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ABSTRACT

We consider the problem of portfolio selection with risk factors, where the goal is to select the portfolio
position that minimizes the value at risk (VaR) of the expected portfolio loss. The problem is computationally
challenging due to the nested structure caused by the risk measure VaR of the conditional expectation,
along with the optimization over a discrete and finite solution space. We develop a nested simulation
optimization approach to solve this problem. In the outer layer, we adapt the optimal computing budget
allocation (OCBA) approach to sequentially allocate the simulation budget of the outer-layer to different
portfolio positions. In the inner layer, we propose a new sequential procedure to efficiently estimate the
VaR of the expected loss. We present a numerical example that shows that our approach achieves a higher
probability of correct selection under the same computing budget compared to three other methods.

1 INTRODUCTION

Portfolio selection is an important problem in financial engineering that has come a long way since the
work of Markowitz (1952). In this paper, we consider the problem of portfolio selection with risk factors
(e.g., future interest rates). Each risk factor incorporates sufficient information so as to determine the assets
prices at some future time (risk horizon). The objective is to select the optimal portfolio position that
minimizes the extreme quantile (induced by the risk factors) of the expected portfolio loss. In order to
measure the extreme quantile, an upper percentile of the loss distribution called value-at-risk (VaR) is used.
VaR is a widely used risk measure in financial risk management, especially with practitioners, because its
concept is easily understandable (see Jorion (1997) for a comprehensive introduction to VaR).

The objective function of our problem has a nested structure that consists of the outer risk measure
VaR and the inner conditional expectation. We use VaR-Expectation to represent this objective function.
To estimate the objective function, nested Monte Carlo simulation is a natural tool. Specifically, in the
outer layer, samples of future scenarios of risk factors are generated; in the inner layer, sample paths of
the asset price are generated, and the expected portfolio loss is then evaluated at the risk horizon, given
the risk scenario generated in the outer layer. Such nested estimation problem has been studied extensively
(e.g., Lee (1998), Lee and Glynn (2003), Sun et al. (2011), Gordy and Juneja (2010), Liu et al. (2010),
Lan et al. (2010), Broadie et al. (2011), Zhu et al. (2020), and Dang et al. (2019)). In particular,
both Gordy and Juneja (2010) and Zhu et al. (2020) consider the same estimation problem as ours, and
they study asymptotic properties of the uniform nested estimator, which generates the same number of
inner-layer sample paths for each outer scenario. Although uniform nested simulation is relatively easy to
implement and understand, it is often computationally expensive, which hinders its usage in practice. Hence
many non-uniform estimators have been proposed to improve efficiency by smartly allocating different
number of inner sample paths to each outer scenario. In the literature of non-uniform estimators, Lee
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and Glynn (2003) propose a non-uniform estimator of the distribution function of conditional expectation,
where the inner sample size is outcome dependent; Liu et al. (2010) and Lan et al. (2010) both develop
non-uniform estimation schemes for expected shortfall; Dang et al. (2019) propose an iterative procedure
called importance-allocated nested simulation that determines the allocation of inner budget to different
scenarios. The most relevant work to ours is Broadie et al. (2011). They propose a non-uniform estimator
for probability of large loss and show it greatly reduces bias and variance of the uniform estimator under the
same total budget. Inspired by their estimator, we propose a non-uniform estimator for VaR-Expectation
based on the marginal change of the estimator when an additional inner sample budget is allocated. The
main differences between their work and ours lie in the different risk measures (probability of large loss
vs. VaR) and the goals for budget allocation. Specifically for the latter difference, they consider an
estimation problem and focus on minimizing the mean squared error (MSE) of the estimator, while our
goal is optimization and hence the budget allocation approach is different. Apart from nested simulation,
another stream in the literature for estimating the unknown loss distribution function utilizes regression or
meta-modeling techniques (e.g., Liu and Staum (2010), Broadie et al. (2015), Hong et al. (2017)).

