Proceedings of the 2020 Winter Simulation Conference
K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds.

REINFORCEMENT LEARNING IN ANYLOGIC SIMULATION
MODELS: A GUIDING EXAMPLE USING PATHMIND

Mohammed Farhan Brett Gohre
Edward Junprung
Industrial, Manufacturing, & Systems Engineering Pathmind.Inc
University of Texas at Arlington 1328 Mission Street
701 South Nedderman Drive San Francisco, CA 94103, USA

Arlington, TX 76019, USA

ABSTRACT

Reinforcement Learning has recently gained a lot of exposure in the simulation industry. In this paper, we
demonstrate the use of reinforcement learning in AnyLogic software models using Pathmind. A coffee shop
simulation is built to train a barista to make correct operational decisions and improve efficiency that
directly affects customer service time. The trained policy outperforms rule-based functions in terms of
customer service time and throughput.

1 INTRODUCTION

Reinforcement Learning (RL) as a simulation optimization technique has shown substantial results in the
fields of game playing and robotics (Kaelbling et al. 1996). Lately RL applications have spread across
domains like supply chain, social, environmental and health sciences. In Paternina-Arboleda et al. (2005),
a stochastic lot-scheduling problem (SELSP) was optimized using a dynamic RL policy to outperform
various cyclic policies to meet production constraints and keep setup, inventory, and backorder costs low.
In Probert et al. (2019), RL developed context-dependent dynamic response policies to minimize infectious
disease outbreaks outperforming human generated static policies. In Olsen and Fraczkowski (2015), RL
was used to study the coevolution of a predator-prey environment using an agent-based model to provide
population dynamics and evolutionary insights in species. A summary of different applications of RL can
be found in Li (2017).

Coffee shop operations have been previously studied with a focus on optimizing employee availability,
customer table placement, and reducing customer service time. In Kadioglu (2017), a coffee shop
simulation model concluded that increasing more baristas reduced the average service time. However, the
cost of adding more baristas increased the overall operational cost of the coffee shop. In this paper, we
study the operations of an imaginary coffee shop with a focus on the barista’s actions and show how the
sequence of actions affects the overall performance of the coffee shop by using RL. This model acts as a
guiding example that shows the ease of applying RL in AnyLogic models using the Pathmind Library. This
method can be easily mimicked to represent similar service industry models with similar decision points.

978-1-7281-9499-8/20/$31.00 ©2020 IEEE 3212

Farhan, Gohre, and Junprung

2 REINFORCEMENT LEARNING

Reinforcement learning is a core field of machine learning that deals with sequential decision-making
(Francois-Lavet et al. 2018). In Sutton and Barto (2018), RL is defined as a branch of machine learning
which deals with mapping situations to actions with a goal to maximize a numerical reward. Reinforcement
learning follows the principles of a Markov Decision Process (MDP) which comprises an agent, its
environment, its states, the possible actions, and a reward value shown in Figure 1. The agent is the decision
maker in the model and everything that can influence the agent's decision is its environment. At the start of
any learning, an agent is in State (St). Each action (A) an agent takes moves the agent to the next state
(St+1) and impacts the environment which provides a certain reward (R;). The reward obtained can either be
a positive or negative reward. This process repeats itself trying to maximize the overall reward value (Sutton
and Barto 2018). The general principle is to model the immediate impact of actions taken to yield better
long-term outcomes. The actions a learning agent takes may not have an immediate reward which is known
as a delayed reward. The process of trial and error search and delayed reward become the most important

feature of RL.
™ Agent Il
state| |reward action

Sr Rr Ar
R

;s,” Environment |[€——

Figure 1: Agent-environment interaction in an MDP (derived from Sutton and Barto (2018)).

2.1 What Simulation Models are Fit for Reinforcement Learning?

There are primarily three types of system simulation methods: Discrete-Event Simulation (DES), Agent-
Based Modeling (ABM), and System Dynamics (SD) (Owen 2008). Any simulation model that follows
the Markov decision process principles can be catered to use RL. In simulation models, RL acts as an
optimizer by itself, so models that are only for demonstration purposes or that use different input
parameters to observe the resulting change in the output metrics cannot benefit from the sequential decision
making aspect of RL. Due to the stochastic nature of real-world environments such as a coffee shop and
the actions of a barista following an MDP principle, this mechanism is suitable for our use case.

