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ABSTRACT

IoT-driven smart cities are popular service-networked ecosystems, whose proper functioning is hugely based
on digitally secure and reliable supply chain relationships. However, the naivety in the current security
efforts by concerned parties to protect IoT devices, pose tough challenges to scalable and expanding
cyber-risk management markets for IoT societies, post a systemic cyber-catastrophe. As firms increasingly
turn to cyber-insurance for reliable risk management, and insurers turn to reinsurance for their own risk
management, questions arise as to how modern-day cyber risks aggregate and accumulate, and whether
reinsurance is a feasible model for reliable catastrophic risk management and transfer in smart cities.
In this introductory effort, we analyze (a) whether traditional cyber-risk spreading is a sustainable risk
management practice and (b) under what conditions, for the quite conservative scenario when proportions
of i.i.d. catastrophic cyber-risks of a significant heavy-tailed nature are aggregated by a cyber-risk manager.

1 INTRODUCTION

IoT-driven smart cities are examples of service networked ecosystems that are popularly on the rise around
the globe, with major cities like Singapore, Dubai, Barcelona, and Amsterdam being working examples.
The proper functioning of such cities is hugely based on the success of supply chain relationships from
diverse sectors such as automobiles, electronics, energy, finance, aerospace, etc. In the IoT age, these
relationships are often realized via large scale systemic network linkages (see Figure 1.1. in (Coburn
et al. 2018)) that operate via the interplay of IoT hardware (e.g., sensors, actuators, cameras), application
software (e.g., Oracle for DBMS support, cloud service software), and IoT firmware.

Currently, robust IoT security is a challenge (Gilchrist 2017) with a significant fraction of users
controlling IoT systems being naive about effective cyber-security practices (e.g., the use of non-default
device passwords, periodic patch updates). Consequently a cyber-attack exploiting a software vulnerability
can have a catastrophic cascading service disruption effect that could amount to losses in billions of dollars
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across various service sectors. Recent examples of such cyber-attacks include the Mirai DDoS (2016),
NotPetya ransomware (2017), and WannaCry ransomware (2017) attacks, which wrecked havoc among
firms in various industries across the globe, resulting in huge financial losses due to service interruption
(see (Coburn et al. 2018) for more examples). Due to such large losses, a certain section of society overall
could be negatively impacted and experience psychological depression and affected lifestyles.

As instruments to cover cyber-losses in society, markets for commercial third-party services (e.g., cyber-
insurance) are steadily but sluggishly gaining traction with the rapid increase of societal IoT deployment,
and provides a channel for members (individuals and organizations) to transfer residual cyber-risk post
cyber-attack events. The primary benefits of commercial cyber-loss management services have been recently
shortcited in detail by the authors in Biener et.al. (Biener et al. 2015), and include (i) indemnification of
loss events, (ii) helping corporations estimate cost of cyber-risk, and (iii) improve cyber-security in the
IoT age. The steady rise in market requirement for such services primarily arises from a combination
of (a) the naivety of user security practices, (b) the non fool-proof nature of technical security solutions
to remove cyber-risk (Anderson and Moore 2009), (c) higher board level concerns in organizations post
notable cyber-breach incidents (e.g., Sony, Target, WannaCry) and their negative effect on stock prices
(Shetty et al. 2018; Gatzlaff and McCullough 2010), and (d) the growing perception of cyber-risk in the
digital society (Pooser et al. 2018).

Despite the promised potential for commercial cyber-risk management services, the markets have
been too sluggish for our liking. The yearly estimates of cyber-loss approximately amount to USD 600
billion globally (1% of US GDP) (Coburn et al. 2018), whereas the cumulative global public and private
sector spendings on cyber-security amount only to USD 174 billion (Wang 2019). In addition, the total
yearly market for cyber-insurance services - the most popular form of commercial third party commercial
cyber-risk management offerings, approximates to a paltry USD 6 billion globally (Wang 2019), compared
to the amount of net cyber-loss. The primary reasons for such a low (but increasing) market penetration
are (a) misunderstanding and lack of coverage awareness by the demand side (users and organizations)
(Wang 2019), (b) unavailability of quality plus quantity data on cyber-risks and demand side cyber-hygiene
behavior, that contribute to policy pricing nuances (Romanosky et al. 2019; Franke 2017; Wang 2019),
and (c) the empirical evidence of certain cyber-risk distributions being heavy-tailed and tail-dependent
(Biener et al. 2015; Xu et al. 2018; Maillart and Sornette 2010), that makes profit-minded risk-averse
cyber-insurers go low on confidence to expand coverage markets, where coverage is on an aggregate sum
of such heavy-tailed cyber-risks.

The idea of spreading aggregate cyber-risk among multiple risk managers (e.g., cyber-insurers) is
gaining traction (Coburn et al. 2018; Kessler 2014) for IoT-driven smart society settings whereby insurers
covering aggregate cyber-risk of organizations in a given sector (e.g., manufacturing) wish to spread that
risk among insurers of firms that are higher up in the supply chain (e.g., energy companies). However (a)
there is no formal analysis on the effectiveness of this idea for general individual cyber-risk distributions,
and (b) there may be significant differences in the cyber and non-cyber re-insurance settings - benefits of
non-systemic outcomes in the latter (as qualitatively stated in (Kessler 2014)) may not apply to the former.
Consequently, without a formal analysis, aggregate cyber-risk managers may not have the confidence to
scale their service markets. Our main goal in this paper is to devise a foundational methodology that
analyzes the effect of individual heavy-tailed and tail-dependent cyber-risks on the effectiveness of aggregate
cyber-risk management markets.

