Proceedings of the 2020 Winter Simulation Conference
K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds.

MODELING AND SIMULATION FOR TIME-ACCURATE AND STOCHASTIC ANALYSIS
OF ALGORITHMS

Abdurrahman Alshareef

Information Systems Department
College of Computer and Information Sciences
King Saud University

P.O. Box 4545
Riyadh, Riyadh 11451, SAUDI ARABIA

ABSTRACT

We propose a framework to perform algorithms analysis based on modeling and simulation. The framework
supports time-accurate analysis of the target algorithm for a given input or set of inputs. It also can support
a stochastic analysis by extension to allow the model to assign time advances according to some probability
distribution. The framework facilitates performing the analysis of computational models within systems in
a modularized manner. The granularity of the analyzed instruction as well as the time structure can be
determined during the modeling process using the Activity abstraction and DEVS-based support for the
simulation. The initial portion of the simulation models is generated automatically and then modified
afterward to account for more concrete and operational instructions.

1 INTRODUCTION

Asymptotic analysis (Knuth 1976) has been widely used for evaluating the computational complexity of
algorithms. It is fundamental in evaluating and promoting the performance of system with computational
elements. It can be, however, extended in various ways to further facilitate the analysis of algorithms. We
select three ways in which modeling and simulation can add up to such analysis. The first one is to account
for the specific input samples in order to make the analysis more rigorous with respect to the notion of
sufficiently large input. The second one is to make algorithms analysis subject to stochasticity, which can
be expected in the actual computational environment. A probabilistic distribution assigns to the time
advance function in the simulation in order to create such account for the time complexity analysis. The
third one is to allow for specialized time allocations for different instructions and steps in the algorithm. In
overall, the level of granularity in such accounts can be determined by the modeler and the level of details
provided using the proposed abstraction as well as in the corresponding models.

2 MODELING THE TARGET ALGORITHM

In order to create a suitable entry point for modeling, we start by drawing an Activity for the algorithm that
is being target of the analysis. We have previously proposed an Activity specification (Alshareef 2019)
using the DEVS (Discrete Event System Specification) formalism (Zeigler et al. 2018). The Activity
specification maps different elements in the abstraction to different DEVS models according to predefined
set of rules. The Activity is mapped to a coupled model. The actions and control nodes are mapped to atomic
models for handling delays, synchronization, and selection across the flow. We choose the quicksort
algorithm as a commonly discussed example for sorting algorithms as well as their complexity analysis.
Figure 1 shows the Activity that corresponds to the algorithm. The diagram highlights the steps starting by
receiving an array, traversing from the lowest element to the highest element, and initializing the variable i



Alshareef

and pivot. Then, the partitioning procedure starts with a loop from j” to high element by incrementing i and
swapping i element with j” element after making sure the j element is less than pivot. Then, it swaps
(i+1)" element with high element and repeat for the resulting two partitions until the end. After completing
the diagram, the code generation takes place automatically and results in a set of Java classes suitable for
the initial simulation in DEVS-Suite simulator as atomic and coupled models. For simpler models that
might be sufficient. However, for relatively advanced algorithms, some modifications and refinements have
to take place on the resulting models in order to set some parameters and specializes the model with the
necessary low-level details and operations that are not suitable to be specified in the higher level abstraction.

swap_with_p
partition
lo_to_hi j_td_hi alj]_less_p + partition_1
—O{ns
Ay init_i_p > | partition_2
)4 v
increment_i
final

Figure 1: An activity abstraction of the quicksort algorithm.

The algorithm performs according to the Big O notation O(#?) in the worst case and O(n log n) in the
average case. We conduct a simulation with different settings according to the input, input size, and timing
assignments. The result of a typical simulation is consistent with the result of the formal analysis given by
the Big O notation. Nevertheless, the results can differ based on the changes and calibrations made at a
finer level of details regarding the time needed per step as well as the determined mean and distribution for
the identified micro steps of the procedure as highlighted in the abstraction. It also highlights specific cases
of inputs and input sizes. Table 1 shows the results of some of the conducted simulations.

Table 1. The termination time of the simulation for various cases.

Input size Post-ordered Balanced Binary Search Tree Random-case Worst -case
10 71 118 180
100 1576 1367 15343

In conclusion, the framework can facilitate performing analyses for systems with computational element to
extend the notion of the computational complexity analysis in a broader, inter-disciplinary context for
complexity in systems, and system of systems. We show some aspects of the framework with demonstrative
example. We plan to provide further details with other examples, observations, and analyses in future work.

REFERENCES

Alshareef, A. 2019. Activity Specification for Time-based Discrete Event Simulation Models. Ph.D. Dissertation, Arizona State
University, Tempe, Arizona. https://repository.asu.edu/items/55474, accessed 9" November 2020.

Knuth, D.E. 1976. “Big Omicron and Big Omega and Big Theta”. ACM SIGACT News 8(2):18-24.

Zeigler, B.P., A. Muzy, and E. Kofman. 2018. Theory of Modeling and Simulation: Discrete Event & Iterative System
Computational Foundations. 3rd ed. Academic Press.



