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ABSTRACT

Motivated by the growing interests in Bitcoin blockchain technology, we build a Monte-Carlo simulation
model to study the miners’ and mining pool managers’ decisions in the Bitcoin blockchain network. Our
simulation model aims to capture the dynamics of participants of these two different parties and how their
decisions collectively affect the system dynamics. Given the limited amount of monetary budget and mining
power capacity, individual miners decide on which mining pools to join and determine how much hashing
power to invest. Mining pool managers need to determine how to appropriately allocate the mining reward
and how to adjust the membership fee. In addition to the aforementioned miner and pool behavior, we
also characterize the system-level dynamics of the blockchain in terms of mining difficulty level and total
hashing power.

1 INTRODUCTION

Blockchain is a distributed database that maintains a dynamic list of records, secured against tampering
and revision. As the first and most famous application of the technology, Bitcoin blockchain has attracted
tremendous attention since proposed by Nakamoto et al. (2008). In the Bitcoin network, the decentralized
community of individual participants replaces the trusted third party in traditional centralized systems.
Contrary to conventional distributed systems that employ Byzantine fault tolerance consensus (Bracha and
Toueg 1985; Correia et al. 2011), the Bitcoin system is considered revolutionary because it achieves a
consensus of the ordering and confirmation of transactions among untrusted distributed participants via a
mining game, which is referred to as the Nakamoto consensus. Specifically, participants of the mining
game, also called miners, compete to be the first to solve a highly complex computation puzzle. The
winner will confirm the next block of transactions, and more importantly, earn the corresponding payoff.
The incentive mechanism of the system is designed as follows: winning miners of each mining game are
rewarded with a certain amount of newly minted Bitcoin (12.5 Bitcoins) and transaction fees from general
users as compensation.

Continuous participation in the mining game can be extremely energy-consuming, which incurs a
nontrivial amount of costs. Nevertheless, there have been nearly 10,000 active Bitcoin network nodes
(participants) on a daily basis, since the bull run of Bitcoin price (nearly $20,000) in late 2017 (Yeow
2020; Coin Dance contributors 2020). At the time of writing, the Bitcoin-USD rate is around $7,000
(Blockchain.com contributors 2020), which consequently is attracting miners to conduct the daily operations
of the system, such as minting new coins and recording transactions. It is well known that solo-mining
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will no longer be able to sustain any profitable mining activities in the current days. In order to win mining
games more steadily, profit-driven individual miners have conglomerated to form mining pools. Miners in
the same mining pool collaborate with each other to compete in the mining game, and more importantly,
share the mining reward (Rosenfeld 2011).

In the latest years, there are several papers using simulation models to evaluate various aspects of
blockchain systems. Two main simulation methodologies are employed: discrete-event and agent-based
models. In the first stream, Alharby and van Moorsel (2019) propose an event-driven model with transactions
and emphasize on the block creation through proof-of-work (PoW); Aoki et al. (2019) involve events of
block generation, block propagation, and message transmission/reception. In the second stream, Cocco and
Marchesi (2016) reproduce the economy of the mining process with heterogeneous agents by including
the Bitcoin transactions and price series; Kaligotla and Macal (2018) provide a generalized framework of
modeling blockchain simulation by illustrating the essential agents and functioning of the system; Rosa
et al. (2019) develop a security attack testing platform by exploiting parallel and distributed simulation
(PADS) techniques with extended scalability.

To the best of our knowledge, we are the first to consider the individual budget constraint during the
mining process. In addition, we embed more details of the process of block production through submitting
shares within mining pools. Meanwhile, different share-based pool reward policies are also included. To
investigate the miner behavior, two crucial decisions are involved, i.e., mining and pool selection. Aiming
to provide a platform with comprehensive functionalities and configurations of the Bitcoin system, our
proposed model also includes the membership fee adjustment and the adaptive difficulty mechanism.

Our simulation results generate some interesting results. First, our result shows that an initial oligopolis-
tically distributed mining market does not eventually develop into a monopoly in the course of time. Next,
we also observe that medium size mining pools can attract more individual miners than both small and large
pools; this may provide some guidelines to the manager/operator of the emerging Bitcoin mining pool.
Third, we validate that the dynamic adjustment of the mining difficulty is effective in terms of maintaining
a stable block generation rate. Finally, we reveal an interesting relationship between the mining power
allocation rule and the real-time difficulty level; such a relationship may help an individual miner to predict
the dynamics of the total hashing rate of a new campaign by observing the change of difficulty level, in
order to optimize her mining strategy.

The remainder of the paper is organized as follows. Section 2 describes model settings, assumptions
and detailed algorithms. Section 3 gives input data and parameters, and presents experiment results. Finally,
we provide concluding remarks and discuss future research opportunities in Section 4.

