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ABSTRACT 

The following paper presents the application of Deep Q-Networks (DQN) for solving a flexible job shop 
problem with integrated process planning. DQN is a deep reinforcement learning algorithm, which aims to 

train an agent to perform a specific task. In particular, we train two DQN agents in connection with a 
discrete-event simulation model of the problem, where one agent is responsible for the selection of 
operation sequences, while the other allocates jobs to machines. We compare the performance of DQN with 
the GRASP metaheuristic. After less than one hour of training, DQN generates schedules providing a lower 
makespan and total tardiness as the GRASP algorithm. Our first investigations reveal that DQN seems to 
generalize the training data to other problem cases. Once trained, the prediction and evaluation of new 

production schedules requires less than 0.2 seconds.  

1 INTRODUCTION 

In view of the recent developments in manufacturing, which are summarized under the term “Industry 4.0”, 
researchers and practitioners are discussing the opportunities of a decentralized, flexible and modular 
production. Concepts such as the matrix production (Bauernhansl et al. 2014; Greschke et al. 2014) propose 
a flexible routing of jobs by using autonomous mobile robots instead of fixed conveyor systems to transport 

products and material. Against this background, job shop scheduling problems and the flexible job shop 
problem in particular are becoming increasingly relevant.  

The job shop scheduling problem is a combinatorial optimization problem, in which a certain number 
of jobs must complete a set of operations on a given number of machines. Typically, a specific operation 
can be only completed by a certain machine. A particularity of the job shop problem is that the sequence of 
operations to be completed is specific for each job. The job shop problem is usually NP-hard (Baker and 

Trietsch 2009; Brucker 2007; Pinedo 2016).  
The flexible job shop generalizes the job shop problem by allowing the execution of specific operations 

on several machines. In the last decades, many solution techniques have been investigated to solve the 
flexible job shop problem, such as (mixed-) integer programming, priority dispatching rules and 
metaheuristics (Xie et al. 2019). The aforementioned methods provide either a high solution quality at the 
expense of computational time or vice versa. However, current challenges, such as shorter production lead 

times, shorter product life cycles, a greater product diversity or uncertainties in the supply chains (Gershwin 
2018), require the investigation of new methods for production planning, which react to sudden changes in 
the production environment and which are capable to immediately compute solutions of sufficient quality 
(Lang et al. 2019). 
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Based on this motivation, we investigate the application of Deep Q-Networks together with Discrete-
Event Simulation to solve a flexible job shop problem with integrated process planning. The analyzed 
problem was first described by Rajkumar et al. (2010). The integrated process planning is a particularity of 

the problem and requires the selection of an operation sequence, before releasing the job.  
The further paper is organized in five sections. The next section provides a short theoretical foundation 

of reinforcement learning and Deep Q-Networks in particular. In the third section, we review related 
research and discuss the contribution of this paper. Section 4 describes the concept and implementation of 
the Deep Q-Network algorithm and the Discrete-Event Simulation model. In the fifth section, we describe 
our experiments and results. Section 6 is dedicated to the conclusions and outlook. 

2 DEEP REINFORCEMENT LEARNING AND DEEP Q-NETWORKS 

Deep Q-Network (DQN) is a machine learning algorithm, which is classified as deep reinforcement 
learning. The general idea of reinforcement learning is to train an agent, which interacts with its surrounding 
environment. The agent is a prediction model, which maps states of its environment (input) to actions 
(output). The agent and its environment are interacting in a loop. Every time the agent performs an action, 
the state of the environment changes and the agent is forced to select the next action. The process repeats, 

until the environment terminates. In contrast to supervised learning, reinforcement learning methods do not 
require labeled training data (i.e. an expected output to a given input). Training signals are instead provided 
by a reward function that evaluates actions of an agent with positive or negative rewards. The objective of 
the agent is to maximize the amount of rewards over time. By this means, the agent learns to predict the 
best action to a given state. In general, an agent can be represented by any kind of model that is capable to 
learn, such as a table, a rule-based logic or a regression model. However, the main difference between deep 

reinforcement learning and traditional methods is that the agent is always represented by one or more deep 
neural networks (Arulkumaran et al. 2017; François-Lavet et al. 2018; Sutton and Barto 2018). 

