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ABSTRACT 

The Business Process Modeling Notation (BPMN) has been established as a modeling standard in 
Business Process (BP) Management. However, BPMN lacks several important elements needed for BP 
simulation and is not well-aligned with the Queueing Network paradigm of Operations Research and 
the related BP simulation paradigm pioneered by the Discrete Event Simulation (DES) languages/tools 
GPSS and SIMAN/Arena. The Discrete Event Process Modeling Notation (DPMN) proposed by 
Wagner (2018) is based on Event Graphs (Schruben 1983), which capture the DES paradigm of Event-
Based  Simulation. By allowing to make flowchart models of queueing/processing networks with a 
precise semantics, DPMN reconciles (the flowchart approach of) BPMN with DES. DPMN is the first 
visual modeling language that supports all important DES approaches: event-based simulation, activity-
based DES and Processing Network models, providing a foundation for harmonizing and unifying the 
many different terminologies/concepts and diagram languages of established DES tools. 

1 INTRODUCTION 

The term Discrete Event Simulation (DES) has been established as an umbrella term subsuming various 
kinds of computer simulation approaches, all based on the general idea of modeling the dynamics of a 
system as a series of (explicit or implicit) events that change the system’s state over time.  

In the DES literature, it is often stated that DES is based on “entities flowing through the system”. 
While this narrative applies to a DES paradigm called “Process Modeling” by Pegden (2010), it 
characterizes a special (yet important) kind of DES only, and it does not apply to all discrete event 
systems. As we explain below, the “Process Modeling” paradigm should be better called Processing 
Network (PN) paradigm, since it is not about process modeling in general, but only about modeling a 
particular kind of discrete processes that happen in PNs (which generalize queuing networks). It has 
been pioneered by GPSS (Gordon 1961) and SIMAN/Arena (Pegden and Davis 1992) and is 
implemented in various forms by all modern off-the-shelf simulation software products. 

Today, after a history of more than 50 years, the field of DES is fragmented into many different 
paradigms and formalisms, based on different concepts and terminologies. Unlike other scientific fields, 
it didn’t achieve much conceptual unity regarding its foundations, which would be crucial for 
facilitating scientific progress. 

The lack of a scientifically established conceptual foundation of DES and an accompanying 
standard terminology is witnessed in the diversity of terminologies used in DES software packages. 
Typically, DES  practitioners are locked into the terminology (and implementation idiosyncrasies) of 
the software package they use, and often not aware of the general, technology-independent concepts.  

Pegden (2010) explains that the history of DES has been shaped by three fundamental paradigms: 
Markowitz, Hausner, and Karr (1962) pioneered Event-Based Simulation (ES) with SIMSCRIPT, 
Gordon (1961) pioneered Processing Network Simulation (PNS) with GPSS, and Dahl and Nygaard 
(1967) pioneered Object-Orientation (OO) and the computational concept of co-routines for 
asynchronous programming with their simulation language Simula.  

978-1-6654-3311-2/21/$31.00 ©2021 IEEE



Wagner 
 

 

Notice, however, that OO does not represent a DES paradigm, but rather an information/data 
modeling paradigm for conceptual modeling and software design modeling. In fact, the Simula 
paradigm is characterized by a combination of OO modeling and using co-routines for implementing 
the dynamics of a discrete system (to be simulated) without an explicit computational concept of events 
in a way that is sometimes called ‘process interaction’ approach. 

According to Pegden (2010), ES has been widely used during the first 20 years of simulation, due 
to its great flexibility allowing to efficiently model a wide range of complex systems. Later, however, 
the PNS paradigm, implemented by tools like Arena, Simul8, FlexSim, Simio and AnyLogic, became 
the dominant approach in practical applications of simulation because it is based on the higher-level 
concept of processing activities and allows no-code (or low-code) simulation engineering with 
graphical user interfaces and appealing visualizations.  

After OO had been established as the predominant paradigm in software engineering in the 1990s, 
it was also adopted by many simulation tools, which weaved it into their PNS approach. Pegden (2010) 
remarks that “Many process and object based simulation tools maintain an event capability as a 
‘backdoor’ for flexibility”. Consequently, modern DES tools allow combining PN models with OO 
modeling and event scheduling. 