Our portfolio selection problem goes beyond nested estimation of the objective function, because of
the optimization over a solution space of possible portfolio positions. To make the problem more tractable,
we assume the solution space is discrete and finite. This problem falls into the general framework of
ranking and selection (R&S), a special category of simulation optimization. In R&S, the goal is to select
the best alternative among a finite number of alternatives via simulation (see Goldsman and Nelson (2007)
and Fu (2015) for comprehensive overviews of R&S). In nearly all of the existing R&S literature, the
performance measure is the mean performance of the alternatives. However, in our problem, the best
alternative is the one with the smallest VaR. Despite the wide use of quantile as a performance measure,
quantile-based R&S has not received much attention in the literature with a few exceptions, such as the
works of Bekki et al. (2007), Lee and Nelson (2014), Shin et al. (2016), and Peng et al. (2020). In our
approach, we adapt the well-known optimal computing budget allocation (OCBA) scheme (Chen and Lee
(2010)) to the performance measure based on VaR, and seamlessly incorporate it with our non-uniform
nested estimator for VaR. Specifically, the extended OCBA scheme sequentially determines the outer-layer
budget (i.e., number of scenarios generated for each solution), and the non-uniform nested estimator for
VaR allocates the inner-layer budget (i.e., number of sample paths generated for each scenario). We note
that the recent work by Peng et al. (2020) also extends OCBA to consider a quantile-based performance
measure and derive specific allocation schemes for normal, exponential, and Pareto distributions of the
solution performance. However, in the portfolio selection problem, the underlying distribution of a solution
performance usually does not have a closed form because of the complex dynamics of asset prices, so we
can only rely on sampling to approximate the solution performance.

To summarize, the contributions of this paper are two-fold. First, we propose a nested simulation
optimization approach that adapts OCBA to the case where the performance measure is based on quantile
(VaR) and the underlying distribution does not admit a closed form. Second, we develop a new non-
uniform nested estimator of VaR-Expectation. The remainder of the paper is organized as follows: Section
2 introduces the problem of portfolio selection with risk factors and formulates the problem. Section 3
develops our proposed nested simulation optimization algorithm. Section 4 presents a numerical example
of the portfolio selection problem, and Section 5 concludes the paper.

2 PROBLEM FORMULATION

We consider the problem of portfolio selection with risk factors. Without loss of generality, we assume
the portfolio consists of a risky asset and a risk-free asset such as T-bills. The investor makes the
investment decision at time 0 and holds the portfolio until time T > 0. There is a risk factor θ , such as
the interest rate, at a future time τ ∈ (0,T ), which is called the risk horizon. The objective is to select
the optimal investment level in the risky asset, in order to minimize VaR (with respect to the risk factor
θ ) of the expected portfolio loss at the risk horizon τ . For a random variable Z, VaRα(Z) is defined
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as the α-quantile of Z, i.e., VaRα(Z) := inf{t : P(Z ≤ t) ≥ α}, where α ∈ (0,1) is called the risk level.
We use x to denote the investment level in the risky asset, and assume x can only take discrete values
{x1,x2, · · · ,xM : 0≤ x1 < x2 < · · ·< xM ≤ 1}. Let Xt denote the value of the portfolio at time t. The asset
price follows a certain stochastic process driven by an underlying random variable ξ that depends on the
risk factor θ at time τ . Then, the expected portfolio loss is H(x,θ) = Eξ∼Pξ |θ

[l(XT (x,ξ ))], where l is a
loss function, while XT (x,ξ ) signifies the final portfolio value XT and is a random variable that depends on
the investment level x and the randomness ξ that underlies the asset price. Except for some simple models
for asset prices that allow closed-form expressions, the asset price has to be evaluated by simulating the
stochastic process starting from the initial price. Hence, the portfolio value XT usually has to be evaluated
through Monte Carlo simulation.

The above portfolio selection problem can be formulated as:

min
x∈X

VaRα
θ∼Pθ

[Eξ∼Pξ |θ
[h(x,ξ )]], (1)

where x ∈X is the decision variable, θ is a random variable that follows the distribution Pθ , ξ is a random
variable that follows a θ -dependent distributionPξ |θ . We assume the distributionPξ |θ has a known parametric
form with θ as the parameter. The solution space X is a finite set, i.e., X := {x1,x2, · · · ,xM}, where M is
the number of total alternatives. The function h : X ×R→R is called the performance measure and has to
be evaluated by simulation. For notational convenience, we define the function H(x,θ) := Eξ∼Pξ |θ

[h(x,ξ )],
which will be referred to as the mean response function, and define vα(x) := VaRα

θ∼Pθ
(H(x,θ)). Except

in few special cases (when vα , for a fixed x, can be computed analytically), it usually has to be estimated.
Problem (1) is essentially a R&S problem, where we aim to select the best solution from M alternatives

x1, . . . ,xM with a high probability of correct selection (PCS) under a given simulation budget. However,
it differs from the traditional R&S in the sense that its objective function has a nested structure of VaR-
Expectation (instead of expectation usually considered in R&S). Hence, the objective function naturally
calls for nested simulation for risk measurement. In the next section, we will develop an approach that
integrates a R&S procedure with nested simulation.

3 ALGORITHM DEVELOPMENT

3.1 Overview

In this subsection, we provide an overview of our proposed approach to solve (1). To reveal the structure
and challenge of the problem, we first present a simple algorithm; the two-layer equal allocation (EA)
algorithm.