Research Contributions - As the primary contributions in this paper, we prove (and validate through
simulations) that spreading catastrophic heavy-tailed cyber-risks that are identical and independently
distributed (i.i.d.), i.e., not tail-dependent, is not an effective practice for aggregate cyber-risk managers,
whereas spreading i.i.d. heavy-tailed cyber-risks that are not catastrophic is. While this latter point has
long been believed and empirically validated in the cyber-insurance research literature, the former point is
a surprising new facet that we unravel in this paper via theory. We also show that spreading catastrophic
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and curtailed heavy-tailed cyber-risks that are (non) identical and independently distributed (i.i.d.), i.e.,
not tail-dependent, is not an effective practice for aggregate cyber-risk managers.

2 PRELIMINARIES

In this section, we provide the necessary mathematical background for (a) families of distribution con-
volutions, and (b) basic majorization theory (Marshall et al. 1974), both of which we use for analysis.
In the interest of space, we assume the reader of this paper to have a basic knowledge of the widely
popular Value-at-Risk (VaR) measure (Embrechts et al. 2002) and its mathematical properties, and also
of statistically stable distributions (Zolotarev 1986), both of which form the building blocks to (a) and (b)
above. The reader is referred to the APPENDIX (Pal et al. 2020) for their basic background.

2.1 Families of Distribution Convolutions

A fundamental operation for a cyber-risk aggregator is the convolution (aggregation) of individual risk
distributions. In this section, we define and mention some salient features (where applicable) of various
classes/families of distribution convolutions. In this paper, we will limit ourselves to a specific but
popular family of heavy tailed distributions whose tails decline parametrically as a polynomial function
of some α > 0. Within this context, a random variable X is said to have a heavy-tailed distribution if
0 < c≤ P(|X |>x)

x−α ≤C < ∞ for large x, for constants c and C. This is also denoted as P(|X |> x)� x−α . Such
distributions have finite statistical moments E[|X |p] for p < α , and infinite statistical moments for p≥ α .

Families Related to Convolution of Symmetric Stable Distributions - For 0 ≤ r < 2, we denote
by C S (r) the class of cyber-risk distributions which are convolutions of individually symmetric stable
cyber-risk distributions Sα(σ ,0,0) with indices of stability α ∈ [r,2) and σ > 0. That is, C S (r) consists
of cyber-risk distributions of r.v.’s X for which, with some k≥ 1,X =Y1 + ...+Yk, where Yi, i = 1, ...,k, are
independent r.v.’s such that Yi ∼ Sαi(σi,0,0), αi ∈ [r,2),σi > 0, i = 1, ...,k.

For 0 ≤ r ≤ 2, we denote by C S (r) the class of cyber-risk distributions which are convolutions of
individually symmetric and stable cyber-risk distributions Sαi(σi,0,0) with indices of stability αi ∈ (0,r) and
σi > 0. That is, C S (r) consists of cyber-risk distributions of r.v.’s X for which, with some k≥ 1,X =Y1+
...+Yk, where Yi, i = 1, ...,k, are independent r.v.’s such that Yi ∼ Sαi(σi,0,0), αi ∈ (0,r),σi > 0, i = 1, ...,k.

Salient Features of Convolution Families - The classes C S (r) and C S (r) are mathematically closed
under convolutions - a powerful property contributing to tractable analysis of cyber-risks in these families.
A linear combination of independent stable r.v.’s with the same characteristic exponent α also has a stable
distribution with the same α . However, in general, this does not hold in the case of convolutions of stable
distributions with different indices of stability. Therefore, the class C S (r) of convolutions of symmetric
stable distributions with different indices of stability α ∈ (r,2] is wider than the class of all symmetric
stable distributions Sα(σ ,0,0) with α ∈ (r,2] and σ > 0. Similarly, the class C S (r) is wider than the
class of all symmetric stable distributions Sα(σ ,0,0) with α ∈ (0,r) and σ > 0.

By definition, for 0 < r1 < r2 ≤ 2, the following inclusions hold: C S (r2)⊂ C S (r1) and C S (r1)⊂
C S (r2). Cauchy distributions S1(σ ,0,0) are at the dividing boundary between the classes C S (1) and
C S (1) Similarly, for r ∈ (0,2), stable distributions Sr(σ ,0,0) with the characteristic exponent α = r are at
the dividing boundary between the classes C S (r) and C S (r). More precisely, the Cauchy distributions
S1(σ ,0,0) are the only ones that belong to all the classes C S (r) with r > 1 and all the classes C S (r)
with r < 1. Stable distributions Sr(σ ,0,0) are the only ones that belong to all the classes C S (r′) with
r′ > r and all the classes C S (r′) with r′ < r. The properties of stable distributions discussed herein imply
that the p-th absolute moments E[|X |p] of a r.v. X ∼ C S (r), r ∈ (0,2), are finite if p≤ r. However, all the
r.v.’s X ∼ C S (r),r ∈ (0,2] have infinite moments of order r: E[|X |r] = ∞. In particular, the distributions
of r.v.’s X from the class C S (1) are extremely heavy-tailed (representing catastrophic cyber-risks) in the
sense that their first moments are infinite: E[|X |] = ∞.
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2.2 Basics of Majorization Theory