In addition to the two important DES modeling paradigms of ES and PNS (typically combined with 
OO), several DES formalisms have been proposed, notably the Petri-Net-based Activity Cycle Diagrams 
by Tocher (1960), the Discrete Event System Specification (DEVS) by Zeigler (1976) and Event Graphs 
by Schruben (1983). Also, using the classical mathematical/computational formalisms of Petri Nets and 
Markov Chains for DES modeling has been proposed. 

While the abstract formalism of DEVS defines its own complex systems simulation paradigm, 
based on the theoretical computer science concepts of finite state machines and transition systems, 
Event Graphs define a diagram language for specifying ES models and their formal semantics provides 
a formal semantics of ES. 

As argued by Pegden (2010), ES is the most fundamental DES paradigm since the other paradigms 
also use events, at least implicitly. However, Pegden does not explain in which way the other paradigms 
are built upon ES. We show how to extend ES by adding concepts like objects and activities resulting 
in Object Event (OE) Modeling and Simulation (M&S) proposed by Wagner (2018) as a new general 
DES paradigm based on the two most important ontological categories: objects and events (Guizzardi 
and Wagner 2010). 

OEM&S combines OO modeling with the event scheduling approach of ES. The relevant object 
types and event types are described in an information model, which is the basis for making a process 
model. A modeling approach that follows the OE Modeling (OEM) paradigm is called an OEM 
approach. Such an approach needs to choose, or define, an information modeling language (such as 
Entity Relationship Diagrams or UML Class Diagrams) and a process modeling language (such as UML 
Activity Diagrams or BPMN Process Diagrams). 

OE Simulation (OES) is a conservative extension of ES. While ES defines the system state structure 
in the form of a set of global variables, OES defines it in the form of a set of objects (or object states), 
such that their attributes take the role of state variables. 

In (Wagner 2018), we have introduced a variant of the Business Process Modeling Notation 
(BPMN), called Discrete Event Process Modeling Notation (DPMN), and have shown how an OEM 
approach based on UML Class Diagrams and DPMN Process Diagrams for making basic OE models 
allows defining a set of object types OT, a set of event types ET, and a set of event rules R. In (Wagner 
2017), we have shown that (a) these three sets define a state transition system, where the state space is 
defined by OT and ET, and the transitions are defined by R, and (b) such a transition system represents 
an Abstract State Machine (Gurevich 1985). This fundamental characterization of an OE simulation 
model provides a formal semantics for OES by defining an OES formalism that any OE simulator has 
to implement. 

Since OEM&S accommodates the concepts of resource-constrained activities and processing 
activities, as shown in Section 3, it integrates important DES concepts and supports modeling general 
forms of (BPMN-style) Activity Networks and (GPSS-style) Processing Networks, which extend 
Activity Networks by adding processing objects flowing through the network. 
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2 FROM EVENT GRAPHS TO ACTIVITY NETWORKS 

In this section, summarizing (Wagner 2020), we show how to incrementally extend Event Graphs by 
adding increasingly high-level modeling concepts: in the first step, we add the concept of objects, 
resulting in basic OEM/DPMN diagrams, and in the second step, we add the concept of (resource-
constrained) activities, resulting in the Activity Network modeling language OEM/DPMN-A. 

2.1 Event-Based Simulation and Object Event Simulation 

Event-Based Simulation (ES) uses state variables for modeling a system’s state and event scheduling 
with a Future Events List for modeling its dynamics. A technology-independent definition of ES is 
provided by Event Graphs, which define graphically how an event triggers state changes (in the form 
of possibly conditional variable value assignments) and follow-up events.  

The ES model shown in Figure 1 defines (a) two state variables: L for the length of an arrival queue 
and B for a performer being busy or not, as well as (b) three event variables representing Arrival, 
ProcessingStart and ProcessingEnd events, in the form of circles. In addition, it defines the sequencing 
of events of those types, together with caused state changes, in the form of possibly conditional variable 
assignments (underneath event circle names). 