2.2 Why Use RL and How is it Better Than Other Optimization Techniques?

The focus of RL optimization is to maximize or minimize a certain reward which is then reflected in the
desired outcome. Machine learning models are heavily data centric (Schumann 2018). The actions
performed by the RL agent are dynamic in nature and are only dependent on observations from the
environment (simulation model or real world deployment). A simulation model is only required for training
the model-free policy, but it can work as a stand-alone model-free "Oracle™ for decision making in real
deployment. Optimization techniques like heuristics or stochastic optimization are static in nature and are
optimal for specific scenarios (Amaran et al. 2016). The user creating the heuristics must have strong
domain knowledge of the problem. The process of creating and testing various policies is time consuming
and could generate sub-optimal results. Any change in parameters of the simulation model would require
another non RL optimization experiment run which is also a tedious task. A good example would be that
of a traffic light optimization experiment. The non-RL optimization experiment would generate an optimal

3213

Farhan, Gohre, and Junprung

static duration of time for a traffic phase. Any change in the traffic schedule would make the solution non-
optimal. An RL policy can control the traffic phases dynamically based on the data provided and would not
require multiple experiments to obtain optimal results.

3 HYBRID SIMULATION MODEL

The simulation model was created using AnyLogic 8 Professional 8.5 software. The model time unit is
seconds and the simulation run time is 12 hours starting at 7 am and ending at 7 pm. The coffee shop model
has two agents — Customer and Server. The customer agents are modelled as a population of agents
following a discrete event modelling process while the server agent is the barista which is modelled with
the agent-based modelling principles. The combination of the two methods constitute the hybrid simulation
model of the coffee shop described in this paper. Rondini et al. (2017) highlights the advantages of using a
hybrid simulation model (DES and ABM) over a pure DES model in customer-oriented product service
system models.

3.1 Discrete-Event Model

The customer agents are modelled using a pedestrian library available in the AnyLogic software. The
pedestrian library works almost the same as the process flow library with the exception that the pedestrians
move according to the physical rules provided in the simulation environment and can also make decisions
based on the situation in the environment. The customers follow a discrete first in, first out flow. Customers
arrive at the coffee shop following an hourly rate schedule shown in Table 1. Multiple arrival schedules
showing a range of variability like Table 1 are used for training. The arrival time is recorded for each
customer in a variable called timestamp inside the customer agent.

Table 1: Customer hourly arrival rate.

Time period Customer arrival rate
07:00 am — 08:00 am 21
08:00 am — 09:00 am 28
09:00 am — 10:00 am 33
10:00 am — 11:00 am 30
11:00 am — 12:00 pm 28
12:00 pm — 01:00 pm 25
01:00 pm — 02:00 pm 23
02:00 pm — 03:00 pm 31
03:00 pm — 04:00 pm 24
04:00 pm —05:00 pm 26
05:00 pm —06:00 pm 29
06:00 pm — 07:00 pm 30

The customers go through three service blocks while in the system - Place Order, Collect Order and
Pay Bill before they exit the shop. Each service block requires the presence of the server. The service times
for each block is listed below in Table 2. The customer flow is shown in Figure 2. A kitchen cleanliness
variable with an initial value of 1.0 being the highest is added to the model. Each time a customer collects
his order, the kitchen cleanliness variable value is reduced by 0.01. A function called collectOrderDelay()
is created to calculate the delay time for collect order service block. With a kitchen cleanliness level of 1.0
the function uses PERT distribution with (minimum=30, maximum=90, mode=60) seconds as delay time.
With every 0.01 decrease in kitchen cleanliness, an additional 1 second delay is added to the total delay

3214

Farhan, Gohre, and Junprung

time for the collect order service block. If the server does not attend to the customer at the place order block
within a balk time limit, the customer would leave the coffee shop without placing the order. Statistics for
gueue length, balked customer count, successful customer count, and wait times for each service block are
recorded.

Table 2: Delay time for service blocks. * triangular (min, max, mode) **exponential (min, max, shift,
stretch) ***uniform (min, max).

