
Proceedings of the 2020 Winter Simulation Conference
K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds.

ANIMATION FOR SIMULATION EDUCATION IN R

Vadim Kudlay
Barry Lawson

Department of Mathematics and Computer Science
University of Richmond

Richmond, VA 23173, USA

Lawrence M. Leemis

Department of Mathematics
William & Mary

Williamsburg, VA 23187, USA

ABSTRACT

R is freely-available software for statistical computing, providing a variety of statistical analysis functionality.
In prior work, we introduced and released the simEd package for R, focusing on functions for generating
discrete and continuous variates via inversion, for extensible single- and multiple-server queueing simulation,
and including real-world data sets for input modeling and analysis. In this current work, we significantly
enhance and extend the simEd package, primarily through the introduction of a variety of animation
and visualization utilities intended to aid in simulation education. These include animations of event-
driven simulation details for a single-server queueing model, of random-variate generation for a variety of
distributions, of a Lehmer random number generator, of variate generation via acceptance-rejection, and
of generating a non-homogeneous arrival process via thinning.

1 INTRODUCTION

In previous work, we argued for the use of R for a first course in discrete-event simulation that emphasizes
programming in a high-level language while also covering probabilistic and statistical aspects in simulation.
We first presented R functions for queueing-specific contexts (Lawson and Leemis 2015) and then discussed
the release of a publicly-available R package, simEd (Lawson and Leemis 2017a; Lawson and Leemis
2017b). According to the dlstats package (Yu 2019) available on the Comprehensive R Archive Network
(CRAN), as of July 2020 the simEd package has more than 12,500 downloads since May 2017, with
4400+ downloads in 2019 and more than 4900 in the first half of 2020. We, the authors, have regularly
used these utilities in undergraduate- and graduate-level courses in simulation at our respective institutions,
as well as in various external workshops we have offered (which, collectively, would account for a few
hundred downloads). It is in the context of using those primarily text-based utilities in teaching, while
simultaneously discussing concepts using hand-sketched diagrams and/or slideshow presentations, that we
realized the benefit that easy-to-use interactive computer animations of these concepts would provide.
Therefore, we have developed a suite of new functions to add animation and visualization to the simEd
package, and have extended some of the previous functions to now include animation.

In this paper, we introduce animation and visualization capabilities for the simEd package, written
with a focus on simulation pedagogy. While the animation and visualization techniques used are not in
themselves novel, our contribution lies in providing a single educational software package in R that is
significantly enhanced by the new capabilities. When designing, we had two primary considerations:

• To have the animations and visualizations entirely contained within R, even if other external software
might provide more modern-looking interfaces. From an ease-of-use viewpoint across multiple
platforms, the user will therefore need to install and interact with only the one R package (simEd.)
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• To allow the user to interact directly with the animations, using a simple function-call format
consistent with the other functions provided in the simEd package.

The updated package is available on the CRAN (The R Foundation 2017) and includes:

• an interactive animation specifically focused on an event-driven implementation of an M/M/1
queue, which includes animation of event calendar updates, of corresponding variate generation, of
the queue itself, and of time-persistent and observation-based statistics (see Table 1 in Appendix A);

• updates to text-only M/M/{1,k} queueing functions to also include animation (see Table 1);
• an interactive function for visualizing U(0,1) variate generation using a (dated, but pedagogically

meaningful) Lehmer random number generator (see Table 1);
• interactive functions for visualizing variate generation via acceptance-rejection and for visualizing

generation of a non-homogeneous Poisson process via thinning (see Table 1); and
• additional and improved functions for visualizing inversion for variate generation of various discrete

and continuous distributions (see Table 2).

As before, our simEd package does not focus on the practice of simulation, as other R packages do,
e.g., the process-oriented general simulation framework simmer (Ucar and Smeets 2020), or the arena2r
package for interactively visualizing results from Arena in R (de Lima 2018). Additionally, our work does
not focus on advancing the state-of-the-art in visualization techniques for simulation. Rather, we focus on
developing tools in R for teaching general concepts in Monte Carlo and discrete-event simulation.

