
Proceedings of the 2020 Winter Simulation Conference

K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds.

USING UML AND OCL AS LANGUAGES TO DEFINE DEVS ATOMIC MODELS

María Julia Blas
Silvio Gonnet

Instituto de Diseño y Desarrollo INGAR (UTN-CONICET)
Avellaneda 3657

Santa Fe, 3000, ARGENTINA

ABSTRACT

This paper presents a work-in-progress intended to define the foundations for building a representation of

DEVS using conceptual modeling languages from information system engineering. We use UML and OCL
languages to define a metamodel that conceptualizes atomic DEVS models. Such a representation enhances
the DEVS modeling activity providing atomic model definitions as instances of the metamodel developed.

1 INTRODUCTION

The Discrete Event System Specification (DEVS) formalism (Zeigler et al. 2018) is a modeling formalism
with sound semantics founded on a system theoretic basis. This formalism embodies a set of concepts

related to systems theory and modeling to describe discrete event models. DEVS includes two types of
models (atomic and coupled) that are formalized using equations, functions, and sets. Therefore, DEVS is
an abstract formalism that is independent of any particular implementation. When engineers want to
simulate DEVS models they need to program them in the input language of a concrete simulator. Then,
DEVS models can be mathematically described but its simulation is performed by a particular simulator.
Hence, it would be desirable to use existing modeling languages to build DEVS models from an information

system perspective. A “good” conceptualization of DEVS can provide a basis to automatically translate
their instances into DEVS simulators. Also, it can be used as a mechanism for documenting the models.
 The main goal of our research is to improve the representation of DEVS as abstractions of the system
under study using UML and OCL modeling languages. We show how a metamodel can provide a solid
basis for describing the behavior of atomic DEVS models employing conceptual modeling from the
information system perspective. The representation of coupled DEVS models is out of scope.

2 THE “ATOMIC DEVS MODEL” METAMODEL

A DEVS model is designed considering the modeler’s knowledge about the source system (domain).
Mainly, a representation of the domain states needs to be specified in an atomic model. Applying conceptual
modeling of information system perspective for modeling the system under study, we can assume that the
state of a particular domain, at a given time, consists of a set of objects, a set of relationships, and a set of
concepts into which these objects and relationships are classified (Olive 2007). The set of entity and

relationship types used to observe the state of a domain is the conceptualization of that state (Olive 2007).
Such a conceptualization can be specified employing a UML class diagram. Then, if we specify an atomic
model as an entity type (class), we could define its structure according to the (yellow) classes of Figure 1.
In its simplest form, an atomic DEVS is defined with basic state variables phase and sigma. Furthermore,
specific state variables can be added by extending the model definition (see the SimpleProcessor definition).

At any time the model is in some state, s. A state change occurs when: i) an external event has arrived,

or ii) no external event occurs and the system was in s for time ta(s). In the first case, the current state
changes according to the external transition function. When an external event arrives, the model also

Blas and Gonnet

receives its elapsed time (e). On the other hand, in the second case, the state changes following the internal
transition function. The transition is triggered by a timed event. However, before changing the state, the
model sends an output event. Once the output event has been dispatched, the internal transition function is

executed to bring the model to a new state.
In conceptual modeling of information systems, the behavioral schema specifies the valid changes in

the domain state, as well as the actions that the system can perform. Changes in the domain state are domain
events. Events are also instances of concepts and they have characteristics, which are relationships with
other entities. All events have a relationship with an entity that is a time instant, which corresponds to the
time at which the event occurs (Olive 2007). Figure 1 shows events as instances of concepts. An Event is

defined by the effect() that it will produce in the model and the precondition that must occur for that event
to happen (condition() operation). An Event is specialized in External Event and Internal Event to represent
the two kinds of events that can change the domain state of an atomic model. Then, the classes are
specialized following the domain events identified in the source system. For External Event, the
elapsedTime attribute is included with aims to represent the information required to determine its transition
effect(). For the Internal Event, the output() operation that determines how output events are generated.

Over UML class diagram, OCL can be used to fully define the model behavior (state variable values,
initial state definition, and operation description). This language enables a declarative specification of the
event effects and, therefore, any implementation of the model that leaves the information base in a state
that satisfies the specified model is valid (Olivé 2007). Then, combining UML and OCL with conceptual

modeling of information systems, a full definition of atomic models can be provided. For example, in
Figure 1 the classes in red illustrate the SimpleProcessor model. The state definition includes time, request,

and queue as new variables. The values for phase are waiting and working (OCL invariant detailed in gray).
The initial state (OCL constraints in pink) is defined as (waiting, infinity, 0,{},{}). The internal and external
events are modeled, respectively, in the classes ProcessingFinished and ArriveRequest. The preconditions
and effects of these events are specified with the OCL constraints detailed in black and blue, respectively.
Finally, the output of the ProcessingFinished event is specified in the OCL constraint described in green.

context SimpleProcessor

inv: phase = "waiting" or phase = "working"

context SimpleProcessor::phase init: "waiting"

context SimpleProcessor::sigma init: infinity

context SimpleProcessor::time init: 0.0

context SimpleProcessor::request init: Set{}

context SimpleProcessor::queue init: OrderedSet{}

context ArriveRequest::condition():Boolean

body: (devs.sigma = infinity and devs.phase = “waiting”) or

(devs.phase = “working”)

context ArriveRequest::effect()

post: devs.phase@pre = “waiting” implies (devs.phase =“working”

and devs.sigma = 20 and devs.time = devs.time@pre + elapsedTime

and devs.request = queue and devs.queue= OrderedSet{})

post: devs.phase@pre = “working” implies (devs.phase =“working”

and devs.sigma = devs.sigma@pre - elapsedTime and devs.time =

devs.time@pre + elapsedTime and devs.request = devs.request and

devs.queue = devs.queue@pre->append(queue))

context ProcessingIsFinished::condition()

body: devs.phase = “working”

context ProcessingIsFinished::output():Real

body: Tuple{time= devs.time, queue= devs.request}

context ProcessingIsFinished::effect()

post: devs.request@pre->isEmpty() implies (devs.phase= “waiting”

and devs.sigma = infinity and devs.time = devs.time@pre +

devs.sigma@pre and devs.request = Set{} and devs.queue =

OrderedSet{})

post: devs.queue@pre->notEmpty() implies (devs.phase = “working”

and devs.sigma = 20 and devs.time = devs.time@pre + devs.sigma@pre

and devs.request = queue->first() and devs.queue =

devs.queue@pre->excluding(devs.queue@pre->first()))

Figure 1: Simple Processor specification.

REFERENCES

Olivé, A. 2007. Conceptual Modeling of Information Systems. 1st ed. New York: Springer Science & Business Media.

Zeigler, B. P., A. Muzy, and E. Kofman. 2018. Theory of Modeling and Simulation: Discrete Event & Iterative System

Computational Foundations. 3rd ed. London: Academic Press.

