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ABSTRACT

Variability in the execution time of computing tasks can cause load imbalance in high-performance computing
(HPC) systems. When configuring system- and application-level parameters, engineers traditionally seek
configurations that will maximize the mean computational throughput. In an HPC setting, however,
high-throughput configurations that do not account for performance variability could result in poor load
balancing. In order to determine the effects of performance variance on computationally expensive numerical
simulations, the High-Performance LINPACK solver is optimized by using multiobjective optimization to
maximize the mean and minimize the standard deviation of the computational throughput on the High-
Performance LINPACK benchmark. We show that specific configurations of the solver can be used to
control for variability at a small sacrifice in mean throughput. We also identify configurations that result
in a relatively high mean throughput, but also result in a high throughput variability.

1 INTRODUCTION

Performance variability—the fluctuation or “jitter” in the observed performance of a computing system—is
a well-known issue in both cloud (Uta et al. 2020) and high-performance computing (HPC) systems (Kramer
and Ryan 2003). In practice, these fluctuations need not be normally distributed; they can follow a variety of
distributions, including multimodal distributions (Xu et al. 2020). Accounting for such distributions often
results in analysis that requires the use of nonparametric statistics (Lux et al. 2018). Performance variability
can have many sources, including interference from system- and OS-level processes (De et al. 2008; Petrini
et al. 2003), filesystem performance (Cao et al. 2017), and application-level parameters (Hammouda et al.
2015). When left unchecked, performance variability can result in poor load balancing (Dean and Barroso
2013) and a significant degradation in performance (Beckman et al. 2008; Chang et al. 2020). In this
paper we investigate the effects of computational throughput variability of an algorithm for solving linear
systems of equations on HPC systems.

Previous research has focused on modeling and analyzing I/O throughput variability (Cameron et al.
2019; Maricq et al. 2018) for memory-bound tasks. However, performance variability in compute-bound
tasks, such as computationally expensive numerical simulations, is relatively unexplored. One dataset and
thorough analyses of performance variability in this context is presented in Patki et al. (2019). Patki et al.
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(2019) is actually similar to this paper in that they study the tradeoff between various features, including
compute bound, but they just generate a data sample and use network analysis techniques on that dataset
a posteriori, instead of attempting to optimize such features.

For a test problems, we consider the High-Performance LINPACK benchmark (HPLB) (Dongarra et al.
2003) problem. The TOP500 list (Strohmaier et al. 2019) defines the HPLB as the problem of solving a
dense system of linear equations (of any size) using an LU factorization with partial pivoting. Submissions
to the TOP500 list are allowed to present results of solving the HPLB of arbitrary size N and using any
linear system solver, as long as the implementation has a floating-point operation count of 2

3 N3 +O(N2)
and solves the problem in 64-bit precision. The software package HPL (Petitet et al. 2018) is a portable
linear system solver that can utilize massive parallel resources to solve the HPLB. HPL uses a block-cyclic
data distributing, recursive panel factoring, right-looking variant of the LU-decomposition algorithm.

HPL accepts an input file specifying numerous parameters to adjust the underlying algorithm. Properly
identifying the parameters that maximize the observed throughput of HPL is a notoriously difficult task but
has a significant impact on the observed computational throughput (Tan et al. 2009). Traditionally, HPL
is optimized by experimenting with algorithmic parameters and following the recommendations of Petitet
et al. (2018). When submitting performance results to the TOP500 list, researchers may run HPL many
times with various settings and report only the maximum observed throughput. In previous research,
genetic algorithms have been applied to the problem of optimizing HPL, treating this task as a black-box
optimization problem (Dunlop et al. 2008).

In this paper we investigate the effects of throughput variability on performance when solving a dense
linear system usingHPL, and we model the inherent tradeoff betweenHPL’s mean throughput and throughput
standard deviation. The results of this study may not be immediately applicable to the optimization of
HPL for submissions to the TOP500 because such submissions do not need to account for variability in
performance. In fact, the practice of accepting the maximum of all observed overall throughputs may
implicitly encourage configurations with high variability. However, the fundamental algorithm that is
implemented by HPL is similar to others, such as that used by the PDGESV driver from ScaLAPACK,
which also uses parallel resources to solve a dense linear system of equations (Blackford et al. 1997).
Therefore, as an example of a dense linear algebra workload, HPL can be used to gain insight into the
effects of performance variability on parallel computational linear algebra tasks. A similar problem of
interest is the usage of black-box optimization to empirically optimize the basic linear algebra subroutines
(BLAS) for maximum performance on a given system (Whaley et al. 2001). However, previous research
in tuning linear algebra libraries generally has not investigated the effects of performance variability.