 

Figure 1: An Event Graph defining an ES model with two state variables and three event types. 

Event Graphs provide a visual modeling language with a precise semantics that captures the 
fundamental event scheduling paradigm. However, Event Graphs are a rather low-level DES modeling 
language: they lack a visual notation for (conditional and parallel) branching, do not support OO state 
structure modeling (with attributes of objects taking the role of state variables) and do not support the 
concept of activities. 

In the proposed OEM&S approach, object types and event types are modeled as special categories 
of classes in a special kind of UML Class Diagram, called OE Class Model. Random variables are 
modeled as a special category of class-level operations constrained to comply with a specific probability 
distribution such that they can be implemented as static methods of a class. Queues are not modeled as 
objects, but rather as ordered association ends, which can be implemented as collection-valued 
reference properties. Finally, event rules, which include event routines, are modeled in DPMN process 
diagrams (and possibly also in pseudo-code), such that they can be implemented in the form of special 
onEvent methods of event classes. 

Notice that in the OE class model shown in Figure 2, events of both types, arrivals and departures, 
are associated with a service desk (as their only participant). This is the service desk where these events 
happen. While the ServiceDesk object class defines a random variable serviceTime, the Arrival event 
class defines a random variable recurrence. 
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Figure 2: An OE class model defining an object type and two event types. 

A process model is based on an underlying information model defining the types of its objects and 
events. The process model shown in Figure 3 is based on the OE class model shown in Figure 2. 

 

Figure 3: A basic DPMN process model based on the OE class model of Figure 2. 

Basic DPMN Process Diagrams (without activities) are a conservative extension of Event Graphs. 
This means that a basic DPMN process diagram can be transformed to an event graph preserving its 
dynamics by replacing its objects with corresponding sets of state variables. 

Like Petri Nets and DEVS, OES has a formal semantics. But while Petri Nets and DEVS are abstract 
computational formalisms without an ontological foundation, OES is based on the ontological 
categories of objects, events and causal regularities. 

DPMN consists of three layers. The first layer, basic DPMN, corresponds to an extension of Event 
Graphs by adding the concept of Objects. The second layer, DPMN-A, adds the concept of Resource-
Constrained Activities, while the third layer, DPMN-PN, adds the concepts of Processing Activities and 
Processing Networks. 

2.2 Activity-Based Discrete Event Simulation 

In (Wagner 2020), we have shown how to extend basic OEM/DPMN by adding support for resource-
constrained activities, resulting in an extension, OEM/DPMN-A, comprised of three new information 
modeling elements (Activity Type, Resource Role, Resource Pool) and two new process modeling 
elements (Activity and Resource-Dependent Activity Scheduling Arrow). DPMN-A diagrams allow 
modeling Activity Networks. 

Conceptually, an activity is a composite event with a non-zero duration that is composed of, and 
temporally framed by, a pair of instantaneous start and end events. In Figure 4 below, the pair of 
ProcessingStart and ProcessingEnd events is replaced with a corresponding Processing activity. This 
replacement pattern constitutes the semantics of activities in DPMN by reduction to a pair of 
corresponding start and end events. 
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Figure 4: Introducing a simple Activity for replacing a pair of corresponding start and end events. 

Activities may require certain resource objects for being performable. At any point in time, a 
resource required for performing an activity may be available or not. A resource is not available, for 
instance, when it is busy or when it is out of order.  

For instance, a loading activity may require two resources: a truck to be loaded and a wheel loader 
as the performer of the loading activity. Such resource requirements are defined in an OE class model 
where we would express two resource role associations for the activity type Loading: one with the 
object type Truck and another one with the object type WheelLoader, the former one with a resource 
cardinality constraint of 1, stating that exactly one truck is required, and the latter one with a resource 
cardinality constraint of 1..2, stating that at least one wheel loader is required, and at most two wheel 
loaders can be used, for loading a truck. 

Typically, a resource-constrained activity is a component of a business process that happens in the 
context of an organization or organizational unit, which is associated with the activity as its process 
owner. 