In providing easy-to-use but extensible functions in R via the simEd package, our aim is consistent
with advice provided by some of the well-known experts on a simulation-education panel (Altiok et al.
2001): that of advocating for “generic courses in stochastic modeling and analysis” (B. Nelson) and that
“using a standard language has important advantages” (P. L’Ecuyer). In an even more recent panel (Smith
et al. 2017), experts indicate that event-oriented simulation in a high-level language “enhanced students’
understanding of the discrete-event simulation mechanism” (J. Smith) and that “intuition comes first, and
mathematics (or whatever background is needed) comes second” (S. Henderson). Indeed, our goal is to
provide easy-to-use functions that help early with student intuition, yet can be extended with a bit of
knowledge of programming in R.

Other work provides guidance that is consistent with our goal. Kashefi et al. (2018) suggest that more
attention should be paid on understanding system behavior rather than learning how to build simulation
models. In a recent survey of simulation educators (de Mesquita et al. 2019), a majority of respondents
indicated that probability and statistics should be prerequisites for the simulation discipline, and while
computer programming did not receive a similar majority, it still ranked rather highly. One of our primary
challenges is that many of those teaching simulation already use commercial packages (e.g., Arena, Simio,
AnyLogic), although from the same survey results (Question 10), it is clear that respondents believe “other”
software should be included as well. Moreover, of the topics that at least 50% of respondents indicated
should be part of the disciplinary syllabus (Question 6), our simEd package and its new animations and
visualizations can help address the vast majority of those topics in a simulation course.

Much work exists in the scope of simulation education, including recent work on web-based user
interfaces for supporting use and development of various kinds of simulation (Wagner 2017); simulation
games and gamification, e.g., by Padilla et al. (2016); and storytelling and case studies, e.g., by Padilla
et al. (2017). Our work differs in that the goal is not to build specific models, but to provide utilities that
aid in intuition and understanding of underlying simulation, probabilistic, and statistical concepts.

Much of our approach is consistent with recommendations by Naps et al. (2002), who propose
a taxonomy of learner engagement with visualization technology (No Viewing, Viewing, Responding,
Changing, Constructing, and Presenting), hypothesizing that engagement level, and consequently learning
outcomes, increase when moving from “No Viewing” toward “Presenting”. The simEd package is
intended specifically for “Responding” (interacting with the visualization) and “Changing” (interacting by
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changing variable parameters), as well as “Constructing” (building/extending to create new versions). Using
Naps’ taxonomy in the context of computer programming visualization, other recent work considered two
different engagement levels involving instructor-provided visualizations: active engagement and passive
viewing (Banerjee et al. 2015). For the group actively engaged with visualizations, the authors found
significant increase in student behavioral engagement, perception of learning, and cognitive achievement
in terms of rate of problem solving. Although controlled assessment experiments using simEd are left for
future work, these existing works provide motivation and justification for our current work.

2 QUEUEING ANIMATION: DETAILS OF EVENT-DRIVEN SIMULATION

In the updated simEd package, we have developed a custom interactive animation highlighting the details
of an event-driven implementation of an M/M/1 queueing model with default arrival rate λ = 1 and default
service rate µ = 10/9. With the new function ssqvis, the user can rely on default exponential interarrival
and service functions, or can define and provide their own custom interarrival and service functions to pass
to ssqvis. The animation is split into three rows:

• the top row depicts the event calendar and the generation of arrival and service times using inversion;
• the middle row depicts a fairly typical queue visualization (with customers arriving, queueing,

entering service, and departing the system), along with the simulation clock and a progress meter;
• the bottom row depicts the number in system, queue, and service across time (i.e., so-called “skyline”

functions) along with observation-based statistics.

Via the R console, the user is able to proceed step-by-step from simulation initialization, through processing
various types of events; is able to inspect the statistics of individual customers; and is able to jump ahead
in simulated time to view a particular customer.