In this paper, HPL is optimized on an HPC system by using a black-box multiobjective optimization
algorithm to minimize throughput standard deviation and maximize the mean throughput simultaneously.
This produces approximations to the Pareto optimal parameters for HPL, which produce throughput
distributions along the tradeoff curve between mean throughput and throughput standard deviation. The
goals of these experiments are to

• understand the shape of the tradeoff curve between throughput mean and standard deviation when
solving large dense linear algebra problems on parallel resources and

• identify parameters for HPL that balance this tradeoff.

Two experiments are performed. The first is a single-node analysis, where HPL is optimized for a fixed
problem size on a single computing node. The second is a four-node study, where HPL is optimized on a
significantly larger problem size with access to distributed computing resources. The second study requires
much more computation time but is a more accurate representation of a large distributed simulation’s
workload.

Section 2 introduces further details on the configuration parameters for HPL and describes the black-
box multiobjective optimization software package VTMOP that is used in this paper. Section 3 describes
the single-node study, including how HPL is integrated into VTMOP and an analysis of the tradeoff curve
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between mean throughput and throughput standard deviation that results from optimizing HPL using VTMOP.
Section 4 describes the second experiment, which is a four-node variation of the experiments from Section
3. Section 5 summarizes our findings and briefly describes directions for future work.

2 BACKGROUND

This section presents further background on the parameters for HPL and introduces the multiobjective
optimization software package VTMOP.

2.1 Tuning HPL

The driver for HPL solves a linear system Az= b, where A∈RN×N and b∈RN . This is done by decomposing
ΠA = LU , where L is lower triangular, U is upper triangular, and Π is a permutation matrix reflecting
row-interchanges. The vector y = L−1Πb is computed during the factorization. Then the system Uz = y is
solved by using back-substitution. Before computing the decomposition, the parameter EQUIL specifies
whether A will be equilibrated so that its rows and columns have approximately equal magnitudes. Also,
ALIGN specifies the byte alignment for double precision numbers. To compute the decomposition, A is
decomposed into NB×NB blocks, which are cyclically distributed over a two-dimensional grid of P×Q
processors. The parameter PMAP specifies whether these blocks are mapped in row- or column-major
order.

The main loop of HPL’s algorithm works rightward from the leftmost columns of A. In each iteration,
a panel of NB columns is factored by recursively dividing each panel into NDIV S subpanels until each
subpanel has a size of less than or equal to NBMIN. The parameters RFACT and PFACT specify the
algorithm variants (right-looking, left-looking, or Crout’s method) for recursively dividing each panel and
solving each NBMIN-sized subpanel, respectively. After a panel has been factored, each processor must
broadcast updates, using the broadcast topology BCAST . Six broadcast topologies are available, but the
modified increasing ring is strongly recommended. The broadcasts are used to update the lower right
submatrix. While the broadcast operation is being completed, it is possible to begin updating the next
column of the submatrix using a lookahead pipe, whose depth is DEPT H. For each update, users have
the choice between two update algorithms (SWAP): binary exchange or spread-roll. Binary exchange is
preferred when the number of columns in the submatrix is small, and spread-roll is preferred when it is
large; a mix of the two can be used when a threshold SN for swapping between the two algorithms is
provided. Each panel’s lower factors L(1) and the final upper factor U can be stored in either transposed
or non-transposed format, as specified by T L(1) and TU , respectively. After completing the linear solve,
the residual is checked against an error tolerance E to determine whether the HPLB has been solved to an
acceptable precision.

The parameters covered in the preceding paragraphs are summarized in Table 1, along with their
recommended values/ranges for achieving the maximum overall throughput (Petitet et al. 2018).