A vector1 with n components w ∈ Rn
+ is said to be majorized by a vector v ∈ Rn, written as w ≺ v, if

∑
k
i=1 w[i] ≤ ∑

k
i=1 v[i], k = 1, · · · ,n− 1, and ∑

n
i=1 a[i] = ∑

n
i=1 b[i], where w[1] ≥ ·· · ≥ w[n] and v[1] ≥ ·· · ≥ v[n]

denote the elements of w and v in decreasing order, respectively. The relation w ≺ v implies that the
components of w are less diverse than those of v (see (Marshall et al. 1974)). For instance, it is easy to
see that the following holds:(

n

∑
i=1

wi

n
, · · · ,

n

∑
i=1

wi

n

)
≺ (w1, · · · ,wn)≺

(
n

∑
i=1

wi,0, ...0

)
, ∀w ∈ Rn

+ . (1)

In particular, we have the following for two vectors in Rn+1
+ , n≥ 1:(

1
n+1

, · · · , 1
n+1

,
1

n+1

)
≺
(

1
n
, · · · , 1

n
,0
)

. (2)

It is also immediate that if w≺ v, then the same is true for their respective permutations: (wπ(1), · · · ,wπ(n))≺
(vπ(1), · · · ,vπ(n)) for all permutations π of the set {1., ..,n}.

A function φ : Rn
+→ R is called Schur-convex (resp. Schur-concave) (Boyd and Vandenberghe 2004)

if (w≺ v) =⇒ (φ(w)≤ φ(v)) (resp. (w� v) =⇒ (φ(w)≥ φ(v)), ∀w,v ∈Rn
+. If the inequalities are strict

whenever a≺ b and a is not a permutation of b, then φ is said to be strictly Schur-convex (resp. strictly
Schur-concave). Evidently, if φ : Rn

+→ R is Schur-convex or Schur-concave, then ∀w ∈ Rn
+, we have:

φ(w1, · · · ,wn) = φ(wπ(1), · · · ,wπ(n)), (3)

where π is any permutation of the set {1, ...,n}. Examples of strictly Schur-convex functions φ : Rn
+→ R

are given by φα(w1, · · · ,wn) = ∑
n
i=1 wα

i for α > 1. The functions φα(w1, · · · ,wn) are strictly Schur-concave
for α < 1 (see Proposition 3.C.1.a in (Marshall et al. 1979)).

Consider a portfolio of cyber-risks X1, ....,Xn with weights w = (w1, ....,wn) ∈R+
n denoting the fraction

of each risk the portfolio is exposed to, i.e., the fraction of each risk an insurer is responsible for covering.
The aggregate risk is denoted by

Zw =
n

∑
i=1

wiXi . (4)

Denote by In = {w = (w1, .....,wn) : wi ≥ 0, i = 1, · · · ,n,∑n
i=1 wi = 1} the simplex of all vectors where

weights sum to 1. Define two special vectors w = (1
n ,

1
n , .....

1
n) ∈In and w = (1,0, .....,0) ∈In. Given the

same set of risks, the theory of majorization suggests that w≺w, and a portfolio based on the latter weights
is more diverse. This notion of diversity is in a way the opposite of what one might consider to be the
variability among the weights: the more diverse w has the least varied weights (consisting of a single risk)
within In, while the less diverse w has more varied weights (equally spread over n risks). Similarly, Eqn
(2) suggests that ( 1

n+1 , · · · ,
1

n+1) ∈In+1 has more varied weights than (1
n , · · · ,

1
n ,0) ∈In+1 since it contains

an additional non-redundant cyber-risk Xn+1, but the former is actually less diverse using majorization.
A simple example demonstrating the conventional wisdom that portfolio variation is preferable is given

by the case with normally distributed risks. Let X1, ....,Xn ∼ S2(σ ,0,0) be i.i.d. symmetric normal r.v.’s.
Then, for a portfolio of equal weights w = (1

n , ....,
1
n) we have Zw ∼ S2(

σ√
n ,0,0) ∼

1√
n X1. By positive

homogeneity of the VaR, we have for n≥ 2:

VaRq(Zw) =
1√
n

VaRq(X1) =
1√
n

VaRq(Zw)<VaRq(Zw) . (5)

That is, the most varied portfolio with equal weights w has lower value at risk than that of the least varied
portfolio concentrating on a single risk.