Figure 1(a)’s top row depicts initialization of the event-driven simulation, in which the calendar is
updated using the first (inter)arrival time obtained by inversion. Note that the inversion figure depicts a
U(0,1) variate on the vertical axis, the corresponding interarrival time inverted across the exponential cdf,
with the corresponding arrival time depicted on the time axis displayed below the inversion figure. Specific
values and details are displayed on the right, with the arrival time ultimately pushed onto the calendar on
the left. In Figure 1(b), all three rows of the visualization are updated to demonstrate processing of that
first arriving customer, including advancing the system clock (top row), customer entering service (second
row), and statistics updating (third row). Note that the customer has entered service (orange), but no service
time has yet been generated.

Figure 2(a) depicts the animation after having skipped ahead to the 29th customer. Note that this
customer has been queued (middle row), the arrival time for the 30th customer has been generated and is
being placed on the calendar (top row), and skyline functions updated appropriately (third row). Finally,
Figure 2(b) depicts the animation at the end, for a maximum simulated time of 40. Note that the skyline
functions and observation statistics are updated to represent the entirety of the simulation run (third row).

Figure 3 depicts a typical R session for generating Figures 1–2. In this figure, user input is denoted in
boldface, and demonstrated are the step-by-step default functionality, ability to jump ahead, and optionally
to step backward in execution. In the first example run, end-of-run output is disabled, requesting only that
the computed average sojourn be displayed at the end; the default value of –1 for plotDelay results
in interactive mode. In the second example run, plotDelay is explicitly set to 0.5 (seconds) so that
the animation will automatically update without user input. (This use of the plotDelay parameter is
consistent across the animation functions in simEd: –1 for interactive, 0 to proceed directly to the end,
or s > 0 to delay s seconds between plot updates.)
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(a) (b)

Figure 1: Screen captures of the ssqvis animation depicting event-driven details of an M/M/1 queue
implementation. (a) The top row of the animation display depicts, interactively, event calendar initialization,
generating the first customer arrival time using inversion. (b) All three rows are updated to depict processing
of the first arriving customer, including advancing the system clock (top row), customer entering service
(second row), and statistics updating (third row).

(a) (b)

Figure 2: Screen captures of the ssqvis animation depicting event-driven details of an M/M/1 queue
implementation. (a) Processing of the 29th customer to arrive, which waits third in the queue with a
customer already in service. (b) State of the simulation at the end of the specified maximum simulation
time of 40. Note that the skyline functions and observation-based statistics represent final values.
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> library(simEd)
> ssqvis(maxTime = 40, seed = 8675309, showOutput = FALSE)$avgSojourn
Hit ’ENTER’ to proceed, ’q’ to end, or ’help’ for more: <enter>
Hit ’ENTER’ to proceed, ’q’ to end, or ’help’ for more: <enter>

...

Hit ’ENTER’ to proceed, ’q’ to end, or ’help’ for more: help
’n’/’next’/ENTER = proceed to next stage
’j’/’jump’ = jump to the nth initialization
’b’/’back’ = step back by one plot snapshot
’q’/’quit’ = change plotDelay to 0

Hit ’ENTER’ to proceed, ’q’ to end, or ’help’ for more: j 30
Finished jumping

Hit ’ENTER’ to proceed, ’q’ to end, or ’help’ for more: q
[1] 3.0153

> ssqvis(maxTime = 40, seed = 8675309, showOutput = FALSE, plotDelay = 0.5)$avgSojourn
[1] 3.0153

Figure 3: Example R code demonstrating ssqvis for generating Figures 1–2. User input is in boldface.
Note that, in both the interactive and non-interactive runs, the resulting $avgSojourn is displayed.

3 QUEUEING ANIMATION: M/M/1 AND M/M/k

In addition to the new function visualizing event-driven simulation details discussed in the previous section,
we have also extended the previously text-only but extensible functions ssq (defaulting to M/M/1) and
msq (defaulting to M/M/k) to now include animation as an additional feature.

