
Proceedings of the 2020 Winter Simulation Conference

K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds.

REINFORCEMENT LEARNING IN ANYLOGIC SIMULATION

MODELS: A GUIDING EXAMPLE USING PATHMIND

Mohammed Farhan

Brett Göhre

Edward Junprung

Industrial, Manufacturing, & Systems Engineering Pathmind.Inc

University of Texas at Arlington 1328 Mission Street

701 South Nedderman Drive San Francisco, CA 94103, USA

Arlington, TX 76019, USA

ABSTRACT

Reinforcement Learning has recently gained a lot of exposure in the simulation industry. In this paper, we

demonstrate the use of reinforcement learning in AnyLogic software models using Pathmind. A coffee shop

simulation is built to train a barista to make correct operational decisions and improve efficiency that

directly affects customer service time. The trained policy outperforms rule-based functions in terms of

customer service time and throughput.

1 INTRODUCTION

Reinforcement Learning (RL) as a simulation optimization technique has shown substantial results in the

fields of game playing and robotics (Kaelbling et al. 1996). Lately RL applications have spread across

domains like supply chain, social, environmental and health sciences. In Paternina-Arboleda et al. (2005),

a stochastic lot-scheduling problem (SELSP) was optimized using a dynamic RL policy to outperform

various cyclic policies to meet production constraints and keep setup, inventory, and backorder costs low.

In Probert et al. (2019), RL developed context-dependent dynamic response policies to minimize infectious

disease outbreaks outperforming human generated static policies. In Olsen and Fraczkowski (2015), RL

was used to study the coevolution of a predator-prey environment using an agent-based model to provide

population dynamics and evolutionary insights in species. A summary of different applications of RL can

be found in Li (2017).

 Coffee shop operations have been previously studied with a focus on optimizing employee availability,

customer table placement, and reducing customer service time. In Kadioglu (2017), a coffee shop

simulation model concluded that increasing more baristas reduced the average service time. However, the

cost of adding more baristas increased the overall operational cost of the coffee shop. In this paper, we

study the operations of an imaginary coffee shop with a focus on the barista’s actions and show how the

sequence of actions affects the overall performance of the coffee shop by using RL. This model acts as a

guiding example that shows the ease of applying RL in AnyLogic models using the Pathmind Library. This

method can be easily mimicked to represent similar service industry models with similar decision points.

3212978-1-7281-9499-8/20/$31.00 ©2020 IEEE

Farhan, Göhre, and Junprung

2 REINFORCEMENT LEARNING

Reinforcement learning is a core field of machine learning that deals with sequential decision-making

(François-Lavet et al. 2018). In Sutton and Barto (2018), RL is defined as a branch of machine learning

which deals with mapping situations to actions with a goal to maximize a numerical reward. Reinforcement

learning follows the principles of a Markov Decision Process (MDP) which comprises an agent, its

environment, its states, the possible actions, and a reward value shown in Figure 1. The agent is the decision

maker in the model and everything that can influence the agent's decision is its environment. At the start of

any learning, an agent is in State (St). Each action (At) an agent takes moves the agent to the next state

(St+1) and impacts the environment which provides a certain reward (Rt). The reward obtained can either be

a positive or negative reward. This process repeats itself trying to maximize the overall reward value (Sutton

and Barto 2018). The general principle is to model the immediate impact of actions taken to yield better

long-term outcomes. The actions a learning agent takes may not have an immediate reward which is known

as a delayed reward. The process of trial and error search and delayed reward become the most important

feature of RL.

Figure 1: Agent-environment interaction in an MDP (derived from Sutton and Barto (2018)).