1In this letter, we denote a vector (v[i]...v[n]) with n components by v.
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3 CYBER-RISK AGGREGATION

One of the key features of risk management (CRM) (e.g., via insurance) in general as a business model is
its ability to pool different types of risks, thereby reducing an underwriter’s overall risk exposure. This is
particularly true for a reinsurer (not necessarily a cyber re-insurer), who is in a position to significantly
diversify its risks, by selling reinsurance contracts to very different front-line insurers who specialize in
different sectors (e.g., retail, pharmaceutical, manufacturing, etc.), primarily independent of one another.
This means that a reinsurer typically takes on or aggregates a fraction of many different risks that are
most likely to be independent of one another. Specifically, in this paper we will often consider the average
of n independent cyber-risks X1, · · · ,Xn arising from different IoT-driven organizations in a smart society,
given by Zw = 1

n ∑
n
i=1 Xi, or more generally, the weighted average given a fraction of each cyber-risk

w = [w1, · · · ,wn]: Zw = ∑
n
i=1 wiXi.

3.1 An Intuitive Observation

To give some intuition, we begin with a simple comparison of risk spread (standard deviation) between
aggregating light-tailed distributions and heavy-tailed distribution. Consider the Normal distribution as a
representative of the former and the Levy and Cauchy distributions (Forbes et al. 2011), as a representative
of the latter that are statistically stable (Zolotarev 1986); the latter exhibit power-law decay with cdf given by
F(−x)≈ x−α ,x,α > 0. For n IID normal X1, · · · ,Xn ∼N (µ,σ2), their average 1

n ∑
n
i=1 Xi is also normally

distributed with N (µ, 1
n σ2). The implication here is that the aggregate risk has a spread (the standard

deviation) that grows as
√

1
n of σ for a given µ , suggesting a decrease in average risk as one spreads

over an increasing number of individual risks. Thus in this case higher diversification – the spreading over
larger pool of risks – is desirable.

Now consider the Levy distribution denoted by L (µ,σ), with location parameter µ , scale σ , pdf and
cdf is respectively given by

φ(x) =

{ √
σ

2π
e
−σ

2(µ−x) (µ− x)
−3
2 if x < µ,

0 if x≥ µ,

F(x) =

 2√
π

∫ −σ√
2(µ−x)

0 e−t2
dt if x < µ,

1 if x≥ µ.

A simple algebraic manipulation will suggest that for IID X1, · · · ,Xn ∼ L (µ,σ), we have 1
n ∑

n
i=1 Xi ∼

L (µ,nσ). In other words, contrary to the normal case, the risk spread as a result of aggregating Levy
distributions increases linearly in the number of individual risks for a given µ . As another example, consider
the Cauchy distribution denoted by G (µ,σ), with location parameter µ and scale σ , and the pdf - cdf
combination given by φ(x) = 1

πσ

1
1+
(
(x−µ)2

σ2

) , F(x) = 1
2 +

1
π

tan−1
( x−µ

σ

)
.

Again, standard results suggest that for IID X1, · · · ,Xn∼G (µ,σ), we have 1
n ∑

n
i=1 Xi∼G (µ,σ), meaning

that the spread of the aggregate risk is unchanged from the individual risk spread. So in this case risk
aggregation does not bring risk reduction benefit; it is neither desirable nor undesirable.

This suggests that risk aggregation in this case is undesirable - specifically, the notion of spreading
risks is sound when the underlying individual risks are light-tailed, but casts doubts on the wisdom of
doing so when the underlying risks are heavy-tailed.

3.2 Aggregating IID Catastrophic and Non-catastrophic Cyber-risks

We first consider aggregating IID risks Xi from the family C S (1), which are class of distributions that are
convolutions of symmetric and stable distributions with characteristic exponent α < 1 - those exhibiting
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an infinite mean and variance, and representing catastrophic cyber-risks. We have the following result, the
proof of which is in the APPENDIX (Pal et al. 2020).
Theorem 1 For IID r.v’s Xi ∼ C S (1), i = 1, · · · ,n, q ∈ (0,1), and n-vector of weights w,v ∈ Rn

+,

1. VaRq(Zw) < VaRq(Zv) if v ≺ w and v is not a permutation of w; in other words, the function
VaRq(Zw) is strictly Schur-concave in w ∈ Rn

+.
2. In particular, VaRq(Zw̄) < VaRq(Zw) < VaRq(Zw), ∀w ∈ In such that w 6= w and w is not a

permutation of w̄.

Theorem Implications - On a practical note, the theorem simply implies that when an aggregate cyber-
risk covering agency is faced with covering independent and identical catastrophic cyber-risk distributions,
the variance of the combined distribution increases with the number of piled up cyber-risks - a dampening
signal for-profit cyber-risk managers to contribute to a sustainable aggregate loss coverage market.