DQN was introduced by Mnih et al. (2013). Better known, however, is the follow-up article of Mnih et 
al. (2015), which provides a more detailed and comprehensible description of the algorithm. DQN is an 
extension of the Q-Learning algorithm (Watkins 1989). Q-Learning relies on the assumption that the action 
space of an agent is finite and discrete. For a given state, the algorithm evaluates the advantageousness of 

every action with so-called Q-values. The agent may select the action with the highest Q-value or a random 
action. The latter is necessary to explore the solution space. However, as time progresses, the probability 
for selecting a random action decreases. The Q-values are updated with a modification of the Bellman 
equation: 

 

𝑄′(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 ∗ (𝑟𝑡+1 + 𝛾 ∗  max
𝑎

(𝑄(𝑠𝑡+1, 𝑎)) − 𝑄(𝑠𝑡, 𝑎𝑡)) (1) 

     

Q(𝑠𝑡, 𝑎𝑡) and 𝑄′(𝑠𝑡, 𝑎𝑡) are the recent and the updated Q-values for all possible actions 𝑎 in state 𝑠 at 

time step 𝑡, 𝛼 is the learning rate, which is usually a value close to zero, 𝑟𝑡+1 is the resulting reward for the 

action at the current time step. The discounting factor 𝛾 is a value close to, but less than one. The term 

max
𝑎

𝑄(𝑠𝑡+1, 𝑎) denotes the prediction of the best action for the future state 𝑠𝑡+1.  

A major drawback of the original Q-Learning algorithm is that the state-action space is represented by 
a table. This representation requires a discretization of the state space. Each value of each state corresponds 
to a row in the Q-table. Therefore, the algorithm is only applicable to problems, where the underlying 
environment has a fairly low complexity. The main idea of DQN is to replace the Q-table by two deep 
neural networks. Figure 1 on the following page illustrates the architecture and the training procedure of 

the DQN algorithm.  
At every time step, the current state, the action carried out, the resulting reward and the future state are 

stored as 4-tuple transition in the replay memory. The intention of storing transitions is to collect training 
data over time. Once the replay memory contains a minimum number of transitions, the agent starts to learn. 
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Figure 1: Concept of DQN 

Every time the replay memory has been updated, DQN generates a mini batch of transitions for training. 
Using the action, the reward, the current and the future Q-values, the algorithm updates the current Q-values 

according to equation (1). Finally, the optimizer updates the parameters 𝜃 of the value network, based on 
gradient descent by using the difference between the current and the future Q-values. The parameters of the 
target network remain constant over several episodes to avoid interferences when predicting the current and 
future Q-values. The target network is updated with the current parameters of the value network after a 
user-defined number of episodes. 

3 RELATED RESEARCH 

In this section, we briefly summarize the related research and discuss the contribution of this paper. As 
there are only few articles that describe deep reinforcement learning for job shop scheduling in particular, 
we extend the scope of our review to reinforcement learning (RL) for production scheduling in general. 
The following review is essentially based on our previous publication (Lang et al. 2020), but has been 
extended by recently published research. 
 To the best of our knowledge, Zhang and Dietterich (1995) present the first application of RL for 

production scheduling. The authors use RL to evaluate the feasibility and quality of schedules in a job shop 
environment. Aydin and Öztemel (2000) apply RL to select priority dispatching rules depending on the 
current state of a production system. Comparable approaches are investigated by Wang and Usher (2005), 
Shiue et al. (2018), Lin et al. (2019) and Luo (2020). Paternina-Arboleda and Das (2005) use RL to learn a 
dynamic control policy for a stochastic lot scheduling problem with a single machine. The agent changes 
the setup type of the machine according to the current system state. Qu et al. (2016) describe a similar 

approach for a multi-stage flow shop problem. Martínez et al. (2011) apply tabular Q-Learning for selecting 
and sequencing operations of jobs in a flexible job shop environment. The objective is the minimization of 
the makespan. The authors conduct experiments on ten problem instances. They compare the solution 
quality of Q-Learning with Genetic Algorithm, Ant Colony Optimization, the GENACE algorithm and 
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Tabu Search. Apart from genetic algorithms, the authors' Q-Learning approach performs better than the 
compared metaheuristic in almost all cases. 