2.2 The Multiobjective Optimization Algorithm

Multiobjective optimization problems (MOPs) deal with conflicting objectives, whose tradeoffs must be
balanced. In most cases, the solution to a MOP is a multidimensional tradeoff surface, called the Pareto
front. In the standard formulation of a MOP, the goal is to minimize p real-valued cost functions fi : X →R,
i= 1, . . . , p, where X ⊂Rd is called the feasible parameter space. These cost functions fi are conceptualized
as a single vector-valued cost function F :Rd→Rp, where F(x) = ( f1(x), . . . , fp(x)). The image Y =F(X )
is called the feasible objective space.

For two points X ,Y ∈ Y , X dominates Y if X is componentwise less than or equal to Y and strictly
less in at least one component. If F(x∗) is nondominated for all Y ∈ Y , then x∗ is efficient, F(x∗) is a
point on the Pareto front, and the pair (x∗,F(x∗)) is said to be Pareto optimal. As p = 2 in our case, the
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Table 1: Tuning Parameters for HPL

Parameter Meaning Value(s) Recommendation
N problem size positive integer 80% of RAM

NB block size positive integer 32,33, . . . ,256
PMAP process mapping row- or col.-major row-major

P 1st dim. of process grid positive integer P = Q
Q 2nd dim. of process grid positive integer Q = P
E error tolerance real number 16.0

PFACT LU variant for NBMIN-sized panels right, left, Crout Crout
NBMIN recursion stopping criterion positive integer 4 or 8
NDIV S divisions per level of recursion positive integer 2
RFACT LU variant for panel recursion right, left, Crout right
BCAST broadcast topology 6 choices mod. incr.-ring
DEPT H lookahead pipe depth nonnegative integer 1
SWAP update algorithm bin-ex, spread-roll, mix mix

SN swapping threshold (for mix) positive integer NB
T L(1) transpose L(1) Yes or No Yes
TU transpose U Yes or No Yes

EQUIL equilibrate A Yes or No Yes
ALIGN double alignment in bytes positive integer 8

Pareto front is a one-dimensional curve. Further reading on MOPs and classical techniques for solving
them can be found in the textbook of Ehrgott (2005).

The software package VTMOP is a Fortran 2008 implementation of the multiobjective optimization
algorithm described by Deshpande et al. (2016). VTMOP produces a finite set of points approximating the
Pareto front and an efficient set for a computationally expensive black-box MOP subject to lower/upper
bound constraints. Tuning HPL is a black-box problem because we do not have access to partial derivatives
of the objectives with respect to the parameters.

In this paper, we seek to maximize HPL’s mean throughput and minimize HPL’s throughput standard
deviation. Section 3 shows how we account for the fact that many of the parameters that parameterize the
problem are integer valued or categorical.

In each iteration of VTMOP, the first step is to identify an “isolated point” on the current approximation
to the Pareto front. An isolation score is computed by considering the average distance from each known
objective value that is currently nondominated to each of its neighboring objective points in a Delaunay
graph. The preimage of the most isolated point is used as the center for a local trust region. Next, the
package VTDIRECT95 (He et al. 2009) is used to sample within the current trust region, and this data
is used to fit p surrogates using the subroutine LSHEP from SHEPPACK (Thacker et al. 2010). Several
weighted-sum scalarizations are applied to the p LSHEP surrogates and minimized by using the algorithm
GPSMADS (Audet and Dennis, Jr. 2006). For a large budget, VTMOP converges to the true Pareto front
if each component of F satisfies a Lipschitz condition.

3 TUNING HPL ON A SINGLE NODE WITH VTMOP

The single-node optimization of HPL takes place on an Intel Broadwell node of the HPC system Bebop at
Argonne National Laboratory. Each Broadwell node is a 36-core Intel Xeon E5-2695v4 processor with 128
GB of DDR4 RAM. The HPL executable is built by using the Intel 17.0.4 C compiler and the corresponding
Intel Parallel Studio implementation of MPI and Intel Math Kernel Library (MKL) implementation of the
BLAS. VTMOP is built by using the Intel 17.0.4 Fortran compiler.
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3.1 Integrating HPL as a VTMOP Objective Function

Not all of the parameters in Table 1 can be optimized by using VTMOP, and not all of these parameters are
desirable to adjust: for example, adjusting the error tolerance E could allow for problems to be solved at
undesirable precision. For the single-node study, HPL is optimized for the problem size N = 10,000, and
the 6 integer-valued parameters NB, P, NBMIN, NDIV S, DEPT H, and SN are adjusted by VTMOP. Note
that only one dimension (P) of the process grid is adjusted. We assume that the process grid’s dimensions
should match the number of available processors (36 for this study), so Q is inferred using Q = d36/Pe.
The bound constraints for the six adjustable variables are summarized in Table 2. There are over 1011

possible combinations of these variables. All other parameters are fixed to the values recommended by
Petitet et al. (2018) as shown in Table 2.