Now consider the special borderline case α = 1 (borderline catastrophic), which corresponds to IID
X1, · · · ,Xn with a symmetric Cauchy distribution S1(σ ,0,0). In this case, we have for all w = (w1, .....,wn)∈
In, Zw = ∑

n
i=1 wiXi =d X1. Consequently, VaRq(Zw) =VaRq(X1) is independent of w and is the same for all

portfolios of risk Xi with weights w∈In. In other words, in such a case variations in a portfolio has no effect on
riskiness of its aggregate return. Thus, the symmetric Cauchy distribution with characteristic exponent α = 1
is the boundary between extremely heavy-tailed distributions (for which aggregate coverage is statistically not
incentive compatible) with infinite first moments, and moderately heavy tailed distributions with finite first
moments (aggregate coverage might be sustainable). Similarly, for general weights w = (w1, ....,wn) ∈Rn

+,
α = 1 implies Zw = ∑

n
i=1 wiXi =d (∑n

i=1 wi)X1. Thus, VaRq(Zw) = (∑n
i=1 wi)VaRq(X1) is independent of w

so long as ∑
n
i=1 wi is fixed. Consequently, VaRq(Zw) is both Schur-convex and Schur-concave in w ∈ Rn

+
for IID Xi ∼ S1(σ ,0,0).

We now consider aggregating IID risks Xi from the family C S L C , which are class of distributions
that are convolutions of symmetric distributions that are either log-concave or stable with exponent α > 1
- those exhibiting finite mean and variance, and representing non-catastrophic heavy-tailed cyber-risks. We
now have a result on VaR performance post cyber-risk aggregation, the proof of which is in APPENDIX
(Pal et al. 2020).
Theorem 2 For IID r.v’s Xi ∼ C S L C , i = 1, · · · ,n, q ∈ (0,1), and n-vector of weights w,v ∈ Rn

+,

1. VaRq(Zw) > VaRq(Zv) if v ≺ w and v is not a permutation of w; in other words, the function
VaRq(Zw) is strictly Schur-convex in w ∈ Rn

+.
2. In particular, VaRq(Zw) < VaRq(Zw) < VaRq(Zw), ∀w ∈ In such that w 6= w and w is not a

permutation of w̄.

Theorem Implications - On a practical note, the theorem simply implies that when an aggregate
cyber-risk covering agency is faced with covering independent and identical non-catastrophic cyber-risk
distributions, the variance of the combined distribution does not increase with the number of piled up
cyber-risks - simply an encouraging signal for-profit cyber-risk managers to contribute to a sustainable
aggregate loss coverage market. While this latter point has long been believed and empirically validated in
the cyber-insurance research literature, the result from Theorem 1 is a surprising new facet that we unravel
in this paper via theory.

4 FEASIBILITY ANALYSIS AFTER CURTAILING CYBER-RISK TAILS

Most if not all cyber-(re)insurance firms are risk-averse in cyber-settings. Consequently, they would enforce
coverage limits on incumbent heavy-tailed catastrophic cyber-risks. The conservative question we ask in
this section is: is it statistically feasible (incentive compatible) for an aggregate risk manager to cover
aggregate curtailed (non) i.i.d. cyber-risks that have heavy tails? We emphasize again that the term
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‘statistical feasibility’ is synonymous with the commercial (un)viability of a cyber-risk manager to cover
aggregate risks with increasing spreads. with respect to the nature of aggregate cyber-risk spread. Here,
we define2 the a-truncated version of a random variable Xi as:

Yi(a) =


Xi, if |Xi| ≤ a,
−a, if X < a,
a if X > a .

(6)

Similarly, we note by Yw(a) the a-truncated version of the r.v. Xw = ∑
n
i=1 wiXi given a weight vector w. We

note that a negative feasibility outcome of conservative case of i.i.d. cyber-risks provides a clear qualitative
indication that the feasibility outcome might be negative for non-identical and dependent cyber-risks.

4.1 Tail behavior when aggregating individually curtailed risks

We now analyze what happens when aggregating multiple heavy-tailed risks each of which has been
curtailed. We also study the role of how the length of the distributional support needed for the analogue to
hold depends on the number of cyber-risks in a manager’s portfolio and the degree of heavy-tailedness of
unbounded cyber-risk distributions. We have the following result, an analogue of Theorem 1 for curtailed
catastrophic cyber-risks, in this regard.
Theorem 3 Let n ≥ 2 and let w ∈In be a weight vector with w[1] 6= 1. Let Xi, i = 1, · · · ,n be IID r.v.’s
∼ C S (r) for some r ∈ (0,1) and their respective a-truncated version given by Yi defined above. Denote
G(w,z) = P(w[1]X1 +w[2]X2 > z)−P(X1 > z), which is positive if w[1] 6= 1 (via Theorem 1). For any z > 0,
and all

a >

(
E[|X1|r](n−1)

2G(w,z)

) 1
r

, (7)

the following inequality holds:
P(Yw(a)> z)> P(Y1(a)> z). (8)

Note that G(w,z) reflects that VaRq[Xw]>VaRq[w[1]X1 +w[2]X2]>VaRq[X1].
The implications of this theorem are multifarious and are presented in multiple blocks.
Implication 1 - The practical implications of the theorem are analogous to Theorem 1 in the case of

bounded cyber-risks. More specifically, cyber-risk aggregation coverage continues to be disadvantageous
for catastrophic truncated heavy-tailed distributions. For n ≥ 2 and any cyber-risk valuation z > 0, there
exists n cyber-risks with finite support with the property that the variance return of the aggregate cyber-risk
portfolio is riskier than that of the portfolio consisting of a single cyber-risk. From a mathematical viewpoint,
Theorems 1 and 3 indicate that VaR is not sub-additive and, thus, its coherency is always violated in the class
of extremely heavy-tailed cyber-risks with infinite first moments. More specifically, Theorem 3 implies
that VaR may also be non-coherent in the world of cyber-risks with bounded distributional support.