2 SIMULATION MODEL

2.1 Multi-Layer Model Scope

Our simulation model aims to explore what influences the collective and heterogeneous behaviors of miners
and mining pools.
Layer 1: individual miner. The first and most fundamental layer of decision is individual miners. Because
they participate in mining to gain profits, miners will make their mining decisions based on their expected
profit. For each block added, the reward of the winner consists of two parts: transaction fees (roughly 1∼ 2
Bitcoins) and the Coinbase reward (currently 12.5 Bitcoins). The costs of mining include hardware costs
and utility costs. The fixed cost of mining hardware ranges from $50 to $10,500 in the market. According
to Morgan Stanley 2017 data, the total energy consumption of the Bitcoin network is equivalent to the total
electricity supporting 2 million U.S. homes.

In addition to the mining decision (i.e., to mine or not to mine), miners will also decide which mining
pool to join. Although the mining was first visioned to be performed by personal computers, over the years,
individual and group miners have conglomerated to form mining pools, because mining pools provide a
more steady income stream. On the other hand, mining pools charge membership fees, which is around
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1% ∼ 3% of the total reward for the main-stream ones. Furthermore, depending on the reward-sharing
policy, joining a mining pool affects the reward and cost structure for individual miners.
Layer 2: mining pool. Mining pool managers form the second layer in the Bitcoin blockchain network.
We consider the case where the mining pool only serves as a centralized collaboration platform for miners,
which is the direct opposite of the original Bitcoin design of a decentralized network. The primary objective
in managing a mining pool is to make a profit, which consequently requires the manager to balance the
incoming of new miners and the departure of old ones. New miners bring along hashing capacities, which
increase the winning probabilities. However, should there exist any mining pool whose total hashing power
is large enough to dominate the mining game, Bitcoin participants will inevitably question the credibility
of the system, which may result in the abandonment of network supporters and eventually the collapse of
the entire network. This would deprive the purpose and economic opportunities of a mining pool. Given
Bitcoin system states and available hashing power, pool managers aim to set the proper membership fees
and reward policies.
Metrics of Bitcoin system. We monitor the system-level dynamics, such as difficulty level and average
block generation times, while individual miners and mining pool managers are making decisions on different
levels. At the beginning of each 2-week period, the hashing difficulty level will be automatically adjusted;
the goal of this is to maintain a steady block generation rate.

2.2 Model Assumptions

In our simulation model, players (i.e., individual miners and pool managers) conduct a campaign-repeated
game. We set the maximum of campaigns to be w and the counter of campaigns to be W . Within each
campaign, there are exactly n = 2,016 valid blocks generated. We denote by XN the time to first generate
the Nth valid block in a single campaign. By Satoshi’s design, mining difficulty (i.e., a measure of how
difficult it is to find a hash value below a given target) is updated at the end of the W th campaign by

DW+1 = DW 600n
∑

n
N=1 XN (1)

with DW representing the difficulty of the W th campaign. The scaling is to maintain a nearly constant
block generating rate (1 per 600 seconds on average) (Narayanan et al. 2016). The residual time of the
current campaign is estimated by T̂ (N) = 600(n−N). Let I and J denote the sets of miners and pools.
Furthermore, we denote by I◦ the set of “idle” miners, Ip the set of passive miners, and Ia = I \Ip
the set of active miners, which will be explained later.
Assumptions on miner behavior. From the perspective of miner i ∈I , she is characterized by a type
vector θi = (bi,ci,γi, pi), where bi is the mining budget ($) within a campaign (correspondingly, we define
Bi to be her residual budget ($) in the campaign), ci is the mining cost ($/hash), γi is the individual valuation
parameter of Bitcoin, and pi is her maximal mining power (hash/s). An individual miner’s first decision is to
mine or not to mine. Let qi be binary variable, we write hi = qi pi as the mining power (hash/s) an individual
miner spends in the mining game. The “idle” miner set is formally defined as I◦ = {i ∈I | qi = 0}. We
denote by T̂i = Bi/(cihi) the estimated residual time until exhausting the budget under the mining policy
hi, T̂ = mini{T̂i}, and I◦ = argmini{T̂i}. When a miner is making a decision, she may face the following
two scenarios.

(i) When a block is mined and broadcast to the whole network, a miner will decide whether to turn on
her mining machine if it is profitable to participate in the mining of the next block in expectation.