Delay time distribution

Service block (in seconds)

Place order process Triangular (8, 25, 12) *
Prepare and deliver order process collectOrderDelay ()
Bill customer process Exponential (10, 45, 10, 2) **
Customer balk time Uniform (8, 12) ***

Reached
customer balked
limit?

Enter coffee shop
(customer arrival
rate)

Collect order
service block

Place order
service block

Pay bill
service block

Exit coffee shop
success

No

Exit coffee shop

Yes =M palked

Figure 2: Customer discrete-event flow.

3.2 Agent-Based Model

The Barista in the model is the decision maker and can take up tasks when idle such as — taking order,
preparing and delivering order, bill customers and clean the kitchen. The state chart library of AnyLogic is
used to model the barista’s actions. The state chart for the server is shown in Figure 3.

actionstate

®
| &
CLEAN
idl 1‘ I | cleani
idle & =0 cleaning
= 10 S\éjconds
PREP BX D)

I? BILL

[prepAndDeliverOrder]

Figure 3: Barista’s state-chart.

3215

Farhan, Gohre, and Junprung

The tasks are performed based on sending and receiving messages between the customers and the
barista. The actions of the barista are user controlled and can be controlled using a rule-based function to
send messages to the barista to trigger a specific action. The tasks can only be triggered when the barista is
in the idle state. Once the customer passes the defined delay time shown in Table 2 for their respective
service blocks, they send a message back to the server releasing the server back to idle state to perform
more tasks. The barista spends 10 seconds in cleaning state before returning to idle state. Each cleaning
state increases the kitchen cleanliness variable by 0.1.

3.3 Baseline Methods

A barista today is trained to perform their job based on a rulebook or experience from former baristas (Monk
and Ryding 2007). The barista’s actions in the model can be manually controlled by using user defined
buttons for each action or functions that get called if a condition is met. A user can choose to select an
action if the barista is in the idle state by pressing a button during the simulation run or an event can be
created to trigger these actions. To test our RL policy results, rule-based functions were created that
automate the action sequence a barista can perform. For any action selection to be valid, two primary
conditions are always checked irrespective of any method:

e The actions can be triggered only when the barista is in idle state.
e The queue length at the service blocks should be greater than zero if an action is chosen for that
respective service block.

3.3.1 Rule-Based Function 1

Customers in the place order queue are given priority over other tasks, followed by preparing order, and
then billing customers. Once the customer queues are empty, the kitchen cleanliness variable is checked. If
the kitchen cleanliness variable is lower than 0.9, cleaning action is taken. The code snippet for this function
is shown in Figure 4.

if (server.actionstate.getActiveSimpleState () == server.idle) {
if (placeOrder.queueSize (placeQueue) > 0) {
send (TAKE, server);
} else if (collectOrder.queueSize (waitToCollectArea) > 0) {
send (PREP, server);
} else if (payBill.queueSize (waitToPayArea) > 0) {
send (BILL, server);
} else if (kitchenCleanliness < 0.9) {
send (CLEAN, server);
}

Figure 4: Code for rule-based function 1.
3.3.2 Rule-Based Function 2

Barista’s actions follow a first in, first out (FIFO) flow for customers. The barista prioritizes the billing
queue first, followed by the preparing and delivering order queue and then the place order queue. Once the
customer queues are empty, the kitchen cleanliness variable is checked. If the kitchen cleanliness variable
is lower than 0.9, cleaning action is taken.

3216

Farhan, Gohre, and Junprung
3.3.3 Rule-Based Function 3

The kitchen cleanliness directly affects the delay time in preparing and delivering customer orders. So, the
priority is given to clean the kitchen first if kitchen cleanliness level is below 0.9. The customers in the
place order queue are given second preference followed by the collect order queue and then the billing
queue.

Average service time, successful customers, balked customers and average kitchen cleanliness are the
four output metrics for this study. After running Monte Carlo replications with 95% confidence using the
rule-based heuristics, the mean value and confidence intervals (CI) of the output metrics are shown in Table
3. The desired result would be to have lower service times and balked customers, and higher successful
customers and kitchen cleanliness. From the results, Rule-Based Function 2 outperformed other heuristics
in almost all output metrics setting a baseline for the trained policy.

Table 3: Baseline results.