• In the outer layer, for each fixed x ∈X , we generate N i.i.d. samples {θ1, . . . ,θN} from Pθ .
• In the inner layer, for each fixed θi (i = 1, . . . ,N), generate K i.i.d. samples {ξi,1, . . . ,ξi,K} from

Pξ |θi , and evaluate {h(ξi, j) : j = 1, · · · ,K}. Then, approximate H(x,θi) by the sample average
H̄(x,θi) =

1
K ∑

K
j=1 h(x,ξi, j) for all θi’s, and sort them in the ascending order, denoted by H̄(x,θ (1))≤

H̄(x,θ (2))≤ . . .≤ H̄(x,θ (N)). The estimator of vα(x) is then v̂α(x) = H̄
(
x,θ (αN)

)
.

• Return the x that has the smallest v̂α(x) as the solution.

The EA algorithm above requires a total simulation budget M ∗N ∗K, where M is the total number of
alternatives (i.e., cardinality of X ), N is the outer-layer sample size, and K is the inner-layer sample size.
To achieve a high probability of correct selection, N and K need to be sufficiently large, and hence the
total budget needs to be substantially large. In fact, the outer layer allocates budget to different alternatives
in order to select the best alternative, and the inner layer aims to estimate the VaR-Expectation objective
value of each alternative, which itself needs a two-layer nested simulation.

We will develop a sequential algorithm that efficiently allocates the budget in both layers. In a nutshell,
we adapt the OCBA approach to generate samples of θ for each alternative x in the outer layer, and propose
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a sequential non-uniform estimation procedure that generates samples of ξ one at a time in the inner layer.
On a high level, the OCBA approach generates more samples of θ for the alternatives that are more likely to
be the optimal ones or have more estimation uncertainty in their objective value; the proposed non-uniform
estimation procedure sequentially generates the next sample of ξ that would have the largest impact on the
improving the estimator for VaR-Expectation. Therefore, both layers are made more efficiently compared
to the EA algorithm.

In the next two subsections, we will focus on the derivation of a nested estimator for the VaR of
expectation, denoted as VaR-E for short in the remainder of the paper. In Subsection 3.4, we will adapt
the OCBA procedure relying on the asymptotic normality of the estimators, and present our algorithm.

3.2 Uniform Estimator for VaR-E

In this and the next subsections, we focus on the inner layer estimation of VaR-E for a fixed x. Hence, we
temporarily drop the notation x in all of the expressions.

The estimator v̂α in the EA algorithm is in fact the uniform estimator for VaR-E, since it has the
same number of ξ samples across all θ ’s. Recall that in the outer stage, we first generate N i.i.d.
samples {θi, i = 1,2, · · · ,N}. In the inner stage, for each θi, we generate K i.i.d. random variables
{ξ j, j = 1, · · · ,K} from distribution Pξ |θi and evaluate {h(ξ j) : j = 1, · · · ,K}. Then, we approximate
H(θi) by the sample average H̄(θi) =

1
K ∑

K
j=1 h(ξ j), and sort them in the ascending order, denoted by

H̄(θ (1))≤ H̄(θ (2))≤ ·· · ≤ H̄(θ (N)). The uniform estimator for VaR-E is then v̂α := H̄
(
θ (αN)

)
. As shown

by Theorem 3.4 in Zhu et al. (2020), under the following Assumption 1, this uniform estimator is strongly
consistent, i.e., limN,K→∞ v̂α = vα w.p.1.

Assumption 1 (Assumption 3.2 in Zhu et al. (2020)) Let H̄(θ) = 1
K ∑

K
j=1 (H(θ)+ ε(ξ j)) = H(θ) +

1
K ∑

K
j=1 ε(ξ j), where ξ j

i.i.d∼ Pξ |θ , j = 1, . . . ,K. Define ε̄K ,
√

K · 1
K ∑

K
j=1 ε (ξ j). Then,

• The performance measure function h(ξ )has finite conditional second moment, i.e., τ2
θ
=E[h2(ξ )|θ ]<

∞ with probability 1 (w.p.1) and τ2 =
∫

τ2
θ

p(θ)dθ < ∞.
• The joint density p(h,e) of H(θ) and ε̄K , and its partial derivatives ∂

∂h p(h,e) and ∂ 2

∂h2 p(h,e) exist
for all the pairs of (h,e).

• There exist non-negative functions g0(·), g1(·), g2(·) such that p(h,e) ≤ g0(e),
∣∣∣ ∂

∂h p(h,e)
∣∣∣ ≤

g1(e),
∣∣∣ ∂ 2

∂h2 p(h,e)
∣∣∣≤ g2(e) for all (h,e). Further,

∫
|e|rgi(e)de < ∞ for i = 0,1,2, and 0≤ r ≤ 4.