2.1 What Simulation Models are Fit for Reinforcement Learning?

There are primarily three types of system simulation methods: Discrete-Event Simulation (DES), Agent-

Based Modeling (ABM), and System Dynamics (SD) (Owen 2008). Any simulation model that follows

the Markov decision process principles can be catered to use RL. In simulation models, RL acts as an

optimizer by itself, so models that are only for demonstration purposes or that use different input

parameters to observe the resulting change in the output metrics cannot benefit from the sequential decision

making aspect of RL. Due to the stochastic nature of real-world environments such as a coffee shop and

the actions of a barista following an MDP principle, this mechanism is suitable for our use case.

2.2 Why Use RL and How is it Better Than Other Optimization Techniques?

The focus of RL optimization is to maximize or minimize a certain reward which is then reflected in the

desired outcome. Machine learning models are heavily data centric (Schumann 2018). The actions

performed by the RL agent are dynamic in nature and are only dependent on observations from the

environment (simulation model or real world deployment). A simulation model is only required for training

the model-free policy, but it can work as a stand-alone model-free "Oracle" for decision making in real

deployment. Optimization techniques like heuristics or stochastic optimization are static in nature and are

optimal for specific scenarios (Amaran et al. 2016). The user creating the heuristics must have strong

domain knowledge of the problem. The process of creating and testing various policies is time consuming

and could generate sub-optimal results. Any change in parameters of the simulation model would require

another non RL optimization experiment run which is also a tedious task. A good example would be that

of a traffic light optimization experiment. The non-RL optimization experiment would generate an optimal

3213

Farhan, Göhre, and Junprung

static duration of time for a traffic phase. Any change in the traffic schedule would make the solution non-

optimal. An RL policy can control the traffic phases dynamically based on the data provided and would not

require multiple experiments to obtain optimal results.

3 HYBRID SIMULATION MODEL

The simulation model was created using AnyLogic 8 Professional 8.5 software. The model time unit is

seconds and the simulation run time is 12 hours starting at 7 am and ending at 7 pm. The coffee shop model

has two agents – Customer and Server. The customer agents are modelled as a population of agents

following a discrete event modelling process while the server agent is the barista which is modelled with

the agent-based modelling principles. The combination of the two methods constitute the hybrid simulation

model of the coffee shop described in this paper. Rondini et al. (2017) highlights the advantages of using a

hybrid simulation model (DES and ABM) over a pure DES model in customer-oriented product service

system models.

3.1 Discrete-Event Model

The customer agents are modelled using a pedestrian library available in the AnyLogic software. The

pedestrian library works almost the same as the process flow library with the exception that the pedestrians

move according to the physical rules provided in the simulation environment and can also make decisions

based on the situation in the environment. The customers follow a discrete first in, first out flow. Customers

arrive at the coffee shop following an hourly rate schedule shown in Table 1. Multiple arrival schedules

showing a range of variability like Table 1 are used for training. The arrival time is recorded for each

customer in a variable called timestamp inside the customer agent.

Table 1: Customer hourly arrival rate.

Time period Customer arrival rate

07:00 am – 08:00 am 21

08:00 am – 09:00 am 28

09:00 am – 10:00 am 33

10:00 am – 11:00 am 30

11:00 am – 12:00 pm 28

12:00 pm – 01:00 pm 25

01:00 pm – 02:00 pm 23

02:00 pm – 03:00 pm 31

03:00 pm – 04:00 pm 24

04:00 pm – 05:00 pm 26

05:00 pm – 06:00 pm 29

06:00 pm – 07:00 pm 30

 The customers go through three service blocks while in the system - Place Order, Collect Order and

Pay Bill before they exit the shop. Each service block requires the presence of the server. The service times

for each block is listed below in Table 2. The customer flow is shown in Figure 2. A kitchen cleanliness

variable with an initial value of 1.0 being the highest is added to the model. Each time a customer collects

his order, the kitchen cleanliness variable value is reduced by 0.01. A function called collectOrderDelay()

is created to calculate the delay time for collect order service block. With a kitchen cleanliness level of 1.0

the function uses PERT distribution with (minimum=30, maximum=90, mode=60) seconds as delay time.