(ii) In addition to Scenario (i), each “idle” miner i ∈ I◦ will periodically check if a new block is
released (this occurs once every ∆ seconds). After l consecutive attempts with “negative” outcomes,
the minor will, with probability η(l), decide whether to run her mining machine. We assume η(l)
is increasing in l.
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This monitoring mechanism mentioned in Scenario (ii) above can (a) maintain an acceptable fraction of
open mining machines at all times, and (b) help an “idle” miner to closely track the trend of the overall
hashing rate (regardless of other factors, such as Bitcoin market price, it can be a promising opportunity
to participate in mining game when the overall hashing rate is low). If a miner decides to participate in
mining the next block, she will execute the mining decision with probability

βi = min
{

Bi

T̂ (N)ci pi
, 1
}
.

A miner turns on the machine if her residual budget can cover the estimated mining expenditure (i.e.,
T̂ (N)ci pi) until the end of the campaign. Because all budgets will be refilled at the beginning of a new
campaign, miners can be more aggressive in executing mining decisions towards the end of the current
campaign. For a miner i, the time to generate the Nth block (i.e., XN

i ) after updating difficulty is exponentially
distributed (Narayanan et al. 2016) with rate

µi =
hi

DW/D◦
,

where D◦ is the minimal difficulty. Since we also include the pool hopping decision, we use Pi ∈J for
miner i’s pool index. Moreover, we assume that miner i’s valuation of a Bitcoin Vi follows a distribution
FV (·;Γ,γi), parameterized by the exogenous market valuation Γ and her own valuation factor γi. In particular,
Vi = Ṽi1{Ṽi≥0} and Ṽi ∼N (Γ,γ2

i ), where Γ and γi are estimated by historical prices of Bitcoin (Table 3).
Following Salimitari et al. (2017), we apply prospect theory to model the loss and risk aversion nature

of miners during the pool hopping process. Suppose a miner with expected profit x joins a pool with mining
power share y, her utility is given by

U
(
x, y; λi, φi, ωi, ρi

)
=V

(
x; λi, φi

)
·W
(
x, y; ωi, ρi

)
. (2)

The value function V
(
x; λ , φ

)
characterizes the reflection effect. In particular, it has the form of

V (x; λi, φi) :=

{
xφi if x≥ 0
−λi(−x)φi otherwise

with parameters λi > 1 and 0 < φi < 1. Moreover, to include the effect of the mining power distribution
among pools, the weight function W (x, y; ωi, ρi) is used to account for the certainty effect. In particular,

W (x, y; ωi, ρi) :=

{
yρi
[
yρi +(1− y)ρi

]−1/ρi if x≥ 0

yωi
[
yωi +(1− y)ωi

]−1/ωi otherwise

with parameters 0.5≤ ωi < ρi < 1.
Assumptions on pool policies. We denote by FW

j the membership fee of the W th campaign for the jth

mining pool from set J (i.e., a proportion of the total reward set by the pool manager). We will update
the membership fee based on shares. A share is a partial solution to the original puzzle of generating a
valid block, which is corresponding to a lower difficulty. The number of shares submitted can be used to
measure the computational power a miner/pool possesses. We assume that F1

j = F2
j ∼U (a, b), and

FW+1
j = FW

j +α j1{SW
j /SW−1

j >1+ε}−α j1{SW
j /SW−1

j <1−ε}, W ≥ 2, (3)

where SW
j counts the total shares produced by the jth pool within the W th campaign, the constant ε ∈ (0,1)

controls the sensitivity in the change of share numbers, and α j is the step size for the membership fee
adjustment. If the production of shares in a specific pool changes significantly, which leads to a notable
fluctuation of its mining power, the manager will take action to adjust the membership fee. In the simulation,
we apply two share-based mining pool reward policies (Rosenfeld 2011).
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• Proportional system (PROP): at the end of every round (i.e., the time between one block successfully
mined by the pool to the next), the pool manager will distribute the block reward among miners,
in direct proportion to the number of shares they submitted during this round.

• Pay per last N shares (PPLNS): instead of using the total number of shares in a round, the pool
manager focuses on the last “N” shares.

To implement these two policies, we introduce the following additional parameters: the difficulty shadow
factor of the jth pool δ j; the current difficulty to generate a valid share for the miners in the jth pool
DW

j = DW/δ j; the number of shares the ith miner needs to get a valid block Sb
i , which is a geometric

random variable with parameter 1/δPi ; the miner’s inter-share times {X s
ik}k=1,··· ,Sb

i
, which are independent

exponential random variables with rate

νi =
hi

DW
Pi
/D◦

= δPi µi.