Stricker et al. (2018) present an RL-based multi-agent system for a semiconductor production. The 

agents are responsible for assigning jobs to machines and for sequencing jobs in front of each machine. The 
multi-agent system improves the system utilization by 10% compared to the FIFO dispatching strategy. 
Waschneck et al. (2018) combine DQN with supervised learning for job-shop scheduling in a 
semiconductor production. The DQN agents are responsible for the release and sequencing of jobs. The 
agents are pre-trained with supervised learning. The training samples are taken from an event-based 
scheduler, which operates based on expert knowledge. 

 Zhang et al. (2018) apply neural fitted Q-Learning for batching and sequencing orders in a job shop 
with three machines. The authors compare their approach with the FIFO dispatching rule combined with 
three different batching strategies. Neural fitted Q-Learning achieves a shorter cycle time and a lower 
average WIP compared to the three combinations of FIFO and batching strategies. In terms of system 
throughput, however, some combinations of FIFO and batching still perform better than Q-Learning. 
Shufang et al. (2019) investigate different state-action spaces and reward functions for the neural fitted Q-

Learning algorithm with the objective to minimize the total completion time and the maximal lateness of 
jobs in a single-machine environment. The authors observe that unnecessary inputs can impair the learning 
of the agent. Shi et al. (2020) deploy DQN to schedule jobs of an automated production line. The authors 
train the agent to control a free-moving transport robot with random transport times. The robot is 
responsible for moving jobs from one machine to another. The authors compare the performance of DQN 
with the FIFO, LPT and SPT dispatching strategy. DQN is able to achieve a comparatively high utilization 

of machines. In some scenarios, DQN often achieves the highest machine utilization. In terms of job waiting 
times, however, the dispatching strategies outperform DQN most of the time.  

In a previous paper, we apply NeuroEvolution of Augmenting Topologies (NEAT) to solve a two-stage 
hybrid flow shop scheduling problem with family setup times (Lang et al. 2020). NEAT is a genetic 
algorithm, which evolves the structure and hyper-parameters of neural networks. NEAT is comparable to 
RL, as the exploration of the solution space is guided by a fitness function (similar to the reward function 

in RL). It turns out that the solution quality of NEAT is comparable to metaheuristics, such as Tabu Search 
and Simulated Annealing, while the runtime is significant lower. 

In conclusion of the related research, we want to summarize the contribution of this paper: (1) We apply 
DQN for the flexible job shop scheduling problem with integrated process planning of Rajkumar et al. 
(2010) and compare the performance of DQN with the authors’ GRASP algorithm. (2) We present a concept 
for the integration of DQN and DES, thus to teach an agent the allocation of jobs to machines, while 

interacting with the simulation model. (3) We train a second DQN agent to select operation sequences for 
jobs. A particularity is the representation of the agent. Due to the lack of meaningful inputs to describe the 
state space of the operation sequence selection problem, we use LSTM networks instead of dense neural 
networks. The underlying assumption is that previous selection decisions influence the selection of 
operation sequences of future jobs. By using LSTM, we are able to invoke previous state-action pairs for 
the computation of current and future Q-values.  

4 CONCEPT AND IMPLEMENTATION 

This section comprises the concept and implementation of the DQN algorithm and the DES model of 
the flexible job shop. The section is organized as follows: First, we will shortly summarize the analyzed 
flexible job shop problem. Second, we will describe the DES model. Third, we will explain the 
particularities of our DQN implementation, respectively the state-action spaces and the reward functions of 
the agents for allocating jobs to machines and for selecting operation sequences for jobs. 
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4.1 Problem Description 

The following description is essentially a summary of Rajkumar et al. (2010). To obtain a full problem 
statement including the problem instances, we recommend to read the article of the authors. We want to 

emphasize that some of the following definitions are not required to understand the problem. However, 
they will become relevant, when we explain the simulation model. 

The considered job shop problem consists of 𝐽 jobs and 𝑀 machines, whereas the number of jobs and 
machines depends on the problem instance. Furthermore, the last problem instance is characterized by 
higher due dates, because of the significantly higher number of jobs. Table 1 shows the differences between 
the problem instances in a highly aggregated manner. All due dates and process times are deterministic. 