Figure 4(a) depicts queueing animation using the ssq function with default arrival and service processes
(λ = 1, µ = 10/9) and a maximum simulated time of 40. As shown in the top row of the visualization,
the 39th customer has arrived and been queued, as the 35th customer is still in service at time 40. The
skyline functions for number in the system, number in queue, and number in service are also displayed in
the bottom row. Similar to the ssqvis function, the user can interactively step one customer at a time.

Similarly, Figure 4(b) depicts queueing animation using the msq function with a default arrival process
(λ = 1) and a custom service process (µ = 1/2) having higher average service time than for ssq above,
but with three servers and a maximum simulated time of 40. In this example, the 37th and 39th customers
are still in service, the 38th customer has already departed, with corresponding skyline functions shown
below for the entire simulation run.

Figure 5 depicts a typical R session for executing the ssq and msq functions with animation turned
on, used to generate Figures 4(a)–(b). As before, user input is shown in boldface. Note that in the msq
example, a custom exponential service function having rate 0.5 is used rather than the default service model.

4 ADDITIONAL ANIMATION ROUTINES

In this section, we describe additional routines added to the simEd library that are particularly useful in
an introductory simulation course.

4.1 Animation of a Lehmer Random Number Generator

Although outdated for modern simulation applications, because of its mathematical simplicity a Lehmer
(multiplicative linear congruential) random number generator provides an ideal entry point for students
to understand details of random number generation. Visualizing the period of the generator as a virtual
circle (based on the choices of multiplier a, modulus m, and initial seed x0) allows students to easily grasp
the notions of generator periodicity, period length, choice of initial seed, and drawing integers without
replacement to produce U(0,1) random variates. In our experience, a general understanding of a Lehmer
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(a) (b)

Figure 4: The (a) ssq function and (b) msq function, each with animation activated, depicting the queueing
node and the “skyline” functions of time-persistent statistics for an M/M/1 and M/M/k queue respectively.
In interactive mode, the node and skyline functions are updated with each arriving and departing customer.

> library(simEd)

> ssq(maxTime = 40, seed = 8675309, animate = TRUE, showOutput = FALSE)$utilization
|======================================================================| 100%

[1] 0.8980306

> mySvc <- function() vexp(1, rate = 0.5, stream = 2)
> msq(maxTime = 40, seed = 8675309, numServers = 3, serviceFcn = mySvc, animate = TRUE,
+ showOutput = FALSE)$utilization
|======================================================================| 100%

[1] 0.7076551 0.6988794 0.7420438

Figure 5: Example R code demonstrating ssq and msq for generating Figure 4. User input is in boldface.
Note that, for msq, a custom exponential service function is used rather than the default service model.

generator helps students with an implicit understanding of more modern generators (e.g., Mersenne twister)
even without fully exploring the underlying complex details of the latter.

For this reason, we have provided the lehmer function for visualizing a Lehmer random number
generator. Figure 6(a) depicts a Lehmer generator with multiplier a = 13, prime modulus m = 31, and
initial seed x0 = 1. The sequence of integers drawn without replacement from {1,2, . . . ,m−1} are depicted
in the circle on the right, with red indicating the initial seed and yellow indicating the current state of the
generator. The box on the left shows the generation of the current integer state using the previous state,
and also shows mapping of that integer into a real-valued number in (0,1). As each new random variate
is generated, it is depicted by a filled circle at the corresponding location on the (0,1) axis at the bottom,
with teal indicating the current value, and (eventually) red indicating the reappearance of the initial seed.
Corresponding R code is given in Figure 6(b). By then simply changing the multiplier to a = 14, the
function can be used to explore less than full periodicity.
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(a)

> library(simEd)
> lehmer(a = 13, m = 31, seed = 1)

Period found to be 30
Hit ’ENTER’ to proceed: <enter>
Hit ’ENTER’ to proceed: <enter>

...

[1] 1 13 14 27 10 6 16 22 7 29
[11] 5 3 8 11 19 30 18 17 4 21
[21] 25 15 9 24 2 26 28 23 20 12

(b)

Figure 6: The lehmer function depicts, interactively, the generation of a U(0,1) random variate using
a multiplicative linear congruential generator. (a) Interactively generating variates using a small prime
modulus m= 31 with full-period multiplier a= 13 and initial seed x0 = 1. (b) Example R code demonstrating
lehmer for generating Figure 6(a). (Interactive input/output shortened for brevity.)