Implication 2 - We note that in the special case of a cyber-risk portfolio with equal weights, w̃n =(1
n ,

1
n , ....,

1
n

)
, we have

G(w̃n,z) = P
(

X1 +X2

2
> z
)
−P(X1 > z). (9)

This means that the length of the distributional support reflecting statistical incentive non-compatibility
to aggregate cyber-risk coverage in Theorem 3 can be taken to be same for all the portfolios with equal
weights w̃n. This holds, obviously, for the whole class of the portfolios w such that w[1] <

1
2 . Furthermore,

a similar result holds as well for the class of portfolios w such that w[1] < 1− ε , (and, thus, wi < 1ε for
all i), where 0 < ε < 1

2 . As follows from the proof of Theorem 3, for all such portfolios w, the theorem

2This definition of truncation moves probability masses to the edges of the distribution.
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holds for a >
(
E[|X1|r](n−1)

2G̃(w,z)

) 1
r
, where G̃(ε,z) = P((1− ε)X1 + εX2 > z))< G(w,z). This follows since any

vector w with w[1] < 1− ε is majorized by the vector (1− ε,ε,0, ..,0).
Implication 3 - From the proof of Theorem 3, it follows that, in the special case of portfolios with

equal weights w̃n =
(1

n ,
1
n , . . . ,

1
n

)
where n > 2, the length of the interval of truncation a can be reduced to

a smaller value. In such a case, the theorem holds under the restriction a >
(

E|X1|r(n−1)
2Fn(z)

)1/r
, where

Fn(z) = P
(

∑
n
i=1 Xi

n
> z
)
−P(X1 > z) (10)

Note that, by Theorem 1, Fn(z) > H(z) = G(w̃n,z) for n ≥ 3. This suggests that if the support is large
compared to the number of cyber-risks to be aggregated, it might be infeasible for an aggregate risk manager
to cover the risks. This demonstrates the “unpleasant” properties of VaR as a cyber-risk measure under
heavy-tailedness does not arise from the relatively high likelihood of getting very large losses but rather
from the fact that there are too few cyber-risks available for the profitable aggregate cyber-risk coverage
to work.

Implication 4 - Theorem 3 also shows that, for a specific loss probability q, there exists a sufficiently
large a such that the value at risk VaRq[Yw(a)] of the return Yw(a) at level q is greater than the value at
risk VaRq[Y1(a)] of the return Y1(a) at the same level: VaRq[Yw(a)] > VaRq[Y1(a)]. This highlights the
infeasibility or lack of incentive compatibility feature of covering aggregate heavy-tailed cyber-risks. One
should emphasize that the last inequality between the returns Yw(a) and Y1(a) holds for the particular
fixed loss probability q and, in the comparisons of the values at risks VaRq [Yw(a)] and VaRq [Y1(a)] , the
length of the interval needed for the reversals of the stylized facts on the portfolio variation depends on
q (similar to the fact that in Theorem 3, the length of the distributional support a depends on the value
of the disaster level z - denoting the degree of heavy-tailedness). The crucial qualitative difference of the
results in Theorem 2 for bounded/curtailed cyber-risk distributions and their implications for the value at
risk, from those given by Theorem 1 and Theorem 3 for unbounded risks, where the inequalities hold for
all z > 0 and all q ∈ (0,1).

Implication 5 (The special case of non-identical distributions) - Analogues of Theorem 1 hold for i.i.d.
risks X1, . . . ,Xn that have skewed extremely thick-tailed stable distributions with infinite first moments:
Xi∼ S0<α<1(σ ,β ,0),α ∈ (0,1),σ > 0,β ∈ [−1,1], i= 1, . . . ,n.As follows from the proof of Theorem 3, this
implies that complete analogues of the results in the present section for bounded versions of symmetric risks
from the classes C S (r) continue to hold for truncated extremely heavy-tailed stable distributions Sα(σ ,β ,0)
with α ∈ (0,1),σ > 0, and an arbitrary skewness parameter β ∈ [−1,1]. In particular, Theorem 3 continues

to hold for arbitrary skewed risks Xi ∼ Sα(σ ,β ,0), α ∈ (0,1),σ > 0,β ∈ [−1,1] if a >
(

E|X1|r(n−1)
G(w,z)

)1/r
.

4.2 When Not to Spread Curtailed Cyber-Risks?

In Theorem 3, we proposed conditions under which it is statistically incentive compatible for a (re)-insurer
to spread catastrophic cyber-risks having heavy tails. In this section, we further study the implications of
Theorem 3, by analyzing under which conditions it will not be optimal to spread risks. To calculate bounds
from (14), we need bounds on E|X |r,G(ω,z), and for uniformly diversified portfolios, on Fn(z).