With every 0.01 decrease in kitchen cleanliness, an additional 1 second delay is added to the total delay

3214

Farhan, Göhre, and Junprung

time for the collect order service block. If the server does not attend to the customer at the place order block

within a balk time limit, the customer would leave the coffee shop without placing the order. Statistics for

queue length, balked customer count, successful customer count, and wait times for each service block are

recorded.

Table 2: Delay time for service blocks. * triangular (min, max, mode) **exponential (min, max, shift,

stretch) ***uniform (min, max).

Service block
Delay time distribution

(in seconds)

Place order process Triangular (8, 25, 12) *

Prepare and deliver order process collectOrderDelay ()

Bill customer process Exponential (10, 45, 10, 2) **

Customer balk time Uniform (8, 12) ***

Figure 2: Customer discrete-event flow.

3.2 Agent-Based Model

The Barista in the model is the decision maker and can take up tasks when idle such as – taking order,

preparing and delivering order, bill customers and clean the kitchen. The state chart library of AnyLogic is

used to model the barista’s actions. The state chart for the server is shown in Figure 3.

Figure 3: Barista’s state-chart.

3215

Farhan, Göhre, and Junprung

 The tasks are performed based on sending and receiving messages between the customers and the

barista. The actions of the barista are user controlled and can be controlled using a rule-based function to

send messages to the barista to trigger a specific action. The tasks can only be triggered when the barista is

in the idle state. Once the customer passes the defined delay time shown in Table 2 for their respective

service blocks, they send a message back to the server releasing the server back to idle state to perform

more tasks. The barista spends 10 seconds in cleaning state before returning to idle state. Each cleaning

state increases the kitchen cleanliness variable by 0.1.

3.3 Baseline Methods

A barista today is trained to perform their job based on a rulebook or experience from former baristas (Monk

and Ryding 2007). The barista’s actions in the model can be manually controlled by using user defined

buttons for each action or functions that get called if a condition is met. A user can choose to select an

action if the barista is in the idle state by pressing a button during the simulation run or an event can be

created to trigger these actions. To test our RL policy results, rule-based functions were created that

automate the action sequence a barista can perform. For any action selection to be valid, two primary

conditions are always checked irrespective of any method:

● The actions can be triggered only when the barista is in idle state.

● The queue length at the service blocks should be greater than zero if an action is chosen for that

respective service block.

3.3.1 Rule-Based Function 1

Customers in the place order queue are given priority over other tasks, followed by preparing order, and

then billing customers. Once the customer queues are empty, the kitchen cleanliness variable is checked. If

the kitchen cleanliness variable is lower than 0.9, cleaning action is taken. The code snippet for this function

is shown in Figure 4.

Figure 4: Code for rule-based function 1.

3.3.2 Rule-Based Function 2

Barista’s actions follow a first in, first out (FIFO) flow for customers. The barista prioritizes the billing

queue first, followed by the preparing and delivering order queue and then the place order queue. Once the

customer queues are empty, the kitchen cleanliness variable is checked. If the kitchen cleanliness variable

is lower than 0.9, cleaning action is taken.

3216

Farhan, Göhre, and Junprung

3.3.3 Rule-Based Function 3

The kitchen cleanliness directly affects the delay time in preparing and delivering customer orders. So, the

priority is given to clean the kitchen first if kitchen cleanliness level is below 0.9. The customers in the

place order queue are given second preference followed by the collect order queue and then the billing

queue.

 Average service time, successful customers, balked customers and average kitchen cleanliness are the

four output metrics for this study. After running Monte Carlo replications with 95% confidence using the

rule-based heuristics, the mean value and confidence intervals (CI) of the output metrics are shown in Table

3. The desired result would be to have lower service times and balked customers, and higher successful

customers and kitchen cleanliness. From the results, Rule-Based Function 2 outperformed other heuristics

in almost all output metrics setting a baseline for the trained policy.

Table 3: Baseline results.