Average service

time of Number of Number of Average kitchen

Heuristic Statistic successful balked _g

customer cleanliness level

. . customers customers

(in minutes)

Rule-Based mean 17.9 153.2 26.5 0.62
Functionl 95% ClI 16.4,19.3 145.3,161.2 22.6,30.4 0.6, 0.64
Rule-Based mean 4.8 259.4 5.8 0.91
Function2 95% CI 47,49 258.2 , 260.6 5.1,6.5 0.906, 0.914
Rule-Based mean 19.9 222 25.14 0.95
Function3 95% ClI 17.7,22.1 215.9, 228.2 20.6, 29.6 0.949, 0.950

4 REINFORCEMENT LEARNING IMPLEMENTATION USING PATHMIND

There are 5 important elements when implementing RL in Anylogic simulation models using Pathmind
Library — Observation Function, Reward Variables, Action Function, Action Trigger, and Reward Function.
Every element plays an important role in making sure the RL agent learns and behaves effectively. The RL
elements are included in an AnyLogic software library called PathmindHelper from Pathmind.Inc
(Pathmind 2020). All RL related functions are added in PathmindHelper before exporting the model for
training on the Pathmind web application.

4.1 Observation Function

All the actions an RL agent takes are based on the values that the observation function outputs. This makes
this function the eyes of the RL agent for the learning process. The observations provide the necessary
information needed about the simulation environment and impact the actions to be taken. The queue lengths
at each service block, the kitchen cleanliness level, and the current simulation time are sufficient to train
this model. More information can be provided based on the outcome of the training to fine tune the results
or speed up the learning process. The code snippet for observation function is shown in Figure 5.

double[] obs = new double[]{placeOrder.size(),collectOrder.size(),payBill.size(),
kitchenCleanliness, time () };
return obs;

Figure 5: Code for observation function.

3217

Farhan, Gohre, and Junprung

4.2 Reward Variables

The reward variable function provides information about the objective of the training. The user specifies
what variables are impacted from the actions a learning agent takes and can incentivize or penalize the
actions in the reward function. Kitchen Cleanliness, throughput, balked customers and average service time
are the output metrics for the study. The code snippet for reward variables is shown in Figure 6.

new double[]{kitchenCleanliness, payBill.out.count(), custFailExit.countPeds (),
serviceTime min.mean()}

Figure 6: Code for reward variable function.

4.3 Action Trigger

The action trigger informs the learning algorithm when to trigger the next action. Actions can be triggered
by a cyclic timed event say — every second or every 5 minutes. The trigger can also be due to a condition
being satisfied such as the server being in a certain state. For this model, we will trigger the action as a
combination of time and condition. The action is triggered every second, but can only occur when the server
is in the idle state.

4.4 Action Function

In this function, all possible actions a learning agent can take are mentioned. The function needs to pass an
argument of type int. Each action chosen by the policy would correspond to a specific task a learning agent
can do like inthe rule-based functions. In this model, the tasks are - taking an order, preparing and delivering
an order, billing a customer, and cleaning the kitchen. The action array can have 4 possible actions - 0, 1, 2
and 3. The code snippet for the action function is shown in Figure 7.

if (server.actionstate.getActiveSimpleState () == server.idle) {

if (action==0 && placeOrder.queueSize (placeQueue) > 0) {

send (TAKE, server);

} else if (action==1 && collectOrder.queueSize (waitToCollectArea) > 0) {
send (PREP, server);

} else if (action==2 && payBill.queueSize (waitToPayArea) > 0) {
send (BILL, server);
} else {

send (CLEAN, server);
+}

Figure 7: Code for action function.

45 Reward Function

A reward function is used to incentivize or penalize the actions a learning agent takes. The objective of the
learning agent would be to maximize its reward. The reward function is written for the reward variables
specified in Section 4.2. When an action trigger occurs, the learning agent saves the values of the reward
variable before the action is performed and after the action is performed. Two values called the “before”
and “after” are used to create the reward function. To maximize a reward variable, a positive reward can be
given if the “after” variable is higher than the “before” variable. In this experiment, maximizing the kitchen
cleanliness and number of successful customers is rewarded and minimizing the number of balked
customers and service time is penalized. Two reward function experiments are evaluated.