We assume i.i.d. risks X1,X2, . . . ,Xn in Sα(σ ,β ,0) with α ∈ (r,1),β ∈ [−1,1] and σ > 0. From
(Zolotarev 1986), we have that, for X ∈ Sα(σ ,β ,0),r < α < 1

E|X−med(X)|r ≤ 22+r/α
σ

r
Γ

(
1− r

α

)
Γ(r)sin

(
π

2
r
)

(11)
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where med(X) denotes the median of X and Γ(x) =
∫

∞

0 e−ttx−1dt is the Gamma function. Furthermore,
according to (Zolotarev 1986), if α ∈ (0,1), then, using the notation Qα,β ,σ (x) for P(X > x)

Qα,β ,σ (x) =
1

απ

∞

∑
k=1

(−1)k−1 Γ(kα +1)
kΓ(k+1)

sin
(

kπα(1+β )

2

)
σ kα

xkα
(12)

x > 0 We also use the fact that P
(
w(1)X1 +w(2)X2 > z

)
= P

(
X1 >

z[
(w(1))

α
+(w(2))

α
]1/α

)
and more generally

(for arbitrary nonnegative vectors summing to one, w ) P(∑n
i=1 wiXi > z) = Qα,β ,σ (z/‖ẇ‖α) where ‖w‖α =(

∑
n
i=1 (wi)

α
)1/α

. Specifically, 1/‖w̃′n‖α
= n1−1/α . Therefore, we have:

G(w,z) = Qα,β ,σ

(
z[

(w(1))
α
+(w(2))

α
]1/α

)
−Qα,β ,σ (z) and

Fn(z) = Qα,β ,σ

(
zn1−1/α

)
−Qα,β ,σ (z), (13)

where Qα,β ,σ is defined in (12).
If we wish to introduce a time dimension, we can define the T-scaling operator: ΛT : x 7→ T x. The

well-known the T 1/2 rule for Brownian processes, W , implies that W ◦ΛT
d
= T 1/2×W. For processes in

Sα(σ ,0,0) this generalizes to the T 1/α ” rule (Mandelbrot et al. 1997)
)
, i.e., for X : R+→ R, a stable

stochastic process with X(1)∼ Sα(σ ,0,0), we have X ◦ΛT , T 1/α×X . Thus, for such processes properties
scale-up faster over time than for Brownian processes. With this T 1/α scaling in mind, for X1, . . . ,Xn stable
processes Xi : R+→R and Xi(t) ∈ Sα

(
t1/ασ ,0,0

)
, we can define the truncated processes Xa

i (T ) = Xi(T ),
if |Xi(T )| ≤ aT 1/α ,Xa

i (T ) = aT 1/α if Xi > aT 1/α and Xa
i (T ) = −aT 1/α if Xi < −aT 1/α . With these

definitions, it is clear that σ changes to (T2/T1)
1/α

σ in equations (13)− (15) when going from time-scale
T1, to time-scale T2

We first study the symmetric case, i.e., the case when β = 0. For simplicity, we begin with the case
when there are two assets, n = 2, and study how a depends on w(1) (and w(2) = 1−w(1) ). In this case, the
analogue of equation (11) is (from (Zolotarev 1986)

E|X |r ≤ 2σ
r
Γ

(
1− r

α

)
Γ(r)sin

(
π

2
r
)

(14)

Furthermore, the asymptotic expansion (12) implies the following bounds for the tail of Qα,0,σ

1
απ

Γ(α +1)sin
(

πα

2

)
σα

xα
− 1

απ

Γ(2α +1)
4

sin(πα)
σ2α

x2α
< Qα,0,σ (x)<

1
απ

Γ(α +1)sin
(

πα

2

)
σα

xα
(15)

Using (15) for G(w,z), we get

G(w,z)> 1
απ

Γ(α +1)sin
(

πα

2

)
σα

zα

((
w(1)

)α
+
(
w(2)

)α −1
)
−

1
απ

Γ(2α+1)
4 sin(πα)

σ2α

[
(w(1))

α
+(w(2))

α
]2

z2α

(16)

Using bounds (7),(14) and (16) we get that Theorem 3 holds with the following easy to compute estimate
for the length of the distribution support:

ã =
zα/r(απ)1/rσ (r−α)/r(Γ(1− r

α )Γ(r)sin( π

2 r)
)1/r

(n−1)1/rΓ(α +1)sin
(

πα

2

)((
w(1)

)α
+
(
w(2))α −1

)
− Γ(2α+1)

4 sin(πα)
σα

(
(w(1))

α
+(w(2)))

2

z2

]1/r
(17)
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Thus, ã as a function of w(1) provides a sufficient condition for cyber-risk spreading into (w1,w2) not being
preferred to not spreading cyber-risk among other insurers.