System level metrics. On the system level, we record the following metrics:

• XN : the time first generating the Nth valid block in a campaign, XN = mini{XN
i };

• IN : the index of the miner first finds the Nth valid block in a campaign, IN = argmini{XN
i };

• JN : the index of the mining pool that miner IN comes from, JN = PIN ;
• bdW

j : the proportion of blocks found by the jth pool in the W th campaign;
• mdW

j : the proportion of miners of the jth pool in the W th campaign;
• pdW

j : the proportion of mining power capacity of the jth pool in the W th campaign;
• hd j(τ): the proportion of mining power committed in the jth pool at system time τ .

Other assumptions. Furthermore, we list other assumptions as follows.

• The individual valuation of Bitcoin Vi is independent.
• Considering a significant portion of hashing power belongs to the pool manager herself in practice,

we introduce the passive miner set Ip (Cong et al. 2019): passive miners stick to the same mining
pool instead of hopping periodically. We assume that a miner is passive with probability πp.

• Pool hopping with probability: at the end of each campaign, a miner prioritizes pools and joins the
kth one with probability hpk.

• Miners pool-hop at the end of each campaign, and the hopping time window is negligible.
• To avoid the collapse of the trustworthiness of the Bitcoin system caused by the over-centralization

of the hashing power, each mining pool sets an upper threshold UB of pool capacity.
• We ignore transaction fees included in each block.

2.3 Simulation Algorithms

In this subsection, we describe the detailed simulation algorithms. The main structure of the simulation is
illustrated in Figure 1. We describe the following event list: the time point of the next block generation
tA, the time point of the next block check tB, and the time point of the next miner to run out her budget
tC. The system state is updated by the next-event time advance approach in Algorithm 1.

Suppose miner i turns on her machine, the individual winning probability is

Pi =
µ̃i

µ̃i + µ̂
, where µ̃i =

pi

DW/D◦
and µ̂ =

N

∑
N
k=1 Xk

(4)

are the individual exponential rate when turning on her machine and the estimated overall mining rate,
respectively. Then we can use Pi to update the expected profit of the miner in Step 7 of Algorithm 1.
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Initialization W < w Update W ←W + 1 N < n Reset N ← 0

Update system status
via Algorithm 1

Update DW+1 by
(1), DW+1

j and ν j

Pool hopping via
Algorithm 3

Adjust member-
ship fee by (3)

Termination

yes

no
yes

no

Figure 1: Main routine of simulation

Algorithm 1 Subroutine: update system status

1: switch t←min{tA, tB, tC} do
2: case tA = t . The next event is block generation
3: Reset l← 0, update N← N +1.
4: if N = n then reset Bi← bi, i ∈I ; else update Bi← Bi− cihi(tA− τ), i ∈I . end if
5: Update βi←min

{
Bi

T̂ (N)ci pi
, 1
}

, i ∈I ; τ ← tA.

6: Distribute block reward within pool JN .
7: Update Pi by (4), E[Ri]← 12.5(1−FPi)ViPi−600ci pi, i ∈I .
8: if E[Ri]> 0 then update qi← 1 w.p. βi; qi← 0 w.p. (1−βi). end if
9: Update νi← qi pi

Dc
Pi
/Dm , i ∈I .

10: Update T̂i← Bi
cihi

, i ∈I ; T̂ ←mini{T̂i}, I◦← argmini{T̂i}.
11: Update XN+1

i , i ∈I . . See details in Algorithm 2
12: Update XN+1←mini:XN+1

i ≤T̂i
{XN+1

i }, IN+1← argmini:XN+1
i ≤T̂i

{XN+1
i }, JN+1← PIN+1 .

13: Update tA← τ +XN+1, tB← τ +∆.
14: end case
15: case tB = t . The next event is block check
16: Update l← l +1, I◦←{i ∈I | qi = 0}.
17: Update Bi← Bi− cihi(tB− τ), βi←min

{
Bi

T̂ (N)ci pi
, 1
}

, i ∈I ; τ ← tB.

18: Update qi← 1 w.p. βiη(l); qi← 0 w.p. (1−βiη(l)), i ∈I◦. Update νi← qi pi
Dc

Pi
/Dm , i ∈I◦.

19: Update T̂i← Bi
cihi

, i ∈I ; T̂ ←mini{T̂i}, I◦← argmini{T̂i}.
20: Update XN+1

i , i ∈I◦. . See details in Algorithm 2
21: Update XN+1←mini:XN+1

i ≤T̂i
{XN+1

i }, IN+1← argmini:XN+1
i ≤T̂i

{XN+1
i }, JN+1← PIN+1 .

22: Update tA← τ +XN+1, tB← τ +∆.
23: end case
24: case tC = t . The next event is one miner runs out her budget
25: Update Bi← Bi− cihi(tC− τ), βi←min

{
Bi

T̂ (N)ci pi
, 1
}

, i ∈I ; τ ← tC.
26: Update qI◦ ← 0, νI◦ ← 0.
27: Update T̂i← Bi

cihi
, i ∈I ; T̂ ←mini{T̂i}, I◦← argmini{T̂i}.