3218

Farhan, Gohre, and Junprung
4.5.1 Reward Function 1

The objective of this experiment is to train the policy for a desired outcome of having higher throughput,
lower balked customers and lower average service time. A value of 5 is multiplied to the average service
time to enable equal weightage of all variables since the difference in average service time between two
time steps is in decimals whereas the other two reward variables are integers. The code for reward function
1 is shown in Figure 8.

reward += after[1l] - before[l]; // Maximize successful exits
reward -= after[2] - before[2]; // Minimize balked customers
reward -= (after[3] - before[3])*5; // Minimize average service time

Figure 8: Code for reward function 1.
4.5.2 Reward Function 2

The objective of this experiment is to include an incentive for kitchen cleanliness since it directly affects
the overall service time. A value of 10 is multiplied to the difference of kitchen cleanliness levels to enable
equal weightage on all reward variables. The code for reward function 2 is shown in Figure 9.

Reward = (after[0] - before[0])*10; // Maximize Kitchen Cleanliness level
reward += after[l] - before[l]; // Maximize successful exits

reward —-= after[2] - before[2]; // Minimize balked customers

reward -= (after[3] - before[3])*5; // Minimize average service time

Figure 9: Code for reward function 2.

In one of the trial experiments, the reward function for the training only incentivized reducing the
overall service time. The policy obtained from this training decided to not take any orders from the
customers, hence keeping the service time to the lowest possible value of zero while the customers balked
in the system. It managed to achieve its highest reward score, but that did not match the actual objective of
the experiment. Hence, reward function shaping becomes an important piece for training since RL
optimization is data driven.

5 TRAINING ON PATHMIND

The simulation model is exported as a standalone Java application from AnyLogic after inputting all RL
functions. The exported folder is uploaded on the Pathmind web application to run the RL training on cloud.
The cloud platform allows users to run multiple experiments with different reward functions at faster
computational speeds to get the desired results. Two elements determine the accuracy and speed of the
training - RL training algorithm and RL hyperparameter tuning methodology. Pathmind uses the proximal
policy optimization (PPO) algorithm because of its ease of implementation, tuning, and state-of-the-art
performance on discrete and continuous action spaces (Schulman et al. 2017). A method called Population-
Based Training (PBT) pioneered by Google’s DeepMind was applied to train this model. The objective of
PBT is to automatically discover the best set of hyperparameters that encourage the learning agent to find
the best performing policy as quickly as possible (Jaderberg et al. 2017). PBT was found to be much more
time efficient in unearthing the best performing policy compared to other techniques (e.g. grid search).
Pathmind automates this process to simplify a user’s experience on running RL experiments.

Users create experiments on the Pathmind web application and frame the reward function mentioned
in Section 4.5 before beginning the training process. The web application shows the learning process curve

3219

Farhan, Gohre, and Junprung

by displaying the mean reward score per iteration (4,000 learning steps) as in Figure 10. A complete
simulation run is called an episode and each episode can have varying amounts of learning step sizes due
to the stochastic nature of the model. Each line in the graph represents a set of hyperparameter settings for
the RL. An upward converging trend is expected to confirm that the policy is learning with increasing
iterations. If the mean reward score does not change for a certain period of iterations, training is complete
and the RL policy will be ready to be downloaded. The policy can be imported back into AnyLogic to test
the results of the training.

6 RESULTS AND FINDINGS

A Monte Carlo experiment with 95% confidence is run using the trained policy and the output metrics are
shown in Table 4. To compare the different outputs obtained we make use of weighted scores. These
weights can vary based on the objective of a coffee shop owner. One owner might want to emphasize on
throughput while the other might give importance to kitchen cleanliness. In this paper, we will try four
different weight scores as shown in Table 5.

The comparison between the best baseline method and RL policies is shown in Table 6. Even though
kitchen cleanliness was not a motivating factor in Reward Function 1, it managed to score the highest in all
weighted scores. Reward Function 2 was denser as it incentivized higher kitchen cleanliness along with the
other reward variables. It managed to increase the average kitchen cleanliness factor by 0.01, but at the cost
of increasing the average service time. Since it spent action steps to maximize kitchen cleanliness the other
output metrics were affected. This implies that the optimal solution lies between the output values from
these two reward functions.