Modeling resource-constrained activities has been a major issue in DES since its inception in the 
nineteen-sixties, while it has been neglected and is still considered an advanced topic in the field of 
Business Process Modeling. For instance, while BPMN allows assigning resources to activities, it does 
not allow modeling resource pools, and does neither allow specifying resource cardinality constraints. 
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In the PNS paradigm, Gordon (1961) has introduced the resource management operations Seize and 
Release in the simulation language GPSS for allocating and de-allocating (or releasing) resources. Thus, 
GPSS has established a standard modeling pattern for resource-constrained activities, which has 
become popular under the name of Seize-Delay-Release indicating that for simulating a resource-
constrained activity, its resources are first allocated, and then, after some delay (representing the 
duration of the simulated activity), they are de-allocated (released). 

For all types of resource-constrained activities, a simulator can automatically collect the following 
statistics: 

 
1. Queue throughput statistics: the numbers of enqueued and de-queued tasks, and the numbers 

of started and completed activities. 
2. Queue length statistics (average, maximum, etc.) of their task queues. 
3. Cycle time statistics (average, maximum, etc.), where cycle time is the sum of the waiting time 

and the activity duration. 
4. Resource utilization statistics: the percentage of time each resource object involved is busy with 

an activity of that type. 
 
In addition, a simulator can automatically collect the percentage of time each resource object 

involved is idle or out-of-order. 
While a follow-up event can be scheduled to start immediately, a follow-up activity can only be 

scheduled by adding a new planned activity, or task, to a task queue, and started as soon as all required 
resources are available. This consideration is the basis for introducing Resource-Dependent Activity 
Scheduling (RDAS) arrows allowing to simplify the activity scheduling pattern as shown in Figure 5. 
 

 

 

 

Figure 5: Introducing a Resource-Dependent Activity Scheduling arrow between Order and 
MakePizza. 

 Notice that while the queuing logic for MakePizza tasks is expressed explicitly (with the help of 
the queueLength and the busy variables) in the upper diagram of Figure 5, it is implied by the RDAS 
arrow in the lower diagram according to the resource roles and resource cardinality constraints defined 
in the underlying OE class diagram.  

2.3 BPMN-Based Simulation is Severely Limited 

In the Information Systems area of Business Process Management, the Business Process Modeling 
Notation (BPMN) has been established as a modeling standard that is widely used by many kinds of 
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organizations for documenting existing, and for designing new, business processes. It is also a goal, to 
simulate the business processes described by a BPMN process model. However, since BPMN has not 
been designed as a simulation language, several important elements needed for simulation are not 
included in a BPMN process model and therefore have to be defined on top of it.  
 A common approach taken by several academic simulators (QBP 2021, Pufahl et al 2018), DES 
vendors (Simul8, Lanner L-Sim) and BPMN vendors (e.g., SAP/Signavio) is to ask for the following 
additional items: the arrival rate for new cases, capacities of the activity performer resource pools 
represented by lanes (and possibly schedules for the pools’ resources), activity durations, and 
conditional branching probabilities for gateways. 

The last item points to the first limitation. Conditional branching is not modeled on the basis of 
state variables, but only in the abstract way of using (hard-to-guess) branching probabilities. The 
BPMN-based simulation approach has even more severe limitations with respect to resource 
management:  

 
 It allows only one performer resource per activity while many real-world activities require 

several other resources, in addition to the performer (e.g., a medical examination activity 
may require a room, a doctor, and a nurse). 

 It does not support important resource allocation methods such as alternative resource pools 
or pre-emption. 

 
Consequently, BPMN-based business process simulation is inferior to DPMN-A-based Activity 

Network simulation (and PN-based business process simulation), especially if the simulator is based on 
BPMN’s artificial "token flow" semantics instead of ES semantics. 

2.4 Conceptual Foundations of Discrete Event Simulation 

There is a lot of conceptual confusion in the field of DES. First of all, the term “discrete event 
simulation” is not well-defined. While many DES textbooks avoid defining it at all, others only define 
it in a very rudimentary way.  
 For instance, Banks et al (2010) define that DES is “the modeling of systems in which the state 
variable changes only at a discrete set of points in time”. Remarkably, this definition does not even 
mention the concept of events, possibly for accommodating DES approaches that do not have explicit 
events, such as Petri Nets, Activity Cycle Diagrams and DEVS. 

