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ABSTRACT

The main challenge of simulation optimization is the limited simulation budget because of the high
computational cost of simulation experiments. One approach to overcome this challenge is to reuse
simulation outputs from previous iterations in the current iteration of the optimization procedure. However,
due to the dependence among iterations, simulation replications from different iterations are not independent,
which leads to the lack of theoretical justification for the good empirical performance. In this paper, we
fill this gap by theoretically studying the stochastic gradient descent method with reusing past simulation
replications. We show that reusing past replications does not change the convergence of the algorithm,
which implies the bias of the gradient estimator is asymptotically negligible. Moreover, we show that
reusing past replications reduces the conditional variance of gradient estimators, which implies that the
algorithm can use larger step size sequences to achieve faster convergence.

1 Problem and Main Result

We consider the following simulation optimization problem:

min
θ∈Θ

H(θ) = Eξ∼ f (·;θ)[h(ξ )], (1)

where θ is the decision variable, Θ is the solution space, H is the expected performance of the sys-
tem, h is a sample performance function, and f (·;θ) is the probability density function (pdf) of a
family of parametric distributions. Stochastic gradient descent (SGD) has been widely used to solve
the simulation optimization problem above in two major steps: (1). Carry out simulations to esti-
mate the gradient ∇H(θ) = Eξ∼ f (·;θ)[h(ξ )∇θ ln f (ξ ;θ)]. Here, the gradient estimator is often chosen

as ∇̃H(θn) =
1
B ∑

B
i=1 h(ξ i) ln f (ξ i;θ), where ξ 1, . . . ,ξ B are independent and identically distributed (i.i.d.)

samples drawn from f (ξ ;θ) and B is the sample size. (2). Search the solution space following the update
θn+1 = ProjΘ

(
θn−αn∇̃H(θn)

)
, where αn > 0 is the step size and ProjΘ(θ) is a projection operator that

projects the iterate of θ to Θ. We refer to this algorithm as vanilla stochastic gradient descent (VSGD).
One major challenge here is that the simulation alone is computationally expensive in many practical

applications. As a direct result, we cannot choose a large sample size B to control the variance of the
gradient estimator ∇̃H(θn), and Var

(
∇̃H(θn)

)
= O( 1

B) under some minor conditions. Therefore, SGD
might spend much time bouncing around, leading to slower convergence and worse performance.

To address this issue, one simple yet efficient method is to reuse simulation outputs. Specifi-
cally, we can reuse the simulation outputs from previous iterations by the principle of importance sam-
pling to obtain a new weighed set of simulation outputs under the current solution, i.e., ∇̂H(θn) =
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1
KB

n

∑
m=n−K+1

B

∑
i=1

ω(ξ i
m,θn|θm)h(ξ i

m) ln f (ξ i
m;θn), where {ξ i

m, i = 1, . . . ,B} i.i.d∼ f (·;θm), and ω(ξ ,θ1|θ2) =

f (ξ ;θ1)/ f (ξ ;θ2) is the likelihood ratio for m= n−K+1, ...,n,where K≥ 1 is the number of reused past iter-
ations. This leads to a new gradient estimator that uses more simulation replications than the naive gradient es-
timator. Then the update of SGD with reusing past replications (RSGD) is: θn+1 = ProjΘ

(
θn−αn∇̂H(θn)

)
.

Ideally, since we reuse past simulation outputs, RSGD should perform better than VSGD under limited
simulation budget (i.e., small B). However, reusing past replications is not a free lunch. The dependence
between iterations makes the gradient estimator ∇̂H(θn) biased. Specifically, ξ i

n−1|θn−1 and ξ i
n−1|(θn−1,θn)

are not identically distributed since θn can provide additional information for ξ i
n−1. That is, ξ i

n−1|θ i
n−1 and

θn are not independent. As a result, we have the following inequality.

E
[

h(ξ i
m) ln f (ξ i

m;θn)
f (ξ i

m;θn)

f (ξ i
m;θm)

]
= E

[
E

[
h(ξ i

m) ln f (ξ i
m;θn)

f (ξ i
m;θn)

f (ξ i
m;θm)

∣∣∣∣∣θn

]]
6= Eθn [h(ξ )] .

Despite the bias, we empirically observe that reusing past replications works well and outperforms
VSGD under many different circumstances. Thus, we have the following conjecture.

The bias in the gradient estimator with past replications is asymptotically negligible.
We theoretically justify this conjecture by considering the limit ordinary differential equation (ODE)

of the solution trajectory of VSGD and RSGD. We show that the continuous-time interpolation of the
solution trajectory of RSGD has the same limit ODE of VSGD as shown in the following theorem.
Theorem 1 Under some regularity conditions, for a fixed K > 0, the solution trajectory of RSGD (or
VSGD when K = 1), {θn}, converges almost surely to some limit set of the following ODE in Θ.

θ̇(t) = ∇θ H(θ(t))+Z(θ(t)), (2)

where Z is the minimum force needed to keep the solution θ(t) in Θ.

Note that ODE (2) does not depend on the number of reused iterations K. Therefore, VSGD satisfies
the same limit ODE. Moreover, the following corollary shows that the bias in the gradient estimator with
past replications almost does not change asymptotically. Thus, it is negligible and does not affect the
asymptotic convergence (limit ODE) of RSGD.
Corollary 2 Denote the continuous-time interpolation of the bias as Γ(t), then Γ(t) has zero asymptotic
rate of change almost surely if for any T > 0,

P

(
lim

n
sup
j≥n

max
0≤t≤T

|Γ( jT + t)−Γ( jT )|= 0

)
= 1.

Given Theorem 1, we can reuse the past replications without worrying about the convergence. We then
further study the variance reduction effect of reusing past replications. More specifically, we consider the
reduction of the conditional variance given the past solution trajectory, and have the following theorem.
Theorem 3 When K is large enough, we have for any n > 0, i≤ dθ ,

Var[θ (i),RSGD
n+1

∣∣F RSGD
n ]≤ Var[θ (i),VSGD

n+1

∣∣F VSGD
n ],

almost surely, where θ (i) is the ith dimension of θ .
Theorem 3 suggests that reusing past replications is guaranteed to reduce the variance conditioned on

the past history if the number of reused iterations is large enough. Therefore, RSGD has a much smoother
trajectory than VSGD, which is verified in our numerical experiment.
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