Table 1: Properties of the problem instances. 

Problem 

Instance 

Number of 

Machines 

Number 

of Jobs 
Due Dates 

Process Times 

(min, max, 𝝁, 𝝈) 

1 5 5 
{80, 100, 110, 120} 

 (5, 98, 54.8, 31.6) 
2 8 8 

3 5 10 

4 5 20 {400, 500, 600, 700} 

 

Every job ∈ {1, … , 𝐽} is available at time zero and must complete a certain number of operations before 

leaving the system. The number of operations to complete depends on the selected operation sequence. A 

job has four possible operation sequences 𝑂𝑗,o ∀ 𝑜 ∈ {1, . . , 4} , where each sequence consists of two, three 

or four operations from the set {𝑃1, 𝑃2, … , 𝑃𝑝, … , 𝑃7}. We denote the length of a operation sequence (i.e. the 

number of operations to be completed) as |𝑂𝑗,𝑜| and the 𝑝th operation of a sequence as 𝑂𝑗,𝑜(𝑝). Both, the 

operation sequences and the decision for an operation sequence are immutable. 

Each operation can be executed on each machine. However, the process times of operations vary 

depending on the selected machine 𝑃𝑝(𝑀𝑚) ∀ 𝑝 ∈ {1, . . , 7}, 𝑚 ∈ {1, … , 𝑀}.  

Let us define 𝑄𝑚 as the buffer in front of a machine 𝑚. We further denote the length of a buffer – the 

number of jobs within a buffer respectively – as |𝑄𝑚| and the 𝑞th job of the buffer as 𝑄𝑚(𝑞), where 𝑞 ∈
{0, … , (|𝑄𝑚| − 1)} . Since we have no further information, we assume that the capacities of buffers are 

infinite. Each machine can only process one job at the same time. 

The objective is to identify a production schedule, defined by 𝐽 operation sequence decisions and 

∑ |𝑂𝑗,𝑜|𝐽
𝑗=1  machine allocation decisions. We assess the quality of a production schedule based on the 

resulting makespan 𝐶𝑀𝑎𝑥 and total tardiness 𝑇. The makespan 𝐶𝑀𝑎𝑥 is the maximum completion time over 

all jobs, 𝐶𝑀𝑎𝑥 = max (𝐶𝑗 ∀ 𝑗 ∈ {1, … , 𝐽}), while the total tardiness 𝑇 is the sum of tardiness over all jobs 

𝑇 =  ∑ 𝑇𝑗
𝑛
𝑗=1 . The tardiness of a single job 𝑇𝑗 is the difference between its completion time and due date, if 

the job is finished after its due date 

𝑇𝑗 =  {
𝑐𝑗 − 𝑑𝑗   𝑖𝑓 (𝑐𝑗 − 𝑑𝑗) > 0

0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

 

 

4.2 Discrete-Event Simulation Model 

We implemented the model of the flexible job shop with the open-source Python library salabim (van der 

Ham 2018). The decision for salabim against an off-the-shelf tool was mainly driven by the fact that our 
agent is also implemented with Python. Thus, using salabim reduces the effort for both, the integration of 
the DES model with DQN and the communication between the agents and the model. Modeling in salabim 
is fundamentally based on the SIMULA language (Dahl and Nygaard 1966), as it involves concepts like 
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activating, passivating and holding objects. In contrast to many commercial DES tools, such as ARENA or 
Plant Simulation, the model behavior is not only defined by stationary material flow blocks, but also by 
routines within the flow objects. The process logic of each job and each machine are simplified in figure 2. 