28: end case
29: Update tC← τ + T̂ .
30: end switch
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We next describe how miner i produces a valid block by submitting shares via Algorithm 2.

Algorithm 2 Subroutine: generate individual inter-block time via inter-share time

1: Generate Sb
i ∼ Geo(1/δPi).

2: Generate {X s
ik}k=1,··· ,Sb

i
∼ exp(νi).

3: Update the first inter-share time X s
i1← X s

i1 + l∆.

4: Update XN+1
i ← ∑

Sb
i

k=1 X s
ik.

We finally discuss the pool hopping decision in Algorithm 3. Suppose miner i joins pool j and a new
valid block is solved by the specific pool, the average Coinbase reward share of the miner is estimated by

Pi j = SW
i /SW

j 1{ j=Pi}+
SW

i /SW
Pi

bdW
Pi

bdW
j +SW

i /SW
Pi

bdW
Pi

1{ j 6=Pi}, (5)

where SW
i is the counter of shares generated by the ith miner in the W th campaign (the definition is similar

to SW
j ). The proportion of shares yielded by the miner in the current pool is SW

i /SW
Pi

, approximating the
proportion of her hashing power within the pool. The proportion of blocks produced by the jth pool during
the W th campaign is bdW

j , approximating the proportion of hashing power occupied by the pool. Then we
can use Pi j to update the expected profit of the miner i to join pool j in Step 1 of Algorithm 3.

Algorithm 3 Subroutine: pool hopping

1: Update Pi j by (5), E[Ri j]← 12.5(1−FPi)ViPi j−600ci pi, i ∈Ia, j ∈J .
2: Update ui j←U

(
E[Ri j], bd j

W ; λi, φi, ωi, ρi
)

by (2), i ∈Ia, j ∈J .
3: Order

{
ui j
}

j∈J to get the hopping priority { ji
1, ji

2, · · · , ji
k, · · · , ji

K} such that ui ji
1
≥ ui ji

2
≥ ·· · ≥ ui ji

k
≥

·· · ≥ ui ji
K
, where K = |J |, i ∈Ia.

4: Update Pi← ji
k w.p. hpk, i ∈Ia.

3 NUMERICAL EXPERIMENTS

3.1 Input Data and Parameters

Mining machines. Rauchs (2020) summarizes more than 80 different SHA-256 mining equipments,
among which, we list 5 popular ASICs with distinct hashing power in Table 1. The mining cost of each
machine is calculated based on the electricity price of 0.05$/kWh. For details, see Rauchs (2020) and
references therein. In our simulation, we assume a miner purchases her mining machine from Table 1 with
equal probabilities (see Table 3).

Table 1: Typical ASICs in mining market.

SHA-256 Mining Equipment Estimated Quantity
Hashing power

(Th/s)
Efficiency

(J/Gh)
Cost

($/Th)
1 MicroBT Whatsminer 10S 67,455 55 0.064 8.84E−07
2 Bitfily Snow Panther B1+ 390,400 25 0.086 1.19E−06
3 Bitmain Antminer T9 1,015,040 13 0.126 1.75E−06
4 Canaan AvalonMiner 741 89,826 7 0.158 2.19E−06
5 Bitmain Antminer S7 129,610 5 0.273 3.80E−06

Mining power distribution. There are in total 156,695 valid blocks generated over the time span of
February 2016 – January 2019. Wang et al. (2019) summarizes the distribution of valid blocks generated
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from top Bitcoin mining pools, which is the estimator of the mining power distribution over the network.
We consider the top 9 pools and group all other minor pools and solo miners into the 10 category, see in
Table 2. This shows that oligopoly indeed exists in the Bitcoin mining game: several players control a
large proportion of the hashing power (Cong et al. 2019), but none of them can dominate the entire mining
market solely (i.e., exceed the 50% threshold). Our model assumes that the ith miner’s pool index Pi is
initialized by a discrete probability distribution estimated by the proportions in Table 2.

Table 2: An overview of top 9 Bitcoin mining pools and others.

1 2 3 4 5
Mining Pool AntPool F2Pool BTC.com ViaBTC SlushPool
# of Blocks 27,026 19,282 17,488 12,100 12,002
Percent 17.2% 12.3% 11.2% 7.7% 7.7%

6 7 8 9 10
Mining Pool BTC.TOP BTCC BitFury BW.COM Others
# of Blocks 11,256 10,586 8,754 7,315 30,886
Percent 7.2% 6.8% 5.6% 4.7% 19.7%

Input parameters are listed in Table 3.