The first item in Assumption 1 ensures that ε̄K has a limiting distribution as K → ∞. Letting f̃K(·)
denote the probability density function (PDF) of H̄(θ), then the second and third assumptions ensure the
difference between f̃K(·) and f (·) is of the order O( 1

K ). The next theorem shows that the estimator v̂α is
asymptotically normally distributed when the sample sizes satisfy N = O(K2).
Theorem 1 (Theorem 3.6 in Zhu et al. (2020)) Asymptotic Normality of Estimator. Define Λ(t) =
1
2 f (t)E

[
τ2

θ
|H(θ) = t

]
, σ :=

√
α(1−α)

f (vα )
, µ := −Λ′(vα )

f (vα )
, and N (0,1) stands for standard normal random

variable. Then, under Assumption 1, the existence of limit R2 = limN,K→∞ N/K2 is a sufficient and
necessary condition for

lim
N,K→∞

√
N (v̂α − vα)

D
= σN (0,1)+ |R|µ.

If we denote by θ α the θ -value at the quantile vα , it is easy to see that the uniform estimator v̂α wastes
a large portion of simulation budget on the θ samples that are not in the close neighborhood of θ α and
thus are unlikely to affect the estimator. This motivates us to develop a non-uniform estimator, where we
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consider sequentially allocating the inner simulation budget (i.e., generating an ξ sample) one at a time so
that it will have the largest impact on the estimator.

3.3 Non-Uniform Sequential Estimation for VaR-E

Our proposed non-uniform estimator for VaR-E is inspired by the non-uniform estimator for probability
of large loss from Broadie et al. (2011). To estimate Pθ (Eξ |θ [h(ξ )] > c), where c is a constant, they
sequentially select a θ that maximizes

P{(H̄ l(θ)− c)(H̄ l+1(θ)− c)≤ 0},

where H̄ l(θ) is the estimate of loss at scenario θ at iteration l, and H̄ l(θ) is the estimate of loss at scenario
θ at the next iteration l+1 if there is one more ξ sample generated in that scenario θ . The above inequality
ensures that the additional generated sample ξ would change the relative position of H̄ l+1(θ) with respect
to c. This change will impact the estimate for the probability of large loss. This idea is very intuitive
but not directly applicable in our problem, where the outer measure is VaR (instead of the probability of
large loss) and we need to account for the uncertainty associated with the estimation of VaR-E (unlike the
deterministic number c).

Consider a fixed N number of θ samples, which will also be referred to as scenarios in what follows.
Suppose H̄ l(θi) is the performance estimate of the scenario θi at iteration l, and in the next iteration l+1,
one more ξ sample is generated in θi and updates the performance estimate to H̄ l+1(θi). Intuitively, we
want to give more simulation budget to the scenarios θ that are around the true quantile value. Following
the idea in Broadie et al. (2011), we want to choose a θi that maximizes the following probability:

P{(H̄ l(θi)− vα)(H̄ l+1(θi)− vα)≤ 0}.

The inequality above means that the performance estimate of θi jumps over vα given one additional ξ

sample and hence changes the relative order of the θ samples around the true quantile. Maximizing the
probability of such a change, therefore, assigns the additional ξ sample to the most important θi scenario.
However, the exact value vα is not available, so it has to be replaced by its estimator ṽα and the uncertainty
associated with the estimator should also be accounted for. The change of the performance estimate of θi
is only statistically significant when it jumps over a confidence interval of ṽα . We define this change by
dividing it into several cases below.

Let β > 0 be the parameter of the confidence level about the estimator ṽα , which is typically set
between 0 and 3. It controls the concentration of the budget around the quantile. Let σ̂α denote the sample
standard deviation of H̄ l(θ (αN)). We define the following events:

A11 :=
{

H̄ l+1(θi)≥ ṽα +βσ̂α |ṽα −βσ̂α ≤ H̄ l(θi)≤ ṽα

}
A12 :=

{
H̄ l+1(θi)≤ ṽα −βσ̂α |ṽα < H̄ l(θi)≤ ṽα +βσ̂α

}
A21 :=

{
H̄ l+1(θi)< ṽα |H̄ l(θi)> ṽα +βσ̂α

}
A22 :=

{
H̄ l+1(θi)> ṽα |H̄ l(θi)< ṽα −βσ̂α

}
.