 

Algorithm 1: Job Process Logic  Algorithm 2: Machine Process Logic 

01: Request operation sequence 𝑂𝑠𝑒𝑙𝑓,𝑜   01: While Not END OF SIMULATION Do: 

02: Initialize number of completed  02:  If |𝑄𝑠𝑒𝑙𝑓| = 0 Then: 

                 operations 𝑖𝑠𝑒𝑙𝑓: = 0  03:   Passivate self 

03: While 𝑖𝑠𝑒𝑙𝑓 <  |𝑂𝑠𝑒𝑙𝑓,𝑜| Do:  05:  Take next job from buffer: 𝑄𝑠𝑒𝑙𝑓(0) 

04:  Set next process := 𝑂𝑠𝑒𝑙𝑓,𝑜(𝑖𝑠𝑒𝑙𝑓)  06:  Set next operation 𝑃𝑝 ∶= 𝑂𝑗,𝑜(𝑖𝑗)   

05:  Request next machine 𝑀𝑚  07:  Wait 𝑃𝑝(𝑠𝑒𝑙𝑓) 

06:  Enter buffer 𝑄𝑚  08:  Activate 𝑎𝑠𝑒𝑙𝑓  

07:  If 𝑀𝑚 is PASSIVE Then:    

08:   Activate 𝑀𝑚    

09:  Passivate self    

10:  Set 𝑖𝑠𝑒𝑙𝑓 ∶=  𝑖𝑠𝑒𝑙𝑓 + 1    

11: Compute 𝑇𝑗     

 Figure 2: Process logic of the DES model (self denotes the object that executes the method). 

Furthermore, the model contains a source object with own process logic. When starting the simulation, 
the source generates the number of jobs according to the loaded problem instance, while all machines go in 
passive state, as there are no jobs in the corresponding upstream buffers at the beginning of the simulation. 

After a job has been initialized, its process logic will be executed automatically. At the beginning, the job 
requests a operation sequence to be started. The operation sequence is determined either randomly or by a 
DQN agent. After that, the job reiterates the following steps until it is completed. First, the job requests the 
next machine to enter. Similar to the selection of operation sequences, the allocation of jobs to machines is 
either randomized or controlled by a DQN agent. Second, the job enters the buffer of the machine. If the 
corresponding machine is currently passive, the job reactivates the machine, which means that the machine 

continues the process from the step where it has been recently passivated. Meanwhile, the job goes in 
passive state until it has been processed by the current machine. A machine is active, while notifying jobs 
in the upstream buffer. The machine receives jobs according to the FIFO dispatching strategy. After 
completing the operation, the machine reactivates the job. If the number of completed operations does not 
correspond to the length of the operation sequence, the job requests the next machine to enter. Otherwise, 
the job computes its tardiness before leaving the system. 

In order to verify and validate our model, we developed a simple visualization based on the native 
animation capabilities of salabim. The visualization allows to track the position of jobs in the system, while 
the simulation is executed. Furthermore, we are able to observe several system KPIs, for instance whether 
a machine is currently active or passive, the queue lengths in front of machines, the current workload of 
machines, the makespan and the current total tardiness. Figure 3 shows a snapshot of the job shop problem 
with 8 jobs and 8 machines. 

 
 

 

continue 

continue 
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Figure 3: Animated DES model of the flexible job shop problem with 8 jobs and 8 machines. 

4.3 Deep Q-Networks Implementation 

As discussed in section 4.1, the solution of the present problem requires both, the allocation of jobs to 
machines and the selection of operation sequences for jobs. Therefore, our solution strategy deploys two 
agents, where one agent is responsible for machine allocation decisions, while the other for selecting 
operation sequences. Table 2 on the following page summarize essential decisions for designing our agents, 

i.e. the state and action spaces, the network architectures and the reward functions. 
We determined the network architecture of the agents through an explorative search. We limited our 

experiments by considering only two hidden layers for each agent and by assuming that the number of 
hidden neurons is the same for both hidden layers. For each agent, we started to experiment with 8 neurons 
per hidden layer. We doubled the amount of neurons every time the agent was not able to identify a 
meaningful policy. In general, the decision space for designing deep neural networks is very large, requires 

extensive investigations and is worth to be discussed in a separate article. In this paper, however, we will 
not focus on parameter studies, but on the general implementation and of the DQN agents. 