Finally, we generalize to the case β 6= 0. Equation (14) and the right-hand-side inequality in (15)
implies the following bound for the median med(X) of a r.v. X ∼ Sα(σ ,β ,0)

|med(X)| ≤ 21/α
σ

(
1

απ
Γ(α +1)sin

(
πα(1+β )

2

))1/α

This and (11) imply that

E|X |r ≤ 2r/α
σ

r
(

1
απ

Γ(α +1)sin
(

πα(1+β )

2

))r/α

+22+r/α
σ

r
Γ

(
1− r

α

)
Γ(r)sin

(
π

2
r
)

(18)

Similar to (16), we obtain that, in the general case of skewed stable distributions,

G(w,z)> 1
απ

Γ(α +1)sin
(

πα(1+β )
2

)
σα

zα

((
w(1)

)α
+
(
w(2)

)α −1
)
−

1
απ

Γ(2α+1)
4 sin(πα(1+β ))

σ2α

[
(w(1))

α
+(w(2))

α
]2

z2α

(19)

Using bounds (18) and (19), we obtain that in the case of general skewed stable risks Xi ∼ Sα(σ ,β ,0),
Theorem 3 holds with the following easy to compute estimate for the length of the distribution support:

ã >

21/rzα/r(απ)1/rσ (r−α)/r
((

1
απ

Γ(α +1)sin
(

πα(1+β )
2

))r/α

+4Γ
(
1− r

α

)
Γ(r)sin

(
π(1+β )

2 r
))1/r

(n−1)1/r

[
Γ(α +1)sin

(
πα(1+β )

2

)((
w(1)

)α
+
(
w(2)

)α −1
)
− Γ(2α+1)

4 sin(πα(1+β ))
σα

(
(w(1))

α
+(w(2))

α
)2

zα

]1/r

The same type of analysis as for the case with β = 0 could now be carried out for general β ’s.

5 TRACE-DRIVEN SIMULATION

We consider 1553 cyber losses between 1995 and 2014 extracted from the SAS OpRisk database. For
detailed description of the data, we refer the reader to (Biener et al. 2015) and (Eling and Wirfs 2019).
We first perform several goodness-of-fit tests for several widely used distributions to characterize the true
nature of the cyber-loss distribution. Namely, we use the normal, log-normal, general Pareto, and peak-
over-threshold (POT) distributions, and not necessarily stable, for the purpose of comparison. Based on the
goodness-of-fit-statistics (using Log-Likelihood, AIC, BIC, Kolmogorov-Smirnoff, and Anderson-Darling
tests), we find that the generalized Pareto distribution and the POT approach fit the data best. The estimated
Pareto Index (the exponent in a power law distribution) characterizing a heavy-tailed distribution for the
generalized Pareto distribution is 0.62 and for the POT approach it is 0.81, using analysis adopted from
(Nešlehová et al. 2006). We thus can confirm that cyber risks are indeed very heavy tailed and the
expectation and variance do not exist. If a cyber-risk manager (e.g., an insurer) takes on a random risk X ,
a function of n - the number of cyber-risks it accepts to aggregate, the effective outcome (before opting
for cyber re-insurance services) for the insurer once X is realized is: V (x) = X ifX < k, and k ifX ≥ k,
where k is the limit of the amount of cyber-risk it can accept - true of practice. In the special case when
there is no limited liability, i.e., when k = ∞, we have V (X) = X for all X . If k < ∞, u is defined only on
[0,k], and without loss of generality u(k) = 0. Here, we assume the utility function of a perfectly rational
and risk-averse cyber-insurer to be generally of the following form: u(x) = (V (x))β , β ∈ (0,1), which is
the power utility function, and for x being a risk variable, is a Von-Neumann Morgentern (VNM) utility
function. β is degree of risk-aversion of the cyber-insurer.
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(a) 1a (b) 1b (c) 1c (d) 1d

Figure 1: Simulation Output.

Figure 1a shows the EU-theoretic performance based on a power utility function u(x) for aggregating
i.i.d. As expected (from theory), for normally distributed i.i.d. cyber-risks, we attain an increase in expected
utility with increase in the number of cyber-risks aggregated. However, this is not true for a heavy tailed
distribution such as the Pareto or the log-normal distributions. Using a Pareto index of 0.62 (as estimated
from the data, and indicating an extreme heavy-tailed distribution) changes, ceteris paribus, the result
completely, as shown in Figure 1b. Since the expected utility decreases monotonically, not providing any
(pooled with multiple CRMs) coverage management would be optimal and the aggregate coverage market
would fail completely. Figure 1c(d). shows that for cyber-risk with a Pareto Index of 1 (0.81) and limited
liability of k = 60, the expected utility of a single manager for different aggregation and cyber-risk pooling
sizes (#CRMs), is U-shaped (decreasing). The strange U-shape denotes that the benefit from aggregation
first decreases before it eventually increases again, only for borderline-heavy tailed cyber-risks.

6 SUMMARY AND FUTURE WORK

In this paper, we provided a rigorous general theory to elicit conditions on i.i.d. heavy-tailed cyber-
risk distributions under which a risk management firm will find it (un)profitable to provide aggregate
cyber-risk coverage for IoT-driven smart societies. As our primary novel contributions, we proved that
(a) spreading catastrophic heavy-tailed cyber-risks that are identical and independently distributed (i.i.d.),
i.e., not tail-dependent, is not an effective practice for aggregate cyber-risk managers, whereas spreading
non-catastrophic i.i.d. heavy-tailed cyber-risks is. We conducted a real-data driven numerical simulation
study to validate claims made in theory, where we relaxed the assumption regarding the stable structure of
cyber-risk distributions, as is usual in practice. As part of future work, we intend to extend our analysis
to non-i.i.d., i.e., tail-dependent heavy-tailed cyber-risks.
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