Table 2: Bounds for Adjustable Inputs When Tuning HPL

Parameter Lower Bound Upper Bound
NB 1 256
P 1 36

NBMIN 1 256
NDIV S 2 36
DEPT H 0 4

SN 1 256

Recall from Section 2 that we seek to minimize the throughput standard deviation and maximize the
mean throughput as a function of the parameter configuration x. However, we do not have direct access
to these two values. Instead, we can run HPL s times to evaluate the i.i.d. sequence of random variables
T1(x), . . . ,Ts(x), each of which is a copy of the random variable T (x), the observed throughput in Gflops
when running HPL with configuration x. Using these values, we can estimate E [T (x)] and

√
Var(T (x)),

the mean throughput and throughput standard deviation, respectively.
For a high-fidelity approximation to the throughput mean and standard deviation, both are computed

after a sample of s = 40 runs of HPL, following the recommendation used by Cameron et al. (2019) when
estimating the I/O throughput variance. On a single Broadwell node of Bebop, the total time for 40 runs of
HPL with a problem size of N = 10,000 is more than a minute for all parameter configurations considered;
certain suboptimal configurations can take much longer. The following steps are taken in order to prevent
VTMOP from spending too much time performing 40 sample evaluations of parameters that are clearly
suboptimal. For every parameter x, the mean and standard deviation estimates are computed after just s = 5
runs of HPL. Let µ̂ and σ̂ be the early termination thresholds. If the five sample estimates for E [T (x)]
and

√
Var(T (x)) with configuration x satisfy

E [T (x)]< µ̂ and
√

Var(T (x))> σ̂ , (1)

then the run is aborted, and the five sample estimates are immediately returned.
In order to determine the values of µ̂ and σ̂ to use in (1), HPL was run 40 times with the recommended

settings of NB= 128, P= 6, NBMIN = 8, NDIV S = 2, DEPT H = 1, and SN = 128. The resulting estimates
for throughput mean and standard deviation (rounded to three decimal places) are E [T (x)] = 613.041 and√

Var(T (x)) = 3.800, and the early termination thresholds are assigned the arbitrary values µ̂ = 300 and
σ̂ = 8.

VTMOP can be initialized with a database of precomputed function evaluations. Before starting the single-
node study, VTMOP is given an initial database containing the observed mean throughput and throughput
standard deviation from running HPL with the recommended parameter evaluation. This inclusion serves
as a sanity check since any parameter configurations whose result is dominated by the recommended
parameters will not appear in the solution set.
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As discussed in Section 2, VTMOP solves MOPs that are real-valued minimization problems. As posed
above, HPL is an integer-valued stochastic min/max problem. The following adjustments to VTMOP are
made for compatibility.

• The parameter space tolerance (an optional input to VTMOP) is set to 0.99. This prevents VTMOP
from evaluating any two points in the parameter space whose Euclidean distance is less than or
equal to 0.99 and prevents VTDIRECT95 from dividing any box whose diameter is less than 0.99.

• During the surrogate model optimization phase, the GPSMADS mesh size is restricted to an integer
value. This ensures that each batch of candidate parameters values will be spaced on an integer
lattice, offset by the position of the current trust region center.

• Before each set of parameters requested by VTMOP is evaluated (by running HPL), all of its
components are “binned” by rounding to the nearest integer.

• Tuning HPL is posed as a MOP with the objective F(x) =
(
−E [T (x)] ,

√
Var(T (x))

)
.

• All other parameters for VTMOP were given default values.

3.2 Results

Figure 1 shows an approximation to the tradeoff curve between the estimated mean throughput and throughput
standard deviation based on 40 runs of HPL on a single node with N = 10,000. These results were attained
by using VTMOP with a budget of 2,000 evaluations. Note that the scale of the mean throughput is two
orders of magnitude larger than the scale of the throughput standard deviation.
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Figure 1: Tradeoff curve between mean throughput and throughput standard deviation in 40 runs of HPL
when using the approximate Pareto optimal configurations on a single node with N = 10,000.