4.2 Animation of Variate Generation via Acceptance-Rejection

When discussing variate generation, an instructor might typically cover inversion via closed-form expression
(e.g., for uniform or exponential), convolution (e.g., for Erlang), as well as numerical approximation (e.g,
for normal). Other distributions, such as Beta, motivate an acceptance-rejection approach, for which we
have provided the accrej function in simEd. With the accrej function, the user can rely on the
default pdf (i.e., Beta(α = 3, β = 2)) and default constant majorizing function, or can specify custom pdf
and/or custom piecewise-constant or piecewise-linear majorizing function. The function then interactively
demonstrates variate generation via acceptance-rejection.

Figure 7(a) depicts the generation of 100 Beta(α = 3, β = 2) variates using acceptance-rejection with
a custom piecewise-constant majorizing function f ∗(x). At each step, a random variate u1 is generated
(yellow) from the scaled majorizing function to determine the location on the horizontal axis, and then
a u2 =U(0, f ∗(u1)) variate is generated. If u2 is below the provided pdf (green curve), the u1 variate is
accepted (indicated by an open green circle) and contributes to the updated histogram in the bottom row.
If u2 is above the provided pdf, the u1 variate is rejected (indicated by a red ×). Note that the total number
accepted and rejected is shown in the top of the display, allowing the instructor to discuss “squeezing”
using the majorizing function. Example R code using the accrej function is given in Figure 8(a). Note
that the custom majorizing function is supplied as an R data frame, with x values corresponding to the
endpoints of the segments defining the piecewise-constant function, and y values to the associated heights.

4.3 Animation of NHPP Generation via Thinning

We also provide a function named thinning to visualize the generation of a non-homogeneous Poisson
process using the thinning method. The function provides a default intensity function (meant to mimic a
typical 24-hour set of rush-arrival periods), but custom intensity functions can be specified by the user.
Similarly, a default constant majorizing function is provided, but custom piecewise-constant majorizing
functions can also be specified by the user.
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(a) (b)

Figure 7: (a) The accrej function interactively demonstrates variate generation via acceptance-rejection,
here using the default Beta(α = 3, β = 2) distribution and a corresponding piecewise-constant majorizing
function f ∗(x), and requesting 100 samples. (b) The thinning function visualizes the generation of
a non-homogeneous Poisson process via the thinning process, based on acceptance-rejection. Accepted
arrival times are indicated by green ticks above the horizontal axis.

> library(simEd)

> majorizing <- data.frame(
+ x = c(0.0, 0.3, 0.83, 1.0),
+ y = c(0.0, 1.0, 2.0, 1.5))
> samples <- accrej(n = 100, seed = 8675309,
+ majorizingFcn = majorizing,
+ majorizingFcnType = "pwc",
+ plotDelay = 0)

> head(samples, n = 4)
[1] 0.06683874 0.25434546 1.58941606 0.31508686

(a)

> library(simEd)

> arrivals <- thinning(seed = 8675309)
Hit ’ENTER’ to proceed and ’q’ to end: help

’n’/’next’/ENTER = proceed to next stage
’j’/’jump’ = jump to the nth initialization
’b’/’back’ = step back by one plot snapshot
’q’/’quit’ = change plotDelay to 0

Hit ’ENTER’ to proceed and ’q’ to end: j 90
Hit ’ENTER’ to proceed and ’q’ to end: q

> head(arrivals, n = 4)
[1] 0.01184767 0.84760644 1.50284590 2.59057128
> tail(arrivals, n = 4)
[1] 22.46144 22.53142 22.70214 23.72117

(b)