Table 3: Summary of input parameter design.

Parameter Description

Sy
st

em

r = 40 Number of simulation replications
w = 15 Number of campaigns in each replication
n = 2,016 Number of blocks in each campaign
∆ = 600 Period of block check
η(l) = 0.356−l1{1≤l≤6}+1{l>6} Probability of deciding to mine after l “negative” checks in

a row
Γ = $8,807.71 Market valuation parameter of Bitcoin

M
in

er

|I |= 300 Number of miners
πp = 20% Initialization probability to generate the passive set Ip
γi = γ = $1,490.16 Homogeneous individual valuation parameter of Bitcoin
(pi,ci) generated by U {1, 5} Maximal mining power and the corresponding mining cost
ξi = 200%,100%,50% equally likely Scaling factor of budget
bi = 2,016 ·600 · pi · ci ·ξi Mining budget of a single campaign
λi generated by U (1, 2) Loss aversion parameter of value function in prospect theory
φi generated by U (0, 1) Risk aversion parameter of value function in prospect theory
ωi generated by U (0.5, 1) Parameter of weight function for loss in prospect theory
ρi generated by U (ωi, 1) Parameter of weight function for gain in prospect theory

Po
ol

|J |= 10 Number of mining pools
a = 0.01 Lower boundary of the uniform distribution to initialize the

membership fee
b = 0.03 Upper boundary of the uniform distribution to initialize the

membership fee
α j = α = 0.002 Step size of the membership fee adjustment
ε = 0.002 Sensitivity parameter of the membership fee adjustment
δ j = δ = 1,000 Homogeneous difficulty shadow factor
sδ j = 2δ j Window size parameter “N” of PPLNS policy

Continued on next page
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Table 3 – continued from previous page
Parameter Description

Po
ol hpk =


0.8 if k = 1
0.8(1−∑

k−1
g=1 hpg) if 2≤ k ≤ K−1

1−∑
k−1
g=1 hpg if k = K

Hopping probability to the kth most profitable pool

UB = 0.40 Upper threshold of pool capacity

3.2 Experiment Results

We now present our simulation results and discuss how they can be used to generate useful insights. Figure 2
depicts the dynamics of shares and membership fees from three representative pools, having large, medium
and small mining capacities. Figure 3 illustrates the dynamics of mining difficulty and the histogram of
inter-block times. Figure 4 shows the dynamics of the total hashing rate of the whole system.
Mining pools. Given that pool managers apply the simple policy as in (3) for membership fee adjustment,
it is not surprising to see that the membership fees and the number of shares are coping with each other
(Figure 2a). Furthermore, in the real Bitcoin mining game, the mining power implementation is unobservable
among players. Even in the same pool, the hashing rate is not transparent to the pool manager or individual
miners. The number of valid shares submitted can be an effective estimator to measure the true hashing
rate within the pool. So we conclude that the mining power dynamics in a pool could be inferred by the
membership fee change. Because mining power is not equally distributed over the pools (Table 2), pools 1
and 2 own larger proportions of mining power, who yield the majority production of shares. Nevertheless,
as time evolves, we do not observe any monopolistic structure. Contributing factors of this result are the
finiteness of the pool capacity and the existence of passive miners.

(a) The dynamics of shares generated in each campaign and membership fees (a single replication).

(b) The dynamics of membership fees (average and 95% C.I. of 40 replications).

Figure 2: Simulation of 3 types of pools: large, medium and small.
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From Figure 2b, we can observe three different membership fee dynamics: (i) a steady curve in large
size pools (e.g., pool 1), (ii) an increasing trend in medium size pools (e.g., pool 2), and (iii) a decreasing
trend in small size pools (e.g., pool 3). As mentioned before, the increase and decrease of the mining
power occupied by each pool can be related to the corresponding changes of the membership fee. We
give some explanations: the expansion of the large size pool is limited by the capacity threshold as well
as the under-reaction of miners (modeled by prospect theory) during the pool selection process; on the
other hand, the medium size pool has a higher potential to attract individual miners. This observation may
be able to provide guidelines for some consortium interested in setting up a new mining pool: sufficient
initial mining power is essential to attract individual miners; however, the pool size cannot be too large,
which prevents the system’s mining power from being over-centralized and the blockchain network from
collapsing due to miners’ loss of trust.
System metrics. Figure 3a shows the convergence of the Bitcoin mining difficulty level as campaigns
evolve. It validates the effectiveness of the adaptive difficulty mechanism designed by Satoshi. The block
mining rate depends on the difficulty level and mining power committed by miners, which are updated
every 2,016 blocks and fluctuated according to individual mining decisions in real time, respectively. As
a result, new valid blocks occur according to a nonhomogeneous Poisson process (Bowden et al. 2018).
Nevertheless, the histogram reported in Figure 3b is similar to an exponential distribution. Hence, the new
block arrival rate function µ(t) is steady thanks to the bi-weekly difficulty adjustment mechanism. On the
other hand, we recognize that the estimated mean of inter-block time is 616.61 with standard deviation
643.49, which is slightly greater than 600, the idealistic value designed by Satoshi. This may be attributed
to the delay in updating the difficulty, see Kraft (2016), Meshkov et al. (2017), Garay et al. (2017).