VTMOP found 24 approximate Pareto optimal configurations, as shown in Figure 1 and whose values
are given in Table 3 listed in ascending order by mean throughput/throughput standard deviation. Note that
the four configurations in Table 3 with the lowest overall mean/standard deviation have dismal throughputs
and are probably not of interest to most readers. Also note that whenever NBMIN ≥ NB, no recursion
takes place, and therefore the variable NDIV S is unused and meaningless.

For the 20 configurations that offer reasonable throughputs, the trends in Table 3 indicate that the
“simple” variations of the HPL algorithm (i.e., no lookahead and no recursion) produce significantly lower
standard deviations at a steep cost to the mean throughput. On the other hand, using lookahead and allowing
for many levels of recursion (i.e., NBMIN and NDIV S small) result in maximal mean throughput, at the cost
of increased variability. Each of these trends has several discontinuities, which could indicate that either
the underlying Pareto front/efficient set is discontinuous or VTMOP did not fully converge in certain regions
of the Pareto front with the given budget. With the exception of the four extremely low throughput settings,
all of the approximate Pareto optimal configurations have block sizes that are close to the recommended
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Table 3: Approximate Pareto Optimal Set for Single-Node Runs of HPL with N = 10,000

E [T (x)]
√

Var(T (x)) NB P NBMIN NDIV S DEPT H SN
21.31 0.120 2 19 48 27 3 122
21.35 0.121 2 19 48 27 3 123
25.89 0.131 3 25 47 28 2 122
30.48 0.139 3 20 47 28 3 122
217.82 0.208 129 1 129 19 0 129
218.15 0.252 129 1 256 2 0 1
400.37 0.471 128 1 16 10 0 128
419.73 0.494 129 1 1 2 0 1
511.87 0.523 214 4 15 33 0 72
551.07 0.734 204 4 3 33 0 62
552.12 0.852 204 4 25 35 0 62
560.54 0.991 204 4 15 23 0 185
562.78 1.030 204 4 6 22 0 185
562.84 1.053 204 4 6 33 0 66
562.95 1.080 204 4 6 23 0 182
564.01 1.177 204 4 6 22 0 195
564.06 1.314 204 4 6 22 0 191
567.05 1.355 204 4 9 22 0 191
568.34 1.461 133 3 9 3 2 128
581.69 1.746 128 3 9 3 2 123
599.21 1.961 128 3 4 3 1 128
601.69 2.264 128 3 9 9 1 123
602.93 2.539 128 3 9 6 1 124
613.04 3.800 128 6 8 2 1 128

value of 128. The recommended configuration that was supplied in the initial database is Pareto optimal
and achieves the highest mean throughput; it is the last row in Table 3.

In order to further understand the throughput distributions that are shown in Figure 1 and Table 3,
the 12 configuration with the highest mean throughputs were used for 100 runs of HPL, and the resulting
histograms are shown in Figure 2. The distributions are ordered from left to right, top to bottom in ascending
order by mean/standard deviation.

Figure 2 shows that each of the throughput distributions has a few outliers that are far below the median
value. When running numerous numerical simulations in a batch (as described by Chang et al. 2020),
the presence of a few “low” outliers could slow the entire computation (Dean and Barroso 2013). For a
few of the distributions, there appears to be a cluster of lower throughput values, indicating a multimodal
distribution. This mirrors the findings of Xu et al. (2020) for the distribution of I/O throughputs.

The findings in this section provide some insight into parameters for HPL that can be used to control
the tradeoff between mean throughput and throughput variability. However, since HPL is intended for
usage in a distributed memory environment, single-node runs are less interesting than multi-node runs. In
the Section 4, this study is expanded to the multinode case.

4 TUNING HPL ON MULTIPLE NODES

In this section, HPL is optimized for four 36-core Intel Broadwell nodes, each of which is as described in
Section 3. Thus, there are 144 total processors available and 512 GB of distributed RAM. In order to ensure
that there is enough work for all 144 processors, the problem size considered in this section is increased
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Figure 2: Histograms of observed throughputs when running HPL on a single node with N = 10,000, for
the 12 highest mean throughput configurations. Distributions are ordered from left to right, top to bottom
in ascending order by mean/standard deviation.

to N = 20,000. The operation count for HPL grows cubically with the problem size, so our doubling of
N should result in each run of HPL requiring roughly eight times as many operations as the runs from
Section 3.