Notice that these events are disjoint, and their union A = A11∪A12∪A21∪A22 captures all the events
at which the performance estimate of a scenario θ has a statistically significant change from one side of
the quantile to the other side and hence changes the relative order of the θ samples around the quantile.
So, we would like to allocate the next ξ sample to maximize the probability of event A.
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If at iteration l +1, we are given an additional inner simulation budget to the scenario θi, this would
result in

H̄ l+1(θi) =
1

Ki +1

Ki+1

∑
j=1

h(ξ j) =
1

Ki +1
h(ξKi+1)+

Ki

Ki +1
H̄ l(θi),

where Ki is the inner simulation budget allocated to the scenario θi, and ξ is sampled from distribution
Pξ |θi . Using the approximation E[h(ξKi+1)]≈ H̄ l(θi)≈ ṽα ±βσ̂α , which follows from the assumption that
Ki� 1, and applying Cantelli’s inequality (see Cantelli (1928)), we have

P(A11)≈ P
(

h(ξKi+1)−E[h(ξKi+1)]> Ki(ṽα +βσ̂α − H̄ l(θi))
)

≤
(

1+
K2

i

σ̂2
i

(
ṽα +βσ̂α − H̄ l(θi)

)2
)−1

,

P(A12)≈ P
(

h(ξKi+1)−E[h(ξKi+1)]< Ki(ṽα −βσ̂α − H̄ l(θi))
)

≤
(

1+
K2

i

σ̂2
i

(
ṽα −βσ̂α − H̄ l(θi)

)2
)−1

.

Similarly, we have

P(A21) = P
(

h(ξKi+1)−E[h(ξKi+1)]<−Ki(H̄ l(θi)− ṽα)− (E[h(ξKi+1)]− ṽα)
)

≤ P
(

h(ξKi+1)−E[h(ξKi+1)]< Ki(ṽα − H̄ l(θi))
)

≤
(

1+
K2

i

σ̂2
i

(
ṽα − H̄ l(θi)

)2
)−1

,

where the first inequality follows from E[h(ξKi+1)]≈ H̄ l(θi)> ṽα in the event A21, and the second inequality
applies Cantelli’s inequality. Additionally,

P(A22) = P
(

h(ξKi+1)−E[h(ξKi+1)]>−Ki(H̄ l(θi)− ṽα)− (E[h(ξKi+1)]− ṽα)
)

≤ P
(

h(ξKi+1)−E[h(ξKi+1)]> Ki(ṽα − H̄ l(θi))
)

≤
(

1+
K2

i

σ̂2
i

(
ṽα − H̄ l(θi)

)2
)−1

,

where the first inequality follows from E[h(ξKi+1)]≈ H̄ l(θi)< ṽα in the event A22, and the second inequality
applies Cantelli’s inequality.

Noticing P(A21) and P(A22) have the same upper bound, we consider three subsets of scenarios I1, I2, I3,
which are disjoint and whose union is the entire set of scenarios:

I1 =
{

i = 1,2, · · · ,N|ṽα −βσ̂α ≤ H̄ l(θi)≤ ṽα

}
I2 =

{
i = 1,2, · · · ,N|ṽα < H̄ l(θi)≤ ṽα +βσ̂α

}
I3 =

{
i = 1,2, · · · ,N||H̄ l(θi)− ṽα |> βσ̂α

}
.

To maximize the probability of event A, we resort to maximizing the upper bounds that we obtained
above. The following proposition summarizes our proposed inner simulation budget allocation.
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Proposition 1 Define Γ: I1 ∪ I2 ∪ I3 → R such that Γ(i) = K2
i

σ̂2
i

(
ṽα +βσ̂α − H̄ l(θi)

)2 if i ∈ I1, Γ(i) =
K2

i
σ̂2

i

(
ṽα −βσ̂α − H̄ l(θi)

)2 if i ∈ I2, and Γ(i) = K2
i

σ̂2
i

(
ṽα − H̄ l(θi)

)2 if i ∈ I3. Set i∗ = mini=1,··· ,N Γ(i). Then,

we should generate one additional sample of ξ for the scenario θi∗

Proposition 1 provides an algorithm to conduct the sequential simulation. Since θi∗ is the scenario that
minimizes Γ(i), it maximizes the upper bound on the probability of event A. Thus, scenario θi∗ ensures that
the additional ξ sample will have the maximal impact on the estimator for VaR-E. Note that the expression
Γ(·) reveals that the new inner simulation budget will be allocated to a scenario that either has a large
variance, is close to the current empirical quantile, or has very few inner simulation budget allocated to it
before. We provide the asymptotic normality result of this non-uniform estimator for VaR-E in the theorem
below.
Theorem 2 Asymptotic Normality of Our Non-Uniform Estimator. Let K(θ (αN)) denote the inner

simulation budgets allocated to the scenario θ (αN). Define σ :=
√

α(1−α)

f (vα )
, and µ := −Λ′(vα )

f (vα )
. Under

Assumption 1, the existence of limit R2 = limN,K(θ (αN))→∞
N/K(θ (αN))

2
is a sufficient and necessary

condition for
lim

N,K(θ (αN))→∞

√
N (ṽα − vα)

D
= σN (0,1)+ |R|µ.