(a) The dynamics of Bitcoin mining difficulty level
(average and 95% C.I. of 40 replications).

(b) The histogram of inter-block time (a single replication).

Figure 3: Bitcoin mining difficulty level and overall hash rate.

From Figure 4, we observe an interesting relationship between the mining power allocation rule and
the difficulty level dynamics: (i) if the current difficulty decreases significantly from the previous one,
the overall hashing rate exhibits an upward spike when approaching the end of the current campaign; (ii)
conversely, there is a downward spike towards the end of the current campaign. The reason for the first
scenario is that the current difficulty level is too high for miners with respect to their mining capacities and
budgets. Even though the mining activity is profitable, some miners have already exhausted their budgets.
On the other hand, the current difficulty level in the second scenario is relatively low so that miners will be
more risk-seeking (i.e., increasing βi’s ) to execute mining decisions, in order to spend all residual budgets
by the end of the campaign. This finding may help miners to predict the future allocation of the overall
mining power by taking advantage of the dynamics of the mining difficulty, and to select the optimal
timing to begin mining. For example, if a miner has a lower budget, she could mine more actively at the
beginning of a new campaign in Scenario (i); she should not turn on her machine idle until the end of a
new campaign in Scenario (ii).
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Figure 4: The dynamics of overall hashing rate (100-point moving average, one of replications).

4 CONCLUSION AND DISCUSSION

Summary. We develop a discrete-event Monte-Carlo simulation model to study the behavior of individual
miners and mining pool managers, with the objective of testing different mining and pool managing
policies. Compared with previous works, our model is more flexible and practical, because it includes
realistic features including hashing rate, mining cost, monetary budget, Bitcoin market price, mining pool
reward policies, and membership fees. Our simulation results may provide useful insights for individual
miners and pool managers in the realistic mining game. We first validate the effectiveness of the current
adaptive difficulty recalculation algorithm to approach the ideal block generation rate designed by Satoshi.
Another interesting finding here is that medium pools may have a greater growth potential than small and
large ones. Furthermore, the relationship between the overall hashing power implementation and difficulty
level may help individual miners to make more profitable mining decisions by choosing the appropriate
timing to mine.
Future works. We next plan to extend our simulation model to include various attacks and coping strategies
in the Bitcoin network, such as double-spending attack, selfish-mining attack, block withholding attack and
fork after withholding attack. Meanwhile, we may also consider Black Swan events, e.g., the skyrocket or
plummet of Bitcoin price and the outbreak of epidemic diseases.

REFERENCES
Alharby, M., and A. van Moorsel. 2019. “Blocksim: a simulation framework for blockchain systems”. ACM SIGMETRICS

Performance Evaluation Review 46(3):135–138.
Aoki, Y., K. Otsuki, T. Kaneko, R. Banno, and K. Shudo. 2019. “SimBlock: A blockchain network simulator”. In IEEE

INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 325–329. Piscataway,
New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Blockchain.com contributors 2020. “BTC to USD: Bitcoin to US Dollar Market Price - Blockchain”. https://www.blockchain.
com/charts/market-price, accessed 30th May.

Bowden, R., H. P. Keeler, A. E. Krzesinski, and P. G. Taylor. 2018. “Block arrivals in the Bitcoin blockchain”. arXiv preprint
arXiv:1801.07447.

Bracha, G., and S. Toueg. 1985. “Asynchronous consensus and broadcast protocols”. Journal of the ACM (JACM) 32(4):824–840.
Cocco, L., and M. Marchesi. 2016. “Modeling and Simulation of the Economics of Mining in the Bitcoin Market”. PloS

one 11(10).
Coin Dance contributors 2020. “Coin Dance — Bitcoin Nodes Summary”. https://coin.dance/nodes, accessed0 30th May.
Cong, L. W., Z. He, and J. Li. 2019. “Decentralized mining in centralized pools”. Technical report, National Bureau of Economic

Research.
Correia, M., G. S. Veronese, N. F. Neves, and P. Verissimo. 2011. “Byzantine consensus in asynchronous message-passing

systems: a survey.”. IJCCBS 2(2):141–161.
Garay, J., A. Kiayias, and N. Leonardos. 2017. “The bitcoin backbone protocol with chains of variable difficulty”. In Annual