The design of rewards is another major factor for the successful training of an agent. When dealing 
with an optimization problem, the intuition arises to use the objective function for rewarding decisions of 
an agent, which is in our case the makespan and total tardiness. In contrast, the training signal is most 
evident, when different decisions of an agent are evaluated individually. Both, the makespan and the total 

tardiness, are aggregated performance indicators that summarize the quality of all planning decisions into 
a single value. It is therefore reasonable to consider different reward functions for machine allocations and 
the selection of operation sequences as well as to differentiate the giving of rewards during and after the 
simulation. For rewarding the allocation of jobs to machines during the simulation, the workload of the 
machine, to which the job has been assigned, has proven to be an unambiguous measure. However, mapping 
the system workload of a specific time step to the selection of an operation sequence is not possible. Instead, 

we use the earliness of a job as positive reward and the lateness of a job as negative reward to evaluate the 
selection of a single operation sequences while simulating. Both agents receive the negative sum of the 
makespan and total tardiness as episode reward, when the simulation ends.  
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Table 2: Essential design decisions for our DQN implementation. 

 Agent for Allocating Jobs to Machines  Agent for Selecting Operation Sequences 

States 

(Input) 

Job States (2 neurons):  Job States (8 × 4 neurons):  

 Due date (1 neuron) 

 Completeness of job (ratio between 

the number of completed operations 

and the number of operations to be 

completed) (1 neuron) 
 

 

 The four operation sequences of the 

considered job, defined by the 

indexes of the four operations 

(operation sequences with less than 

four operations are supplemented 

with the corresponding number of 

entries containing zero) (4 ×  4 

neurons) 

 The average process time over all 

machines of each operation of each 

operation sequence of the considered 

job (4 × 4 neurons) 

System States (10 or 16 neurons):  

For each machine:  

 Process time of the next operation of 

the job to allocate (5 or 8 neurons) 

 Workload of the buffer summed with 

the remaining time to complete the 

current operation (5 or 8 neurons) 

 

 

Agent 

(Network) 

Two hidden dense layer, each with 16 

neurons each and ReLu activation function 

 Two hidden LSTM layer, each with 1024 

cells, Tanh activation function and 20% 

dropout chance 

 

Actions 

(Output) 

Allocation to Machine 1, 2, 𝑚, … , 𝑀   

(5 or 8 neurons) 

 

 Selection of Operation Sequence 1, 2, 3, 4 

(4 neurons) 

Reward Interim (job-specific): 

 

Interim (job-specific): 

For the machine, where the job has been 

allocated: Workload of the upstream buffer 

(including the operation time of the allocated 

job) summed with the remaining time to 

complete the current operation 

 

Episode (end of simulation): 

𝑐𝑗 − 𝑑𝑗   
 

 

 

 

 

Episode (end of simulation): 

(−1) ∗ (𝐶𝑀𝑎𝑥 + 𝑇) (−1) ∗ (𝐶𝑀𝑎𝑥 + 𝑇) 

 

5 EXPERIMENTS AND RESULTS 

Our design of experiments focuses the following questions: (1) How does DQN perform on the flexible job 
shop problem with 5 and 8 machines in terms of makespan and total tardiness optimization? For the problem 
with 5 machines: (2) Is DQN able to interpolate the learned knowledge on problem instances with 5 or 10 

jobs when trained with 20 jobs? (3) Is DQN able to extrapolate the learned knowledge on problem instances 
with 10 or 20 jobs, when trained on 5 jobs?  

In all scenarios, we trained our agents sequentially, with the agent for machine allocation decisions 
always being trained first. Agents responsible for machine allocation decisions have been trained by 
selecting operation sequences randomly. When training agents for selecting operation sequences, we always 
deployed an agent for allocating jobs to machines. Table 3 shows the results of our experiments. 
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Table 3: Computational results of DQN trained on different problem instances compared to the GRASP 
algorithm of (Rajkumar et al. 2010). 

                Problem 

Method 

5M × 5J 5M × 10J 5M × 20J 8M × 8J 

𝑪𝑴𝒂𝒙 𝑻 𝑪𝑴𝒂𝒙 𝑻 𝑪𝑴𝒂𝒙 𝑻 𝑪𝑴𝒂𝒙 𝑻 

GRASP algorithm 242 365 421 2025 924 2919 253 908 

DQN (5M × 5J) 186 295 405 2337 768 3022 - - 

DQN (5M × 10J) 193 345 342 1874 977 2475 - - 

DQN (5M × 20J) 218 473 435 1902 676 700 - - 

DQN (8M × 8J) - - - - - - 201 465 

  
The results show that DQN always find a better solution than the GRASP algorithm for every problem 

DQN has been trained. Furthermore, DQN also performs quite well on problem instances other than the 
training data. As expected, the agents are better at interpolating training data than extrapolating from it. The 
results are achieved after 5000 episodes (i.e. simulation experiments) of training for each agent, where the 

training of the agent for machine allocations requires approximately 25 minutes, while the training of the 
other agent has been completed after 35 minutes. However, as the learning curves in figure 4 show, the best 
rewards has been already achieved after 3000 episodes and 100 episodes. Thus, the real training effort is 
much less as the computational time indicates. The training was carried out on a workstation with 6 × 3.7 
GHz CPU and a GTX 1080 GPU.  