The experiment is configured as in Section 3, with the following adjustments.

• Because evaluating the objectives is more expensive, a sample of only s = 30 runs of HPL is used
to compute each configuration’s mean and standard deviation, and VTMOP is given a budget of only
1,000 evaluations of F (half the budget from Section 3).

• Because the budget for evaluating F has been lowered, the variable NB is eliminated in order to
reduce the size of the search space. Based on Petitet et al. (2018) and the results from Section 3,
NB = 128 producing a five-variable problem with roughly 4×108 possible configurations.

• Because the processor count is now 144, the upper bound for P (as previously listed in Table 2) is
increased to 144, and Q is inferred by using Q = d144/Pe.

• The five-sample thresholds in (1) are µ̂ = 1000 and σ̂ = 40, based on 40 runs with the recommended
settings of P = 12, NBMIN = 8, NDIV S = 2, DEPT H = 1, and SN = 128, which produced the
estimates E [T (x)] = 2236.558 and

√
Var(T (x)) = 21.362. As in Section 3, VTMOP is initialized

with these precomputed values in its database.

Figure 3 shows an approximation to the tradeoff curve between the estimated mean throughput and
throughput standard deviation based on 30 runs of HPL on four nodes with N = 20,000. The shape of the
tradeoff curve in Figure 3 is somewhat similar to the shape of the curve from Figure 1, but is less smooth,
and the scale of the mean throughput is three orders of magnitude larger than the scale of the throughput
standard deviation.

Again, 24 approximate Pareto optimal configurations are identified, as shown in Figure 3. Their values
are given in Table 4, listed in ascending order by mean throughput/throughput standard deviation. Recall
that NBMIN = 128 for all of these configurations, so only one of the configurations in Table 4 (P = 8,
NBMIN = 129, NDIV S = 20, DEPT H = 0, SN = 138) results in no recursion, and every other configuration
results in exactly one level of recursion.

Unlike in Section 3, the recommended configuration of P = 12, NBMIN = 8, NDIV S = 2, DEPT H = 1,
and SN = 128, which produced the observations E [T (x)] = 2236.558 and

√
Var(T (x)) = 21.362, is not

one of the approximate Pareto optimal configurations listed in Table 4. Notice that the recommended
configuration’s mean throughput is relatively close to the fastest mean throughputs in Table 4, but the
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Figure 3: Tradeoff curve between mean throughput and throughput standard deviation in 30 runs of HPL
when using the approximate Pareto optimal configurations on four nodes with N = 20,000.

standard deviation of the recommended configuration is about three times the largest standard deviation in
Table 4 and more than four times that of configurations with similar mean throughputs.

The values of DEPT H and SN that produce the highest mean throughputs are identical or very similar to
their recommendations. The value of P that produces the highest mean throughput is P = 9 (which implies
Q = 16). Although the recommended setting used in this experiment was P = 12, the recommendation of

Table 4: Approximate Pareto Optimal Set for Four-Node Runs of HPL with N = 20,000, NB = 128

E [T (x)]
√

Var(T (x)) P NBMIN NDIV S DEPT H SN
1007.1933 1.2741281 3 123 26 3 123
1007.4800 1.3432847 3 123 26 3 118
1040.2800 1.5831875 3 117 31 3 123
1040.3267 1.7903830 3 117 31 3 118
1196.7100 1.7968075 3 117 21 2 123
1196.7167 2.0589725 3 117 21 2 121
1197.0267 2.1971664 3 117 23 2 123
1199.9100 2.2000549 3 116 21 2 123
1227.7600 2.4454885 3 112 31 2 123
1704.5900 2.5906130 8 129 20 0 138
1840.7733 2.9114439 6 117 26 3 121
1998.3433 3.2330922 7 117 26 3 123
2069.1700 3.5682653 9 124 21 3 134
2095.6033 4.2372310 9 114 21 3 134
2153.0533 4.2825011 6 123 21 1 127
2178.2900 4.5079508 6 117 21 1 121
2205.2133 4.5274438 6 112 15 1 121
2228.8300 4.6360767 9 112 21 2 123
2238.9800 5.3728821 9 107 15 2 123
2243.0733 5.5329068 7 114 21 1 123
2281.7467 5.6351565 9 119 23 1 129
2306.3233 5.6427973 9 114 23 1 123
2309.9733 6.6279416 9 107 21 1 123
2312.3500 7.1394364 9 107 26 1 118
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Table 5: Additional Evaluations of HPL with N = 20,000, NB = 128