Heuristic Statistic

Average service

time of

customer

(in minutes)

Number of

successful

customers

Number of

balked

customers

Average kitchen

cleanliness level

Rule-Based

Function 1

mean 17.9 153.2 26.5 0.62

95% CI 16.4 , 19.3 145.3 , 161.2 22.6, 30.4 0.6, 0.64

Rule-Based

Function 2

mean 4.8 259.4 5.8 0.91

95% CI 4.7 , 4.9 258.2 , 260.6 5.1 , 6.5 0.906, 0.914

Rule-Based

Function 3

mean 19.9 222 25.14 0.95

95% CI 17.7, 22.1 215.9, 228.2 20.6, 29.6 0.949 , 0.950

4 REINFORCEMENT LEARNING IMPLEMENTATION USING PATHMIND

There are 5 important elements when implementing RL in Anylogic simulation models using Pathmind

Library – Observation Function, Reward Variables, Action Function, Action Trigger, and Reward Function.

Every element plays an important role in making sure the RL agent learns and behaves effectively. The RL

elements are included in an AnyLogic software library called PathmindHelper from Pathmind.Inc

(Pathmind 2020). All RL related functions are added in PathmindHelper before exporting the model for

training on the Pathmind web application.

4.1 Observation Function

All the actions an RL agent takes are based on the values that the observation function outputs. This makes

this function the eyes of the RL agent for the learning process. The observations provide the necessary

information needed about the simulation environment and impact the actions to be taken. The queue lengths

at each service block, the kitchen cleanliness level, and the current simulation time are sufficient to train

this model. More information can be provided based on the outcome of the training to fine tune the results

or speed up the learning process. The code snippet for observation function is shown in Figure 5.

Figure 5: Code for observation function.

3217

Farhan, Göhre, and Junprung

4.2 Reward Variables

The reward variable function provides information about the objective of the training. The user specifies

what variables are impacted from the actions a learning agent takes and can incentivize or penalize the

actions in the reward function. Kitchen Cleanliness, throughput, balked customers and average service time

are the output metrics for the study. The code snippet for reward variables is shown in Figure 6.

Figure 6: Code for reward variable function.

4.3 Action Trigger

The action trigger informs the learning algorithm when to trigger the next action. Actions can be triggered

by a cyclic timed event say – every second or every 5 minutes. The trigger can also be due to a condition

being satisfied such as the server being in a certain state. For this model, we will trigger the action as a

combination of time and condition. The action is triggered every second, but can only occur when the server

is in the idle state.

4.4 Action Function

In this function, all possible actions a learning agent can take are mentioned. The function needs to pass an

argument of type int. Each action chosen by the policy would correspond to a specific task a learning agent

can do like in the rule-based functions. In this model, the tasks are - taking an order, preparing and delivering

an order, billing a customer, and cleaning the kitchen. The action array can have 4 possible actions - 0, 1, 2

and 3. The code snippet for the action function is shown in Figure 7.

Figure 7: Code for action function.

4.5 Reward Function

A reward function is used to incentivize or penalize the actions a learning agent takes. The objective of the

learning agent would be to maximize its reward. The reward function is written for the reward variables

specified in Section 4.2. When an action trigger occurs, the learning agent saves the values of the reward

variable before the action is performed and after the action is performed. Two values called the “before”

and “after” are used to create the reward function. To maximize a reward variable, a positive reward can be

given if the “after” variable is higher than the “before” variable. In this experiment, maximizing the kitchen

cleanliness and number of successful customers is rewarded and minimizing the number of balked

customers and service time is penalized. Two reward function experiments are evaluated.

3218

Farhan, Göhre, and Junprung

4.5.1 Reward Function 1

The objective of this experiment is to train the policy for a desired outcome of having higher throughput,

lower balked customers and lower average service time. A value of 5 is multiplied to the average service

time to enable equal weightage of all variables since the difference in average service time between two

time steps is in decimals whereas the other two reward variables are integers. The code for reward function

1 is shown in Figure 8.