While some authors, such as Pegden (2010), distinguish between three fundamental DES 
approaches: ES, PNS and OO, others, such as Banks (1998), distinguish between four approaches: ES, 
PNS (called “process-interaction”), Activity Scanning and the Three-Phase Method. This disagreement 
about fundamental concepts, and the different terms used by different authors for the same concepts 
(e.g., the PNS paradigm has the following names in the DES literature: “process-oriented”, “process-
based”, “process-interaction”, “process-centric”), must be very confusing for students of and beginners 
in DES. 
 We follow the view of Pegden (2010) that ES is the most fundamental DES paradigm, although in 
many DES textbooks, e.g., in (Banks et al 2010), this is not explained. Adopting ES as the most 
fundamental DES paradigm implies that other paradigms should extend it in a conservative manner 
such that its basic concepts (and their semantics) are preserved. The basic concepts of ES models and 
Event Graphs, with hints about their use in diagrams enclosed in brackets, are :  

 
1. (typed) state variables [used in the state change annotations of event circles and in condition 

annotations of event scheduling arrows],  
2. (typed) event variables representing events of some type [visually expressed by event circles, 

with the event type name shown underneath the circle],  
3. state changes in the form of state variable value assignments [shown in the state change 

annotations enclosed in braces underneath event circles],  
4. event rules as transition functions (defining the state changes and follow-up events caused by 

an occurrence of an event of a certain type) [visually expressed by event scheduling arrows]. 
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Basic OEM/DPMN extends this set of basic concepts of ES by adding the following concepts: 
 
5. object types [visually expressed as stereotyped class rectangles in an OE class diagram],  
6. event types [visually expressed as stereotyped class rectangles in an OE class diagram],  
7. a categorization of event types as either exogenous (with a recurrence function that is typically 

a random variable) or endogenous/caused [marked with corresponding stereotypes in an OE 
class diagram], 

8.  (typed) object variables representing objects of some type participating in events [object 
variables are declared in object rectangles attached to event circles in a DPMN diagram], 

9. object-oriented state change statements  [shown in object rectangles in a DPMN diagram]. 
 

The Activity Network modeling language OEM/DPMN-A extends this set of basic concepts by 
adding the following concepts, as illustrated by Table 1: 

 
10. activity types [visually expressed as stereotyped activity class rectangles in an OE class 

diagram], 
11. resource roles [visually expressed in the form of stereotyped association ends in an OE class 

diagram],  
12. resource cardinality constraints [visually expressed in the form of association end multiplici-

ties in an OE class diagram], 
13. resource pools [visually expressed in the form of stereotyped association ends in an OE class 

diagram], 
14. (typed) activity variables representing activities of some type [visually expressed by activity 

rectangles with rounded corners in a DPMN diagram], 
15. activity flows [visually expressed by resource-dependent activity scheduling arrows in a DPMN 

diagram]. 

Table 1: From Event Graphs to Activity Networks. 

 Layer Elements/Concepts Diagrams 

E
vent-

B
ased 

S
im

ul. 

Event Graphs 
(Schruben 1983) 

Event Circles, Event 
Scheduling Arrows, 
Variable Value 
Assignments  

O
bject E

vent S
im

ulation (O
E

S
) 

Basic DPMN  
+ Objects w/ State 
Changes 

 

DPMN with Simple 
Activities 

+ Activities 

 

DPMN with 
Resource-Constrained 
Activities (DPMN-A) 
 
Activity Networks 

+ Resource Roles 
+ Resource 
Cardinality 
Constraints 
+ Resource Pools 
+ Resource-
Dependent Activity 
Scheduling Arrows 

 

 
The Processing Network modeling language OEM/DPMN-PN, presented in the next section, 

extends the set of basic concepts of Activity Networks by adding the following concepts: 
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16. processing activity types [visually expressed as stereotyped activity class rectangles in an OE 
class diagram], 

17. entry nodes consisting of an entry station object and a (typed) arrival event variable [visually 
expressed by a special object shape in a DPMN diagram], 

18. processing nodes consisting of a processing station object and a (typed) processing activity 
variable [visually expressed by a special object shape in a DPMN diagram], 

19. exit nodes consisting of an exit station object and a (typed) departure event variable [visually 
expressed by a special object shape in a DPMN diagram], 

20. processing flows combining an activity flow and an object flow [visually expressed by 
processing flow arrows in a DPMN diagram]. 