 

(a) (b) 

Figure 4: Training metrics for learning (a) the allocation of jobs to machines and (b) the selection of 
operation sequences.  
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Once the training is completed, the prediction and evaluation of new production schedules requires less 
than 0.1 seconds. Unfortunately, we do not have any information about the computational time of the 
compared GRASP algorithm. However, Rajkumar et al. (2010) state that the GRASP algorithm is a 

metaheuristic, which are usually not real-time capable. 

6 CONCLUSION AND OUTLOOK 

In this work, we examined the application of DQN to schedule jobs in a flexible job shop with integrated 
process planning. Our experiments showed that DQN is able to compute high-quality solutions in real-time 
with comparatively little training effort. In particular, the trained agents are further able to compute 
sufficient solutions for new problem instances, which indicates that the agents were able to generalize the 

learned data to a certain degree.  
During our research, however, we faced many challenges that require further investigations. As a major 

problem, we consider the sensitivity of DQN to changes of any parameter. As discussed in section 4.3, the 
creation of a suitable network architecture involves many design decisions, which are worth to analyze in 
a separate paper. In the future, we want to investigate tools for automatic hyper-parameter tuning, as for 
instance AutoKeras (Jin et al. 2019), thus to improve the quality, convergence and the stability of the 

trainings process. Furthermore, the design of rewards has a significant influence on the training. During our 
research, we tried many reward functions that are unreported, before we identified something that worked. 
Many of the investigated reward functions were much more complex, but gave poorer results. At this 
moment, it is too early to judge whether or not this observation can be generalized. Furthermore, there are 
other aspects having a significant influence on the learning of an agent, which are anything but obvious. 
We were, for instance, surprised about the influence of the scaling method for preprocessing input states of 

an agent. In previous projects, the Min-Max scaling method, which normalize data in a range between a 
minimum and maximum (typical 0 and 1 in machine learning), has proven to perform well for most of the 
problems. However, it turned out that the agent were not able to learn, when applying Min-Max scaling for 
our input states. In contrast, scaling by dividing all features by 1000 has greatly improved the training. In 
summary, it is necessary to conduct experiments with different reward functions and to perform extensive 
parameter studies, in order to develop a methodological approach for using deep reinforcement learning to 

solve job shop scheduling problems.  
It is further worth to investigate, whether a third agent that is responsible for the sequencing of jobs in 

front of machines can further improve the solution quality. However, we do not believe that DQN is a 
suitable algorithm for sequencing, since the action space of DQN is fixed. In contrast, the possible positions 
of a job in a sequence depends on the current number of jobs in the buffer and thus require a flexible action 
space. As proposed in our previous paper (Lang et al. 2020), a possible approach is the training of an agent 

with a single output, where the activation of the output can be interpreted as a sequence priority. In the past, 
we applied NeuroEvolution of Augmenting Topologies to train neural networks with one output neuron. In 
future work, however, we also want to investigate policy-based deep reinforcement learning strategies, such 
as deep deterministic policy gradients, to teach an agent the sequencing of jobs. 

Considering the motivation of our research, it is clear that the investigated problem is far from the 
complexity of a matrix production. In general, DRL methods are able to learn policies for stochastic and 

highly dynamic environments, such as Atari Games. Against this background, the recent paper represents 
just a first proof of concept that DQN is able to train agents that compute solutions of reasonable quality 
for job-shop scheduling problems. The next step will be to consider stochastics in our model, such as 
random inter-arrival times, noisy process times and machine breakdowns, thus to investigate whether DQN 
is able to learn meaningful scheduling policies for highly dynamic production systems. 
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