E [T (x)]
√

Var(T (x)) P NBMIN NDIV S DEPT H SN
2330.69 15.178 9 4 2 1 128
2319.27 14.011 9 8 2 1 128
2323.22 14.302 9 4 16 1 128
2310.85 13.302 9 8 32 1 128
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Figure 4: Histograms of observed throughputs when runningHPL on four nodes with N = 20,000, NB= 128.
The throughput distributions for the 12 highest mean throughput configurations are from Table 4 (left) and
the two nondominated configurations are from Table 5 (right).

Petitet et al. (2018) is actually to use either P = Q or P slightly less than Q, so P = 9 is still in line with this
recommendation. However, the values NBMIN > 100 and NDIV S > 20 seem to strongly contrast with the
recommendations of Petitet et al. (2018) that NBMIN = 4 or 8 and NDIV S = 2. On closer inspection, with
a fixed block size of NB = 128, using NDIV S = 21, . . . ,26 (as in the highest mean configurations in Table
4) results in an effective minimum block size of between 4 and 6 after a single level of recursion. This
partially agrees with the recommendations of Petitet et al. (2018), who recommend a similar minimum
block size of after many more levels of recursion.

Based on these results, one reasonable hypothesis is that the settings of P = 9, NBMIN ∈ [4,8],
DEPT H = 1, and SN = 128 produce the highest mean throughputs, and a large number of divisions per
level (resulting in very few levels of recursion before achieving NBMIN) produces low variance. In order
to check this hypothesis, 4 additional configurations are evaluated with a budget of 100, whose results are
given in Table 5. Of the configurations in Table 5, the two configurations with NB = 4 are nondominated
with respect to other configurations in Table 4, exhibiting significantly higher mean throughputs than the
configurations found by VTMOP at the cost of a steep increase in the throughput standard deviation. These
results somewhat support the hypothesis that the number of levels of recursion is correlated with higher
throughput standard deviation. However, the last few entries of Table 4 offer significantly lower standard
deviations, which suggest that the configurations NDIV S = 21, . . . ,26 and SN = 118, . . . ,123 may further
affect the mean throughput and throughput standard deviation.

Figure 4 (left) shows histograms of observed throughputs in 100 runs of HPL with the 12 configurations
from Table 4 with the highest mean throughput, listed from left to right, top to bottom in ascending order
by mean/standard deviation. Figure 4 (right) shows histograms of observed throughputs in 100 runs of HPL
with the two nondominated configurations from Table 5. The maximum throughput distribution (from Table
5) has a flatter shape, associated with hits having higher standard deviation, while other high-throughput
configurations are either normally distributed or left-skewed.
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5 CONCLUSIONS AND FUTURE WORK

In this paper, the software package VTMOP was used to optimize the HPL solver for the HPLB.

• The performance variability in HPL can be meaningfully controlled by adjusting configuration
parameters and sacrificing mean throughput.

• The number of levels of recursion used by HPL is a factor that significantly contributes to throughput
variability but does not explain all throughput variability.

• Configurations for HPL that are nearly optimal for maximizing mean throughput (such as the
recommended setting used in Section 4) could result in a throughput standard deviation that is many
times higher than the throughput standard deviation for configurations that are Pareto optimal and
achieve comparable mean throughput.

Additionally, the techniques that are introduced in this paper can be repurposed or generalized for
studying performance tradeoffs in different types of problems. A similar framework could be used to
study the tradeoff between mean throughput and throughput variability for I/O bound tasks, for example,
by considering the IOzone benchmark used by Cameron et al. (2019). It would also be interesting
to repeat this study for solving large sparse linear systems, which appear in many real-world numerical
simulations (e.g., finite element methods). Furthermore, it would be interesting to investigate the impact
of variability when tuning linear algebra libraries. For example, the ScaLAPACK linear system driver
PDGESV is extremely similar to HPL.
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