Figure 8: Code for reward function 1.

4.5.2 Reward Function 2

The objective of this experiment is to include an incentive for kitchen cleanliness since it directly affects

the overall service time. A value of 10 is multiplied to the difference of kitchen cleanliness levels to enable

equal weightage on all reward variables. The code for reward function 2 is shown in Figure 9.

Figure 9: Code for reward function 2.

 In one of the trial experiments, the reward function for the training only incentivized reducing the

overall service time. The policy obtained from this training decided to not take any orders from the

customers, hence keeping the service time to the lowest possible value of zero while the customers balked

in the system. It managed to achieve its highest reward score, but that did not match the actual objective of

the experiment. Hence, reward function shaping becomes an important piece for training since RL

optimization is data driven.

5 TRAINING ON PATHMIND

The simulation model is exported as a standalone Java application from AnyLogic after inputting all RL

functions. The exported folder is uploaded on the Pathmind web application to run the RL training on cloud.

The cloud platform allows users to run multiple experiments with different reward functions at faster

computational speeds to get the desired results. Two elements determine the accuracy and speed of the

training - RL training algorithm and RL hyperparameter tuning methodology. Pathmind uses the proximal

policy optimization (PPO) algorithm because of its ease of implementation, tuning, and state-of-the-art

performance on discrete and continuous action spaces (Schulman et al. 2017). A method called Population-

Based Training (PBT) pioneered by Google’s DeepMind was applied to train this model. The objective of

PBT is to automatically discover the best set of hyperparameters that encourage the learning agent to find

the best performing policy as quickly as possible (Jaderberg et al. 2017). PBT was found to be much more

time efficient in unearthing the best performing policy compared to other techniques (e.g. grid search).

Pathmind automates this process to simplify a user’s experience on running RL experiments.

 Users create experiments on the Pathmind web application and frame the reward function mentioned

in Section 4.5 before beginning the training process. The web application shows the learning process curve

3219

Farhan, Göhre, and Junprung

by displaying the mean reward score per iteration (4,000 learning steps) as in Figure 10. A complete

simulation run is called an episode and each episode can have varying amounts of learning step sizes due

to the stochastic nature of the model. Each line in the graph represents a set of hyperparameter settings for

the RL. An upward converging trend is expected to confirm that the policy is learning with increasing

iterations. If the mean reward score does not change for a certain period of iterations, training is complete

and the RL policy will be ready to be downloaded. The policy can be imported back into AnyLogic to test

the results of the training.

6 RESULTS AND FINDINGS

A Monte Carlo experiment with 95% confidence is run using the trained policy and the output metrics are

shown in Table 4. To compare the different outputs obtained we make use of weighted scores. These

weights can vary based on the objective of a coffee shop owner. One owner might want to emphasize on

throughput while the other might give importance to kitchen cleanliness. In this paper, we will try four

different weight scores as shown in Table 5.

The comparison between the best baseline method and RL policies is shown in Table 6. Even though

kitchen cleanliness was not a motivating factor in Reward Function 1, it managed to score the highest in all

weighted scores. Reward Function 2 was denser as it incentivized higher kitchen cleanliness along with the

other reward variables. It managed to increase the average kitchen cleanliness factor by 0.01, but at the cost

of increasing the average service time. Since it spent action steps to maximize kitchen cleanliness the other

output metrics were affected. This implies that the optimal solution lies between the output values from

these two reward functions.

Figure 10: Reward function 1 training.

3220

Farhan, Göhre, and Junprung

Table 4: Pathmind trained policy results.

Policy Statistic

Average

service time of

customer

Number of

successful

customers

Number of

balked

customers

Average

kitchen

cleanliness

level

Reward

Function 1

mean 4.73 263.5 3.0 0.95

95% CI 4.69, 4.77 262.1, 264.8 2.7, 3.3 0.949, 0.95

Reward

Function 2

mean 5.45 261.62 2.66 0.96

95% CI 5.36, 5.54 260.34, 262.9 2.29, 3.03 0.958, 0.962

Table 5: Weights for output metrics.