275
W
X -]
S 595 Iteration#:168
2 Mean Reward:250.1
) Episode Count:5
< 200
o
>
w 175
o
J
W
T 150
(1]
2
<P}
=
= 125
3]
[+P)
=

100

75

0 25 50 75 100 125 150
Iterations

Figure 10: Reward function 1 training.

3220

Farhan, Gohre, and Junprung

Table 4: Pathmind trained policy results.

Average Number of Number of ?(\i/tirhae%e
Policy Statistic service time of successful balked .
cleanliness
customer customers customers
level
mean 4,73 263.5 3.0 0.95
Reward
Function 1 ooon el 469,477 2621, 2648 2.7,33 0.949, 0.95
mean 5.45 261.62 2.66 0.96
Reward
FUNCUON 2 g50hc1 536,554 260.34,2629 2.29.3.03 0.958, 0.962
Table 5: Weights for output metrics.
Average Number of Number of Average
Weighted score service time successful balked kitchen
of customer customers customers cleanliness level
Weighted Score 1 -0.33 0.33 -0.33 0
Weighted Score 2 -0.25 0.25 -0.25 0.25
Weighted Score 3 -0.50 0.50 0 0
Weighted Score 4 0 0.5 0 0.5
Table 6: Weighted scores.
Methods Weighted Weighted Weighted Weighted
score 1 score 2 score 3 score 4
Rule-based function 2 82.1 62.4 127.3 130.1
Reward Function 1 84.4 64.1 129.3 132.2
Reward Function 2 83.65 63.6 128.0 131.2

7 CONCLUSION & FUTURE SCOPE

This paper demonstrates the ease in applying Reinforcement Learning to AnyLogic simulation models
using Pathmind Library so as to make better and faster decisions than rule-based heuristics. A hybrid
simulation model (DES and ABM) of a conceptual coffee shop with a single barista as a learning agent was
trained to perform actions using Reinforcement Learning. Two reward functions experiments were trained

3221

Farhan, Gohre, and Junprung

using the Pathmind web application. The two policies obtained from these reward functions performed
better than rule-based functions in all weighted scores. A user can create complex rule-based functions to
set a higher baseline for the RL policy to beat. The user creating the heuristics has to be a domain expert to
validate the results of the heuristics. RL relies only on the data provided by the user making it less biased
compared to heuristics. The simplicity of using the Pathmind cloud-based platform is that it does not require
prior knowledge of RL algorithms. This paper provides the basic concepts needed to apply RL in any
AnyLogic simulation model that satisfies the model criteria mentioned in Section 2.1.

The future of RL implementation in the coffee shop service industry can be that of a digital teller that
informs the barista of what its next actions should be. An artificial intelligent robot embedded with the
policy can also perform the barista’s tasks. The input in a real-world scenario can be from cameras or
sensors installed in the coffee shop that provide the observations for the learning agent. The RL policy can
be validated by testing it against a real-world coffee shop model. The RL policy could help coffee shop
owners improve the efficiency of their operations and save time and cost on training new baristas.

ACKNOWLEDGMENTS

The RL training was facilitated by Pathmind. A special thanks to Tyler-Wolfe Adam from the AnyLogic
software team for providing simulation modifications and insight.

REFERENCES

Amaran, S., N. V. Sahinidis, B. Sharda, and S. J. Bury. 2016. “Simulation Optimization: A Review of Algorithms and
Applications”. Annals of Operations Research 240(1):251-380.

Frangois-Lavet, V., P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau. 2018. “An Introduction to Deep Reinforcement
Learning”. Foundations and Trends in Machine Learning 11(3-4):219-254.

Jaderberg, M., V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue, A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Simonyan,
C. Fernando, and K. Kavukcuoglu. 2017. Population Based Training of Neural Networks. http://arxiv.org/abs/1711.09846,
accessed 141 July 2020.

Kadioglu, O. 2017. Applied Mathematics and Operations Research a Case: Starbucks Coffee Shop Simulation. Department of
Mathematics, Bahgesehir University. https://www.researchgate.net/publication/324748461_Applied_Mathematics_and_
Operations_Research A _Case_Starbucks Coffee Shop_ Simulation, accessed 151 June 2020.

Kaelbling, L. P., M. L. Littman, and A. W. Moore. 1996. “Reinforcement Learning: A Survey”. Journal of Artificial Intelligence
Research 4:237-285.