Notice that there are two main differences between the uniform and non-uniform estimators. First, for
the uniform estimator, the inner budget K allocated to each scenario is the same. Theorem 1 shows that
the bias of the estimator is inversely proportional to K. For the non-uniform estimator, the inner budget
allocated to each scenario is different according to our sequential algorithm, and we use K(θ) to denote
the inner budget allocated to the scenario θ . Theorem 2 shows that the bias of the estimator is inversely
proportional to K(θ (αN)), i.e., the inner budget allocated to the scenario θ (αN). Our sequential algorithm
achieves the same rate as the uniform estimator by only requiring K(θ (αN)), the budget allocated to the
empirical quantile scenario, to be equal to the budget K in the uniform estimator. Intuitively, the budget
allocated to scenarios far from θ (αN) is much smaller than K(θ (αN)), and therefore, the total budget Ktotal
of the non-uniform estimator is less than that of the uniform estimator. Rigorous analysis of total budget
of the non-uniform estimator will be included in our future work. Another difference lies in the additional
computational overhead in the non-uniform estimator, i.e., we need to compute Γ(·) for each scenario
in order to decide the allocation of one additional inner budget. However, in practice, evaluating the
(black-box) function h(·) is time consuming. The additional computational overhead in the non-uniform
estimator can be neglected compared with the saved inner budgets.

3.4 OCBA with VaR-E Estimation

In this subsection, we first adapt the OCBA approach to allocate the outer simulation budget to the alternatives
x1, . . . ,xM. Most of the OCBA literature assumes the objective function takes an expectation form, which is
often referred to as the mean response. The derivation of OCBA generally requires two main assumptions:
(1) independence across all alternatives; (2) that the mean response follows a normal distribution. The
normality assumption on the mean response is usually justified by the Central Limit Theorem (CLT), as
the mean response is often obtained from a sample average estimate or a batch mean. In our problem, the
objective function takes the form of VaR-Expectation, which is more challenging than the mean response.
Luckily, both the uniform and non-uniform estimators of VaR-E have asymptotic normality (as shown in
Theorems 1 and 2), and therefore, we can extend OCBA to our problem.

Recall that the objective value is vα(xi) =VaR(H(xi,θ)), i = 1, . . . ,M, its uniform estimator is v̂α(xi)
and its non-uniform estimator is ṽα(xi). As shown in Theorem 1, the uniform estimator has an asymptotic
bias µi

K and variance σ2
i

Ni
, where Ni is the number of scenarios (i.e., θ samples) generated for the ith alternative,
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K is the number of ξ samples generated for each scenario, and µi and σi are as defined in Theorem 1. As
shown in Theorem 2, the non-uniform estimator has an asymptotic bias µi

K
(

θ
(αNi)
i

) and variance σ2
i

Ni
, where

K
(

θ
(αNi)
i

)
is the number of ξ samples generated in the scenario θ

(αNi)
i . Using these results, we present the

posterior distribution of vα(xi) given a normal prior distribution. The proposition below shows the result
for the non-uniform estimator, where the analogous result for the uniform estimator holds by replacing the
bias and variance terms in the posterior distribution.
Proposition 2 Assume vα(xi) has a conjugate normal prior distribution N (µ0

i ,(σ
0
i )

2). Denote by v̄α(xi)
the posterior distribution of vα(xi), then given (H̄(xi,θi, j), j = 1,2, · · · ,Ni), and assume σ0

i → ∞, we have

v̄α(xi)∼N

ṽα(xi)−
µi

K
(

θ
(αNi)
i

) , σ2
i

Ni

 .

Proposition 2 shows that the posterior distribution of vα(xi) is still normal. Furthermore, the variance
of the posterior distribution is reversely proportional to the number of θ samples of the estimator. We
assume the inner simulation budget will be allocated independently from the outer simulation budget, such
that the focus of our adapted OCBA approach will be on the outer layer budget allocation.

From Proposition 2, a direct application of Theorem 3.2 in Chen and Lee (2010) gives the following
OCBA scheme:

Nb = σb

√√√√ M

∑
i=1,i 6=b

(
Ni

σi

)2

, where b = arg min
i∈[M]

ṽα(xi)−
µi

K
(

θ
(αNi)
i

)
 (2)

Ni

N j
=

σ2
i

(ṽα(xb)− µb

K
(

θ
(αNb)
b

)
)
−

ṽα(x j)−
µ j

K
(

θ
(αNj)
j

)
2

σ2
j

((
ṽα(xb)− µb

K
(

θ
(αNb)
b

)
)
−

(
ṽα(xi)− µi

K
(

θ
(αNi)
i

)
))2 , for all i 6= j 6= b. (3)

Although OCBA is derived to achieve asymptotic optimality as the total budget goes to infinity, in
practice, it is often implemented in a sequential way through increasing the budget by a fixed amount
each time. We take this sequential approach, i.e., at each iteration, the algorithm generates ∆i number of
additional θ samples for each alternative xi according to the budget allocation scheme above.

