes in Figure 5 are swapped; this corresponds to increasing production rates. 

3.3  Simulation Results 

Figures 6-9 show some of the major simulation output data plots generated for supporting decision-making 
activities. Figure 6 is the main output from retro-planning, showing the production rate increased in several 
ramp-up stages, determined by the recursive MILP algorithm. The main plot in Figure 7 superimposes a 

learning curve example (the sub-plot in the same figure) tested on the stepwise increased production rates 
over the simulated horizon to plot the calculated workforce required for the Pre-FAL and FAL lines during 
the simulated period. It is important to note the dataset presented here, consisted of 9 Pre-FAL stations and 
5 FAL stations, is a hypothetical one which did not come from any real company and the calendar in the 
past as the simulated period (i.e., 1970-1975) is deliberately chosen to avoid revealing the time scale of the 
studied aerospace problem.  

 

 
Figure 6: Production rate increased in five ramp-up stages (segments), meeting all the Pre-FAL due-

dates. 
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Figure 7: Calculation of the required workforce by considering the learning factor in the sub-plot on 

the ramp-ups at the PreFALs and FALs. 
 

Figure 8: Occupation rate of the inter-plant buffer (number of occupied end buffers) during the entire 
simulated horizon. 

 

 
Figure 9: Lead-times of the jobs, decreased over the simulation horizon due to the stepwise increase 

of the production rate.  

 
The buffer occupation level (Figure 8) plotted with the simulation output data has been found to be 

very useful for the engineers to see not only how many end buffers are needed, but more importantly, when 
they are used. Note that with this dataset, six end buffers will be needed, especially to cope with the waiting 
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finished aircraft assemblies near the end of the simulated period, if zero backlog is desired (see also SMO 
results in Figure 10). Finally, lead-times (in days) of the jobs are displayed from the simulation output. 
Notably, lead-times of the jobs are declined over time due to the stepwise increase of the production rate.  

4 SIMULATION-BASED MULTI-OBJECTIVE OPTIMIZATION  

Finally, we include the SMO results using the same model with two different settings to illustrate the 
corrupting effect of increasing variability. The SMO was carried out with the NSGA-II algorithm (Deb et 
al. 2002) in FACTS Analyzer using the same simulation model developed for the pilot study. We considered 
two sources of correlated variability to the simulation model: availability and repair time, in two 
configurations: (1) availability 99%, and (2) 95%, both with a mean time to repair (MTTR) = 5 hr. in two 

separate SMO runs. The SMO problem was formulated with three objectives: {Min(Backlog), Min(Buffer), 
Min(Lead-time)}, using  the parameters of the five segments in the ramp-up profile presented in Figure 6 
as the decision variables expressed in the equations below:  

 

�́�𝑖 =  𝑇𝑖 ∗ 𝑝𝑖 , where Ti  is the original takt; 𝑝𝑖 ∈ [0.1,1];  ∀ 𝑖 ∈ {1, … ,5} 

�́�𝑖 =  𝐶𝑖 + 𝛿𝐶𝑖
, where 𝐶𝑖 is original takt change; 𝛿𝐶𝑖

∈ [−15, … ,15]; ∀ 𝑖 ∈ {1, … ,4}

�́� =  𝑂 + 𝛿𝑂𝑖
, where 𝑂 is original start offset; 𝛿𝑂 ∈ [0,10000]

                 

The SMO results, in the form of EF plots in Figure 10, are anticipated based on the theory about the 
corrupting influence of variability discussed in Section 2 (see also Figure 1). Specifically, as shown in the 

two plots, the reduction of availability (i.e., higher variability), in this case from 99% to 95%, has led to the 
consequence that a larger buffer size and longer lead-time are needed to attain zero backlog (i.e., no tardy 
jobs). It is interesting to point out the end buffer size to attain zero backlogs is 5 for the availability 99% 
case when compared with six are required in the deterministic simulation presented in Section 3.3, 
specifically indicated in Figure 8, simply because the SMO has further fine-tuned the optimization results 
(Figure 6) from using the MARS approach depicted in Section 3.2. Nevertheless, it is over the scope of the 

paper to reveal further details of the difference between the solutions after the fine-tuning.  
 

 
Figure 10: SMO results in EF plots, Buffer-Backlog on the left, and Lead-time vs. Backlog on the 

right, showing the corrupting effect of increasing variability. 

3054



Ng, Bernedixen, Andersson, Bandaru and Lezama 

 

 

5 CONCLUSIONS AND OUTLOOK 

Through the integration of simulation and optimization models, metaheuristics, and analytical ones like 
MILP, decision variables in the conceptual design phase of aircraft assembly lines can be optimized with 

multiple conflicting objectives. This paper has presented such an application study to an aircraft assembly 
ramp-up planning problem that invoked the need for a hybrid simulation-optimization approach, combining 
discrete-event simulation, recursive MILP, and NSGA-II.  

Although the developed toolset/solution and the generated results have considered many specificities 
related to the ramp-up planning in the aerospace industry, the approach is by itself generic to consider more 
design factors in the industrialization project, which have not been covered in this paper. Another crucial 

aspect of supporting decision-making, namely, the analysis of any patterns of the ramp-up profiles that 
constituent the optimal solutions in different regions of the EF plots – a concept we discussed extensively 
in previous publications (Ng et al. 2016; Bandaru et al. 2017), is being planned to be carried out shortly. 
When combined as a complete optimization-based decision-making support methodology, we believe they 
provide a general framework for solving some other industrial supply-chain network optimization 
problems.  
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