 

3 PROCESSING ACTIVITIES AND PROCESSING NETWORKS 

The concept of discrete Processing Networks is a generalization of the Operations Research concept of 
Queueing Networks. A Processing Object enters a processing network via an Arrival event at an Entry 
Station, is subsequently routed along a chain of Processing Stations where it is subject to Processing 
Activities, and finally exits the network via a Departure event at an Exit Station. In typical definitions 
of a queueing network, the processing station is the only required resource of the processing activities 
performed at that station, while in a processing network, processing activities can have many required 
(and optional) resources of various types being allocated with various methods. 

In general, there are also continuous processing processes (with continuous processing flows) 
happening in continuous processing networks (to be modeled with differential equations). Since we are 
only interested in discrete systems in this article, we simply say Processing Network (PN) and 
processing process and omit the qualifying adjective “discrete”. 

PNs have been investigated in operations management (Loch 1998) and in the mathematical theory 
of queuing (Williams 2016), and have been the application focus of most industrial simulation software 
products, historically starting with GPSS (Gordon 1961) and SIMAN/Arena (Pegden and Davis 1992). 
They allow modeling many forms of discrete processing processes as can be found, for instance, in the 
manufacturing and services industries. 

In the field of DES, PNs have often been characterized by the narrative of “entities flowing through 
a system”. In fact, while in Activity Networks (DPMN-A), there is only a flow of events (including 
activities), in Processing Networks (DPMN-PN), this flow of events is over-laid with a flow of 
(processing) objects. 

It is remarkable that the PN paradigm has dominated the DES software market since the 1990s and 
still flourishes today, often with object-oriented and “agent-based” extensions. Its dominance has led 
many simulation experts to view it as a synonym of DES, which is a conceptual flaw because the 
concept of DES, even if not precisely defined, is clearly more general than the PN paradigm. 

The PN paradigm has often been called a “process-oriented” DES approach. But unlike the business 
process modeling language BPMN, it is not concerned with a general concept of business process 
models, but rather with the more special concept of processing process models. A processing process 
includes the simultaneous handling of several “cases” (processing objects) that may compete for 
resources or have other interdependencies, while a “business process” in Business Process Management 
has traditionally been considered as a case-based process that is isolated from other cases. 

3.1 Processing Activities 

A Processing Activity is a resource-constrained activity that is performed at a processing station and 
takes one or more objects as inputs and processes them in some way (possibly transforming them from 
one type of object to another type), creating one or more objects as outputs. The processed objects have 
been called "transactions" in GPSS and "entities" in SIMAN/Arena, while they are called Processing 
Objects in DPMN. 

Ontologically, there are one or more objects participating in a processing activity, as shown in 
Figure 6. Some of them may represent resources, while others may represent processing objects. 



Wagner 
 

 

Processing activities typically require immobile physical resources, like rooms or workstation 
machines, which define the inner nodes of a PN.  

 

Figure 6: The concept of Processing Activities. 

Each node in a PN model represents both an object and a typed event variable. An Entry Node 
represents both an Entry Station (e.g., a reception area or an entrance to an inventory) and an Arrival 
event variable. A Processing Node represents both a Processing Station (e.g., a workstation or a room) 
and a processing activity variable. An Exit Node represents both an Exit Station and a Departure event 
variable. A Processing Flow arrow connecting two processing nodes represents both an event flow and 
an object flow. Thus, the node types and the flow arrows of a PN are high-level modeling concepts that 
are overloaded with two meanings. 