Integrating the outer-layer OCBA with the inner-layer nonuniform estimation of VaR-E, we propose
the following algorithm. Here, ∆ denotes additional number of scenarios generated in each iteration, N0
denotes initial number of scenarios for each alternative, K0 denotes the initial number of ξ -samples in each
scenario, K denotes number of ξ -samples in each scenario in the uniform estimator, T denotes the total
budget, and γ is a parameter that determines the shift of the inner budget to the outer layer.

Algorithm 1: OCBA with Non-Uniform VaR-E Estimation

• Input. ∆, N0, K0, K, T , γ .
• Step 1: Initialization. Set l = 0. For each x, generate N0 initial scenarios θ1, · · · ,θN0 . For each

scenario θ , generate K0 initial ξ samples. For each x, compute H̄ l(x,θ) for all scenarios, and
compute ṽl

α .
• Step 2: VaR-E Estimation. Allocate inner simulation budget to each scenario sequentially according

to Proposition 1, until the average inner simulation budget reaches (K−K0)γ +K0. For xi, compute
ṽl

α(xi), sample estimate of bias µ̃i and sample estimate of standard deviation σ̃i of the estimator.
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• Step 3: OCBA. Find b = argmini

ṽl
α(xi)− µ̃i

K
(

θ
(αNl

i )
i

)
. Increase the outer layer simulation budget

by ∆ and calculate the new outer layer budget allocation Nl+1
1 , · · · ,Nl+1

M , according to (2) and (3),
where we replace the bias term and standard deviation term by their sample estimates.

• Step 4: Stopping or Looping. Calculate used total budget Tused. If Tused < T , generate additional
max(Nl+1

i −Nl
i ,0) outer scenarios for alternative i = 1, · · · ,M, set l = l + 1, and go to Step 2.

Otherwise, stop, and return alternative b as the best alternative.

In Algorithm 1, the non-uniform estimation in the inner layer concentrates budgets on the samples
around the quantile, and thus saves the inner budget so that more budget can be shifted to the outer layer,
which then uses OCBA to smartly allocate the outer budget. Notice that the algorithm can be terminated
either by limiting the total budget to T or by setting a threshold on the approximate probability of correct
selection (APCS). APCS is a lower bound of PCS, that is, APCS ≡ 1−∑

M
i=1,i6=bP{v̄α(xb)> v̄α(xi)}. In

addition, we could replace the non-uniform estimator in Step 2 by the uniform estimator (i.e., the number
of ξ -samples for all scenarios would be replaced by K), and will refer to this modified algorithm as OCBA
with Uniform VaR-E Estimation, which will be used in the comparisons within our numerical experiments
in the next section.

4 NUMERICAL RESULTS

We present the numerical results for the portfolio selection problem outlined in Section 2. Specifically,
the portfolio consists of a stock and a risk-free asset. The risk-free asset has an interest rate r. The stock
price is S0 at time 0, and evolves according to a Geometric Brownian motion with drift coefficient µ and
volatility σ . Given the risk factor θ at risk horizon τ , the stock price at τ is Sτ(θ) = S0e(µ−σ2/2)τ+σ

√
τθ .

Hence, at some finite time horizon T ≥ τ , the stock price is ST (θ) = Sτ(θ)e(r−σ2/2)(T−τ)+σ
√

T−τW , where
W follows the standard normal distribution. We assume θ also follows a standard normal distribution. The
investor previously had x0 portion of the capital X0 in the stock and would like to decide the position x at
time 0, in order to minimize the VaR (with respect to θ ) of the expected portfolio loss. The portfolio loss is
h(x,ST ) = xX0[1− e−r(T−τ)

S0
ST ]+c(x−x0)

2, where the first term comes from our assumption that the price of
the risky asset is path dependent and can be discounted from finite time T to risk horizon τ , and the second
term is the transaction cost for the change of the portfolio position. Note that ST is in fact the random variable
ξ in our formulation (1), and it follows a log-normal distribution whose location parameter is determined by
θ . In this model, we can analytically compute the expected loss H(x,θ) = xX0[1− Sτ (θ)

S0
]+c(x−x0)

2 and the

objective value VaRα(H(x,θ)) = xX0[1−exp−[(µ−
σ2
2 )τ+zα σ

√
τ]]+ c(x−x0)