Li, Y. 2017. Deep Reinforcement Learning: An Overview. http://arxiv.org/abs/1701.07274, accessed 8™ July 2020.

Monk, D., and D. Ryding. 2007. “Service Quality and Training: A Pilot Study”. British Food Journal 109(8):627-636.

Olsen, M. M., and R. Fraczkowski. 2015. “Co-evolution in Predator Prey Through Reinforcement Learning”. Journal of
Computational Science 9:118-124.

Owen, C., D. Love, and P. Albores. 2008. “Selection of Simulation Tools for Improving Supply Chain Performance”. In
Proceedings of 2008 OR Society Simulation Workshop, January 1%, Warwickshire, UK.

Paternina-Arboleda, C. D., and T. K. Das. 2005. “A Multi-Agent Reinforcement Learning Approach to Obtaining Dynamic Control
Policies for Stochastic Lot Scheduling Problem”. Simulation Modelling Practice and Theory 13(5):389-406.

Pathmind.Inc. 2020. http://pathmind.com, accessed 14™ April.

Probert, W. J. M., S. Lakkur, C. J. Fonnesbeck, K. Shea, M. C. Runge, M. J. Tildesley and M. J. Ferrari. 2019. “Context Matters:
Using Reinforcement Learning to Develop Human-Readable, State-Dependent Outbreak Response Policies”. Philosophical
Transactions of the Royal Society Biological Sciences 374(1776):20180277.

Rondini, A., F. Tornese, M. G. Gnoni, G. Pezzotta, and R. Pinto. 2017. “Hybrid Simulation Modelling as a Supporting Tool for
Sustainable Product Service Systems: A Critical Analysis”. International Journal of Production Research 55(23):6932—6945.

Schulman, J., F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. 2017. Proximal Policy Optimization Algorithms. https:/
Jarxiv.org/abs/1707.06347, accessed 8™ July 2020.

Schumann, B. 2018. Time to Marry Simulation Models and Machine Learning. https://www.benjamin-schumann.com/blog/2018/5
/7ltime-to-marry-simulation-models-and-machine-learning, accessed 14™ June 2020.

Sutton, R. S., and A. G. Barto. 2018. Adaptive Computation and Machine Learning. Reinforcement Learning: An Introduction.
2nd ed. Cambridge, Massachusetts: The MIT Press.

3222

http://arxiv.org/abs/1711.09846
https://www.researchgate.net/publication/324748461_Applied_Mathematics_and_Operations_Research_A_Case_Starbucks_Coffee_Shop_Simulation
https://www.researchgate.net/publication/324748461_Applied_Mathematics_and_Operations_Research_A_Case_Starbucks_Coffee_Shop_Simulation
http://arxiv.org/abs/1701.07274
http://pathmind.com/
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://www.benjamin-schumann.com/blog/2018/5/7/time-to-marry-simulation-models-and-machine-learning
https://www.benjamin-schumann.com/blog/2018/5/7/time-to-marry-simulation-models-and-machine-learning

Farhan, Gohre, and Junprung

AUTHOR BIBLIOGRAPHY

MOHAMMED FARHAN is a PhD Candidate in the Department of Industrial, Manufacturing, & Systems Engineering at The
University of Texas at Arlington. He is currently working as a graduate researcher with Pathmind.Inc with focus on combining
simulation models and Reinforcement Learning. His research interests include hybrid simulation, human behavior modelling,
artificial intelligence, and supply chain management. His expertise lies in modelling hybrid simulation models of socio-
environmental systems using reinforcement learning capabilities. His email address is farhanm@exchange.uta.edu.

BRETT GOHRE is a Lead Reinforcement Learning Scientist at Pathmind. His primary interest is building an adaptive decision-
making Al into a generally accessible product. Brett holds degrees in Physics from the University of California, Berkeley and Santa
Cruz. His email address is brett@pathmind.com.

EDWARD JUNPRUNG is a Product Manager at Pathmind. His primary interests include the practical applications of Al and

Reinforcement Learning. Edward holds a B.S. in Management Science and Accounting from the University of California, San
Diego. His email address is edward@pathmind.com.

3223

mailto:farhanm@exchange.uta.edu
mailto:brett@pathmind.com
mailto:edward@pathmind.com