The (entry, processing and exit) stations of a PN define locations in a network space, which may be 
based on a two- or three-dimensional Euclidean space. Consequently, OEM-PN models are spatial 
simulation models, while basic OEM and OEM-A allow to abstract away from space. When a 
processing object is routed to a follow-up processing station, it moves to the location of that station. 
The underlying space model allows visualizing a PN simulation in a natural way with processing objects 
as moving objects. 

A PN modeling language should have elements for modeling each of the three types of nodes. 
Consequently, DPMN-A has to be extended by adding new visual modeling elements for entry, 
processing and exit nodes, and for connecting them with processing flow arrows. 

The simulation modeling concepts of the PN paradigm have been adopted by most DES software 
products, including Simul8, Simio and AnyLogic. However, each of these products uses its own variants 
of the PN concepts, together with their own proprietary terminology and proprietary diagram language, 
as illustrated by Table 2. 

Table 2: Different terminologies used for the same PN modeling concepts. 

OEM/DPMN Arena Simul8 Simio AnyLogic 
Processing Object Entity Work Item Token Agent 
Entry Node Create Start Point Source Source 
Processing Node Process  Queue+Activity Server Service or Seize+Delay+Release 
Exit Node Dispose End Point Sink Sink 

 
The use of such proprietary terminologies and diagram languages makes it hard for simulation 

beginners to learn how to use a tool and for expert users of a tool to switch, or interchange models, from 
their tool to another one.  Notice especially the strange term “Agent” used by AnyLogic, instead of the 
Arena term “Entity”, for processing objects like manufacturing parts in production systems or patients 
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in hospitals. It is confusing to call a manufacturing part, such as a wheel in the production of a car, an 
“agent”. 

For PNs, a simulator can automatically collect the following statistics, in addition to the Activity 
Network statistics described in Section 2.2: 

 
1. The number of processing objects that arrived at, and departed from, the system. 
2. The number of processing objects in process (that is, either waiting in a queue/buffer or being 

processed) 
3. The average time a processing object spends in the system (also called throughput time). 
 
During a simulation run, it must hold that the number of processing objects that arrived at the system 

is equal to the sum of the number of processing objects in process and the number of processing objects 
that departed from the system, symbolically: 

 
arrived = in-process + departed 

3.2 Conceptual Modeling of Processing Networks 

For accommodating PN modeling, OEM-A is extended by adding pre-defined types for processing 
objects, entry nodes, arrival events, processing nodes, processing activities, exit nodes and departure 
events, resulting in OEM-PN. These built-in types, which are described in Figure 7, allow making PN 
models simply by making a process model (with DPMN) without the need of making a separate OE 
class model as its foundation, as shown in Figure 8. 

 

Figure 7: Built-in types for PN modeling in OEM-PN class diagrams. 

DPMN is extended by adding the new modeling elements of Entry Node, Processing Node and Exit 
Node rectangles as well as Processing Flow arrows, representing combined object-event flows. Node 
rectangles take the form of stereotyped UML object rectangles, while Processing Flow arrows have a 
special arrow head consisting of a circle and three bars, as shown in Figure 8. Notice however, that this 
is just a preliminary visual syntax that may be improved in future work. 

As a simple example of a PN model we consider a Department of Motor Vehicles (DMV) with two 
consecutive service desks: a reception desk and a case handling desk. When a customer arrives at the 
DMV, she first has to enqueue at the reception desk where data for her case is recorded. The customer 
then goes to the waiting area and waits for being called by the case handling desk where her case will 
be processed. After completing the case handling, the customer leaves the DMV via the exit. 

 

Figure 8: A PN model of the DMV with node rectangles and Processing Flow arrows. 
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 Customer arrivals are modeled with an «entry node» element (with name “DMV entry”), the two 
consecutive service desks are modeled with two «processing node» elements, and the departure of 
customers is modeled with an «exit node» element (with name “DMV exit”). 

Since each node of a DPMN-PN process diagram implicitly defines both a station object and a 
typed event/activity variable, the diagram shown in Figure 8 is equivalent the modeling elements 
explicitly shown Figure 9. The station objects and the event/activity variables are elements of a running 
simulation. 

 

Figure 9: The elements defined implicitly by the DMV model of Figure 8. 