Weighted score

Average

service time

of customer

Number of

successful

customers

Number of

balked

customers

Average

kitchen

cleanliness level

Weighted Score 1 -0.33 0.33 -0.33 0

Weighted Score 2 -0.25 0.25 -0.25 0.25

Weighted Score 3 -0.50 0.50 0 0

Weighted Score 4 0 0.5 0 0.5

Table 6: Weighted scores.

Methods
Weighted

score 1

Weighted

score 2

Weighted

score 3

Weighted

score 4

Rule-based function 2 82.1 62.4 127.3 130.1

Reward Function 1 84.4 64.1 129.3 132.2

Reward Function 2 83.65 63.6 128.0 131.2

7 CONCLUSION & FUTURE SCOPE

This paper demonstrates the ease in applying Reinforcement Learning to AnyLogic simulation models

using Pathmind Library so as to make better and faster decisions than rule-based heuristics. A hybrid

simulation model (DES and ABM) of a conceptual coffee shop with a single barista as a learning agent was

trained to perform actions using Reinforcement Learning. Two reward functions experiments were trained

3221

Farhan, Göhre, and Junprung

using the Pathmind web application. The two policies obtained from these reward functions performed

better than rule-based functions in all weighted scores. A user can create complex rule-based functions to

set a higher baseline for the RL policy to beat. The user creating the heuristics has to be a domain expert to

validate the results of the heuristics. RL relies only on the data provided by the user making it less biased

compared to heuristics. The simplicity of using the Pathmind cloud-based platform is that it does not require

prior knowledge of RL algorithms. This paper provides the basic concepts needed to apply RL in any

AnyLogic simulation model that satisfies the model criteria mentioned in Section 2.1.

The future of RL implementation in the coffee shop service industry can be that of a digital teller that

informs the barista of what its next actions should be. An artificial intelligent robot embedded with the

policy can also perform the barista’s tasks. The input in a real-world scenario can be from cameras or

sensors installed in the coffee shop that provide the observations for the learning agent. The RL policy can

be validated by testing it against a real-world coffee shop model. The RL policy could help coffee shop

owners improve the efficiency of their operations and save time and cost on training new baristas.

ACKNOWLEDGMENTS

The RL training was facilitated by Pathmind. A special thanks to Tyler-Wolfe Adam from the AnyLogic

software team for providing simulation modifications and insight.

REFERENCES

Amaran, S., N. V. Sahinidis, B. Sharda, and S. J. Bury. 2016. “Simulation Optimization: A Review of Algorithms and

Applications”. Annals of Operations Research 240(1):251-380.

François-Lavet, V., P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau. 2018. “An Introduction to Deep Reinforcement

Learning”. Foundations and Trends in Machine Learning 11(3-4):219-254.

Jaderberg, M., V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue, A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Simonyan,

C. Fernando, and K. Kavukcuoglu. 2017. Population Based Training of Neural Networks. http://arxiv.org/abs/1711.09846,

accessed 14th July 2020.

Kadioglu, O. 2017. Applied Mathematics and Operations Research a Case: Starbucks Coffee Shop Simulation. Department of

Mathematics, Bahçeşehir University. https://www.researchgate.net/publication/324748461_Applied_Mathematics_and_

Operations_Research_A_Case_Starbucks_Coffee_Shop_Simulation, accessed 15th June 2020.

Kaelbling, L. P., M. L. Littman, and A. W. Moore. 1996. “Reinforcement Learning: A Survey”. Journal of Artificial Intelligence

Research 4:237–285.

Li, Y. 2017. Deep Reinforcement Learning: An Overview. http://arxiv.org/abs/1701.07274, accessed 8th July 2020.

Monk, D., and D. Ryding. 2007. “Service Quality and Training: A Pilot Study”. British Food Journal 109(8):627–636.