Figure 8: Example R code demonstrating accrej and thinning for generating Figures 7(a)–(b). User
input is in boldface. (a) The accrej example uses the default Beta(α = 3,β = 2) pdf and a custom
piecewise-constant majorizing function. (b) The thinning example uses the default intensity function
and default constant majorizing function. Note the value of 0 for plotDelay causes the animation to
proceed directly to the end, while the default requires user interaction.
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Figure 7(b) depicts visualization of the thinning process using the default intensity function (green)
and default constant majorizing function (red). In this example, an interarrival time is generated as an ei =
Exp(λ ∗) variate, resulting in the corresponding (cumulative) arrival time Ti. Then a ui =U(0,λ ∗) variate
is generated. If ui is less than the intensity function evaluated at Ti, then Ti is accepted, denoted as an
arrival time by a green tick at the horizontal axis with corresponding open green circle at height ui above.
If ui is greater than the intensity function evaluated at Ti, then Ti is rejected. The corresponding realization
of the NHPP is given by the left-to-right sequence of ticks above the horizontal axis (which, in general,
should be consistent with the rise and fall of the intensity function), and the corresponding time values are
returned by the function to the R console. An example of R code using the thinning function is given
in Figure 8(b), where boldface again denotes user input. This example demonstrates jumping ahead to the
90th acceptance (shown in Figure 7(b)), immediately followed by completing the full realization.

5 VARIATE GENERATION VIA INVERSION

5.1 Animation of Variate Generation via Inversion

In the updated version of simEd, we also have eight new functions for visualizing variate generation via
inversion (e.g., ibeta, icauchy, etc. — see Table 2) and have improved the animation of the previous
“i*” functions. With our “i*” functions, the user can visualize variate generation by inversion using
user-specified U(0,1) values or by allowing runif or vunif to generate variates automatically. The
user can also specify which of the following to display: (i) inversion across the cdf, (ii) corresponding
histogram versus population pdf, and (iii) corresponding ecdf versus population cdf. The functions also
allow the user to choose to interactively proceed step-by-step with each variate generated, in which case
the inversion, histogram, and ecdf update immediately with each new variate generated.

Figure 9(a) depicts the ilogis function for one and for twenty logistic variates generated, with only
the inversion display shown. Note that in the case of one variate only, the value of the U(0,1) variate and
the inverted value are both displayed. In the case of multiple variates, an inverted histogram is displayed
below the horizontal axis. Figure 9(b) depicts the same ilogis function for 200 variates generated, with
all three displays shown. Note that in the case of many variates generated, the upper row displays the
dashed inversion lines at quantile values only. In each case, the function returns to the console all variates
generated. Figure 10 shows R code that produces the inversion graphs in Figure 9. Similar results hold
for the other discrete and continuous distributions in Table 2.

5.2 Functions for Variate Generation

Consistent with the “i*” functions, in the updated simEd package we have also introduced eight new
“v*” functions for generating random variates via inversion. As in our previous work, we have chosen
naming and parameter conventions similar to the variate generation functions available by default in R
via the stats package, but replacing the leading ‘r’ in each function name with ‘v’ (for variate) instead.
Each of the functions generates n U(0,1) random variates, and then inverts using the appropriate quantile
functions available in stats. Each of the functions also provides the capability for independent streams
of random numbers, based on the rstream package implementation (Leydold 2020), and for antithetic
variates. Details are discussed in our previous simEd work (Lawson and Leemis 2017a).

6 CONCLUSIONS

In this paper, we have discussed significant enhancements to our simEd package for R, having a focus
on simulation pedagogy. These enhancements focus primarily on, but are not limited to, animation and
visualization for teaching simulation. We have included a function for animating and visualizing the details
of an event-driven implementation of an M/M/1 queue, and have updated existing queueing functions to
include more traditional-style queueing animations. We have included animation functions for visualizing
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(a) (b)

Figure 9: (a) ilogis visualizing the generation of 1 and 20 Logistic(µ = 0, s = 1) random variates
via inversion. (b) ilogis visualizing the generation of 200 random variates. The middle row depicts
the histogram versus the population pdf; the bottom row depicts the ecdf versus the population cdf. In
interactive mode, the inversion, histogram, and ecdf update immediately with each new variate generated.