International Cryptology Conference, 291–323. Springer.
Kaligotla, C., and C. M. Macal. 2018. “A generalized agent based framework for modeling a blockchain system”. In Proceedings

of the 2018 Winter Simulation Conference, edited by M. Rabe, A. A. Juan, N. Mustafee, S. J. A. Skoogh, and B. Johansson,
1001–1012. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

3162

https://www.blockchain.com/charts/market-price
https://www.blockchain.com/charts/market-price
https://coin.dance/nodes


Li, Liu, Wan and Zhang

Kraft, D. 2016. “Difficulty control for blockchain-based consensus systems”. Peer-to-Peer Networking and Applications 9(2):397–
413.

Meshkov, D., A. Chepurnoy, and M. Jansen. 2017. “Short paper: revisiting difficulty control for blockchain systems”. In Data
Privacy Management, Cryptocurrencies and Blockchain Technology, 429–436. Springer.

Nakamoto, Satoshi and others 2008. “Bitcoin: A peer-to-peer electronic cash system.(2008)”.
Narayanan, A., J. Bonneau, E. Felten, A. Miller, and S. Goldfeder. 2016. Bitcoin and cryptocurrency technologies: A

comprehensive introduction. Princeton University Press.
Rauchs, Michel 2020. “Cambridge Bitcoin Electricity Consumption Index (CBECI)”. https://www.cbeci.org/, accessed 30th May.
Rosa, E., G. D’Angelo, and S. Ferretti. 2019. “Agent-based Simulation of Blockchains”. In Asian Simulation Conference,

115–126. Springer.
Rosenfeld, M. 2011. “Analysis of bitcoin pooled mining reward systems”. arXiv preprint arXiv:1112.4980.
Salimitari, M., M. Chatterjee, M. Yuksel, and E. Pasiliao. 2017. “Profit maximization for bitcoin pool mining: A prospect

theoretic approach”. In 2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC), 267–274.
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Wang, C., X. Chu, and Q. Yang. 2019. “Measurement and analysis of the bitcoin networks: A view from mining pools”. arXiv
preprint arXiv:1902.07549.

Yeow, Addy 2020. “Global Bitcoin Nodes Distribution - Bitnodes”. https://bitnodes.io/, accessed 30th May.

AUTHOR BIOGRAPHIES
KEJUN LI is a Ph.D. student in the Department of Industrial and Systems Engineering at North Carolina State University.
His research interests include applied probability, simulation, game theory, and blockchain technologies. His e-mail address is
kli15@ncsu.edu.

YUNAN LIU is an associate professor in the Department of Industrial and Systems Engineering at North Carolina State University.
He earned his Ph.D. in Operations Research from Columbia University. His research interests include queueing theory, stochastic
modeling, simulation, applied probability, online learning, and optimal control, with applications to call centers, healthcare,
transportation, and blockchain systems. His email address is yliu48@ncsu.edu. His website is https://yunanliu.wordpress.ncsu.edu/

HONG WAN is an associate professor in the Department of Industrial and Systems Engineering at North Carolina State
University. She received her Ph.D. in industrial engineering and management sciences from Northwestern University. Her
research focuses on the areas of simulation data analysis, complex system simulation, and blockchain modeling, mechanism
design, and application. She is the director of the ISE blockchain lab, and serves as the editor in chief of Journal of Blockchain
Research and the associate editor of ACM TOMACS. She is a member of INFORMS, IISE, POMS and IEEE blockchain
society. Her email address is hwan4@ncsu.edu and her website is https://www.ise.ncsu.edu/people/hwan4/.

LING ZHANG is a last year Ph.D. student in the Department of Industrial and Systems Engineering at North Carolina State
University. His research interests include queueing theory, stochastic modeling, optimal control theory and simulation, with
applications in transportation, healthcare, and distributed consensus systems. His e-mail address is lzhang42@ncsu.edu.

3163

https://www.cbeci.org/
https://bitnodes.io/
mailto://kli15@ncsu.edu
mailto://yliu48@ncsu.edu
https://yunanliu.wordpress.ncsu.edu/
mailto://hwan4@ncsu.edu
https://www.ise.ncsu.edu/people/hwan4/
mailto://lzhang42@ncsu.edu

	INTRODUCTION
	SIMULATION MODEL
	Multi-Layer Model Scope
	Model Assumptions
	Simulation Algorithms

	NUMERICAL EXPERIMENTS
	Input Data and Parameters
	Experiment Results

	CONCLUSION AND DISCUSSION