2, where zα satisfies Φ(zα) = α

and Φ is the c.d.f. of the standard normal distribution.
In our numerical experiments, the parameters are set as follows: Risk level of VaR α = 0.9, initial

stock price S0 = 0.1, drift in risk horizon µ = 8%, volatility σ = 10%, risk-free interest rate r = 10%,
initial position in stock x0 = 50%, initial wealth X0 = 3, risk horizon τ = 1/52 years (one week), finite
time horizon T = 0.25 years (three months), coefficient of transaction cost c = 1. The portfolio position in
stock can be chosen from a discrete set X = {10%,20%, · · · ,90%,1}. Figure 1 shows the structure of this
portfolio selection problem, where the minimum is reached at x = 0.5, i.e., the optimal level of investment
in stock is 50%. We now present two experiments.

Experiment 1: We first compare three estimators for VaR-E. In addition to the uniform estimator
(presented in Section 3.2) and non-uniform estimator (proposed in Section 3.3), we consider a third baseline
estimation procedure based on OCBA-m. The OCBA-m approach, proposed by Chen et al. (2008), is
an efficient simulation budget allocation scheme for selecting a subset of m best alternatives. To use
the OCBA-m approach for estimating VaR-E, we set m = (1−α)N, apply OCBA-m to select the top m
scenarios that have largest sample mean response, and then set the scenario with the smallest sample mean
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Figure 1: Structure of the portfolio selection problem

response in the selected subset as the VaR-E estimator. By the design of OCBA-m, this estimation approach
concentrates the budget on the θ -samples around the quantile. The parameters of the algorithms are set as
K = 20,K0 = 10,β = 1, and the decision variable is fixed to x = 50%. Figure 2 shows the performance of
the uniform estimator, the non-uniform estimator, and the OCBA-m-based estimator, under a fixed number
of outer scenarios and a fixed average number of inner simulation budget. In particular, one can see that
the non-uniform estimator has much smaller bias than the other two estimators, while it has slightly higher
(but still comparable) standard deviation compared to the other estimators. When the number of outer
scenarios increases, the standard deviations of all three estimators decrease and the biases remain almost
the same, as expected.

(a) Bias of three estimators of VaR (b) Standard deviation of three estimators of VaR

Figure 2: Performance of uniform, non-uniform, and OCBA-m estimators of VaR-E

Experiment 2: We then solve the portfolio problem by four algorithms: Equal allocation (presented
in Section 3.1), OCBA with non-uniform VaR-E estimation (Algorithm 1), OCBA with uniform VaR-E
estimation (Algorithm 1, after replacing the non-uniform VaR-E estimator with the uniform one), OCBA
with OCBA-m VaR-E estimation algorithm (Algorithm 1, after replacing the non-uniform VaR-E estimator
with OCBA-m estimator). The parameters of the algorithms are set as K = 40,K0 = 10,N0 = 50,δ = 10,β =
1,γ = 0.4, and all four algorithms are run for 500 macro-replications. Figure 3 presents the empirical PCS
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Figure 3: PCS versus total budget under four budget allocation algorithms

(over the 500 macro-replications) as the total budget increases. It is clear that the OCBA with non-uniform
VaR-E estimation algorithm achieves the highest empirical PCS, followed by the algorithm with uniform
VaR-E estimation. To our surprise, the OCBA with OCBA-m VaR-E estimation algorithm does not perform
well. With further analysis/investigation, we found that the reason is that, with fixed number of outer
scenarios, the budget is concentrated on the θ -sample at the quantile; however, as additional outer scenarios
generated in later iterations, the θ -sample at the quantile may change, but there is not enough computing
budget allocated to the new θ -sample at the quantile. In contrast, the OCBA with uniform VaR-E estimation
algorithm allocates the budget equally among all outer scenarios, and the OCBA with non-uniform VaR-E
estimation algorithm can be viewed as a balanced budget allocation scheme, such that it neither concentrates
too much on a fixed scenario nor spread too much over all scenarios.

5 CONCLUSION

We consider the problem of portfolio selection with risk factors, where the goal is to find the optimal
portfolio position that minimizes the VaR (with respect to the risk factor) of the expected portfolio loss.
To solve the problem, we propose a nested simulation optimization approach by integrating OCBA with
a new non-uniform estimator of VaR-Expectation. The non-uniform estimator sequentially allocates the
inner budget such that the budget is concentrated on the samples around the quantile, which prevents the
waste of budget that would have been allocated to the samples far away from the quantile. We provide the
asymptotic normality of the non-uniform estimator. Our numerical results demonstrate the effectiveness of
the non-uniform estimator of VaR-Expectation and the proposed nested simulation optimization approach
for solving the portfolio selection problem.
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