> library(simEd)

> sample <- ilogis(vunif(1, stream = 1), location = 0, scale = 1)
> samples <- ilogis(vunif(20, stream = 1), location = 0, scale = 1, show = 4)
> samples <- ilogis(vunif(200, stream = 1), location = 0, scale = 1, show = 7)

Figure 10: R code demonstrating ilogis, which visualizes inversion using the logistic distribution, for
producing Figures 9(a)–(b). Note the use of vunif to allow for random number streams. Also note the
show parameter, which uses a Unix chmod numerical value for choosing which of the inversion (4), pdf
(2), and/or ecdf (1) graphs to display.

and experimenting with the parameters of: a Lehmer random number generator; variate generation via
acceptance-rejection; and generation of a non-homogeneous Poisson process using thinning. In addition,
we have expanded the set of, and improved the animation of, various “i*” functions for visualizing variate
generation via inversion; and correspondingly have expanded the set of “v*” functions for generating variates
via inversion, with streams and antithetic variates capabilities. These additions significantly enhance the
simEd package for use in an introductory simulation course.
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A ANIMATION AND VISUALIZATION FUNCTIONS IN THE simEd PACKAGE

The following tables provide overviews of signatures for each of the functions associated with animations
and visualizations present in the simEd package.

Table 1: Package functions with animation. The ssq and msq functions have been updated to include
animation of the queue and “skyline” functions. All other functions are new.

Utility Example Function Call
Event-Driven M/M/1 Details ssqvis(maxTime = 40, jobImage = "http://bit.ly/prthwarbler")

M/M/1 Model ssq(maxTime = 40, animate = TRUE)

M/M/k Model msq(maxTime = 40, numServers = 3, animate = TRUE)

Lehmer Generator lehmer(a = 13, m = 31, seed = 11)

Acceptance-Rejection accrej(n = 100, pdf = function(x) dbeta(x, 3, 2))

Thinning thinning(maxTime = 1440, seed = 8675309)

Table 2: Functions for variate generation and for visualizing inversion, by distribution. There are 8 new
distributions (underlined) in the package. Visualization for all inversion functions has been improved.

Distribution Example Inversion Visualization Example Variate Generation
Beta ibeta(runif(10), shape1 = 3, shape2 = 2) vbeta(10, shape1 = 3, shape2 = 2)

Binomial ibinom(runif(10), size = 10, prob = 0.3) vbinom(10, size = 10, prob = 0.3)

Cauchy icauchy(runif(10), location = 0, scale = 1) vcauchy(10, location = 0, scale = 1)

Chisquare ichisq(runif(10), df = 7, ncp = 0) vchisq(10, df = 7, ncp = 0)

Exponential iexp(runif(10), rate = 1, show = 7) vexp(10, rate = 1, antithetic = TRUE)

Gamma igamma(runif(10), shape = 4, scale = 2) vgamma(10, shape = 4, scale = 2)

Geometric igeom(runif(10), prob = 0.3) vgeom(10, prob = 0.3)

Lognormal ilnorm(runif(10), meanlog = 0, sdlog = 1) vlnorm(10, meanlog = 0, sdlog = 1)

Logistic ilogis(runif(10), location = 1, scale = 0.5) vlogis(10, location = 0, scale = 0.5)

Neg. Binomial inbinom(runif(10), size = 4, prob = 0.4) vnbinom(10, size = 4, prob = 0.4)

Normal inorm(runif(10), mean = 0, sd = 1) vnorm(10, mean = 0, sd = 1, stream = 1)

Poisson ipois(runif(10), lambda = 0.7) vpois(10, lambda = 0.7, stream = 2)

Student’s t it(runif(10), df = 5, ncp = 1, show = 7) vt(10, df = 5, ncp = 1, stream = 3)

Uniform iunif(runif(10), min = 0, max = 1) vunif(10, min = 0, max = 1)

Weibull iweibull(runif(10), shape = 2, scale = 1) vweibull(10, shape = 2, scale = 1)
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