Olsen, M. M., and R. Fraczkowski. 2015. “Co-evolution in Predator Prey Through Reinforcement Learning”. Journal of

Computational Science 9:118–124.

Owen, C., D. Love, and P. Albores. 2008. “Selection of Simulation Tools for Improving Supply Chain Performance”. In

Proceedings of 2008 OR Society Simulation Workshop, January 1st, Warwickshire, UK.

Paternina-Arboleda, C. D., and T. K. Das. 2005. “A Multi-Agent Reinforcement Learning Approach to Obtaining Dynamic Control

Policies for Stochastic Lot Scheduling Problem”. Simulation Modelling Practice and Theory 13(5):389–406.

Pathmind.Inc. 2020. http://pathmind.com, accessed 14th April.

Probert, W. J. M., S. Lakkur, C. J. Fonnesbeck, K. Shea, M. C. Runge, M. J. Tildesley and M. J. Ferrari. 2019. “Context Matters:

Using Reinforcement Learning to Develop Human-Readable, State-Dependent Outbreak Response Policies”. Philosophical

Transactions of the Royal Society Biological Sciences 374(1776):20180277.

Rondini, A., F. Tornese, M. G. Gnoni, G. Pezzotta, and R. Pinto. 2017. “Hybrid Simulation Modelling as a Supporting Tool for

Sustainable Product Service Systems: A Critical Analysis”. International Journal of Production Research 55(23):6932–6945.

Schulman, J., F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. 2017. Proximal Policy Optimization Algorithms. https:/

/arxiv.org/abs/1707.06347, accessed 8th July 2020.
Schumann, B. 2018. Time to Marry Simulation Models and Machine Learning. https://www.benjamin-schumann.com/blog/2018/5

/7/time-to-marry-simulation-models-and-machine-learning, accessed 14th June 2020.

Sutton, R. S., and A. G. Barto. 2018. Adaptive Computation and Machine Learning. Reinforcement Learning: An Introduction.

2nd ed. Cambridge, Massachusetts: The MIT Press.

3222

http://arxiv.org/abs/1711.09846
https://www.researchgate.net/publication/324748461_Applied_Mathematics_and_Operations_Research_A_Case_Starbucks_Coffee_Shop_Simulation
https://www.researchgate.net/publication/324748461_Applied_Mathematics_and_Operations_Research_A_Case_Starbucks_Coffee_Shop_Simulation
http://arxiv.org/abs/1701.07274
http://pathmind.com/
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://www.benjamin-schumann.com/blog/2018/5/7/time-to-marry-simulation-models-and-machine-learning
https://www.benjamin-schumann.com/blog/2018/5/7/time-to-marry-simulation-models-and-machine-learning

Farhan, Göhre, and Junprung

AUTHOR BIBLIOGRAPHY

MOHAMMED FARHAN is a PhD Candidate in the Department of Industrial, Manufacturing, & Systems Engineering at The

University of Texas at Arlington. He is currently working as a graduate researcher with Pathmind.Inc with focus on combining

simulation models and Reinforcement Learning. His research interests include hybrid simulation, human behavior modelling,

artificial intelligence, and supply chain management. His expertise lies in modelling hybrid simulation models of socio-

environmental systems using reinforcement learning capabilities. His email address is farhanm@exchange.uta.edu.

BRETT GÖHRE is a Lead Reinforcement Learning Scientist at Pathmind. His primary interest is building an adaptive decision-

making AI into a generally accessible product. Brett holds degrees in Physics from the University of California, Berkeley and Santa

Cruz. His email address is brett@pathmind.com.

EDWARD JUNPRUNG is a Product Manager at Pathmind. His primary interests include the practical applications of AI and

Reinforcement Learning. Edward holds a B.S. in Management Science and Accounting from the University of California, San

Diego. His email address is edward@pathmind.com.

3223

mailto:farhanm@exchange.uta.edu
mailto:brett@pathmind.com
mailto:edward@pathmind.com