While a Processing Flow arrow between two nodes implies both a flow of the processing object to 
the successor node and the resource-dependent scheduling of the next processing activity, an Event 
Scheduling arrow from a processing node to an Event circle represents an event flow where a processing 
activity end event causes/schedules another event, as illustrated in the example of Figure 10. 

 

Figure 10: A DPMN-PN process diagram with an Event Scheduling arrow. 

3.3 Processing Network Design Models 

For accommodating PN modeling, OEM-A is extended by adding pre-defined types for processing 
objects, entry node objects, arrival events, processing node objects, processing activities, exit objects 
and departure events, as described in Figure 11, resulting in OEM-PN.  

 

Figure 11: Built-in types for making PN design models. 
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 In simple cases, these built-in types allow making PN models based on them without first defining 
custom types of processing objects, arrival events and processing activities, simply by making a process 
model with DPMN without the need of making an OE class model as its foundation, as shown in Figure 
12.  

Notice that the range of the properties arrivalRecurrence, successorNodes and duration of the built-
in object types EntryNode and ProcessingNode is Function, which means that the value of such a 
property for a specific node is a specific function. While the standard UML semantics does not support 
such an extension of the semantics of properties in the spirit of the Functional Programming paradigm, 
its implementation in a functional OO programming language like JavaScript, where objects can have 
instance-level functions/methods, is straightforward. 

The property successorNodes allows to express a function that provides, for any given entry or 
processing node, a (possibly singleton) set of processing nodes or exit nodes. Such a function can 
express several cases of routing a processing object from a node to one or more successor nodes: 

 
1. a fixed unique successor node for modeling a series of processing nodes connected by (possibly 

conditional) processing flow arrows, as in Figure 13; 
2. a conditional unique successor node for modeling an Exclusive (XOR) Gateway leading to one 

of several possible successor nodes; 
3. a variable subset of a set of potential successor nodes for modeling an Inclusive (OR) Gateway; 
4. a fixed set of successor nodes for modeling a Parallel (AND) Gateway; 
 
In a DPMN diagram, the set of successor nodes of a node is defined by Flow Arrows, possibly in 

combination with Gateways. 

3.3.1 PN example 1: a Single Workstation 

Part arrivals are modeled with an «entry node» element (with name “partEntry”), the workstation is 
modeled with a «processing node» element, and the departure of parts is modeled with an «exit node» 
element (with name “partExit”). 

DPMN is extended by adding the new modeling elements of PN Node rectangles, representing node 
objects with associated event types, and Processing Flow arrows, representing combined object-event 
flows. PN Node rectangles take the form of stereotyped UML object rectangles, while PN Flow arrows 
have a special arrow head, as shown in Figure 12. 

 

Figure 12: A PN model of a workstation system using node rectangles and Processing Flow arrows. 

This model defines: 
 
1. An entry station object named “partEntry”. 
2. A recurrence random variable (with a triagonal distribution with parameters 3,4,8) for the inter-

occurrence time of Arrival events occurring at the “partEntry” station. 
3. A processing station object named “workStation”. 
4. A duration random variable (with an exponential distribution with parameter 1/6) for the 

duration of activities of type WorkStationActivity performed at the “workStation”. 
5. A successor function for the “partEntry” station, providing the “workStation”. 
6. An exit station object named “partExit”. 
7. A successor function for the “workStation”, providing the “partExit” station. 
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3.3.2 PN example 2: Department of Motor Vehicles 

A Department of Motor Vehicles (DMV) has two consecutive service desks: a reception desk and a 
case handling desk. When a customer arrives at the DMV, she first has to queue up at the reception desk 
where data for her case is recorded. The customer then goes to the waiting area and waits for being 
called by the case handling desk where her case will be processed. After completing the case handling, 
the customer leaves the DMV via the exit. 

Customer arrivals are modeled with an «entry node» element (with name “dmvEntry”), the two 
consecutive service desks are modeled with two «processing node» elements, and the departure of 
customers is modeled with an «exit node» element (with name “dmvExit”). 

 

Figure 13: A PN model of a Department of Motor Vehicles. 

3.4 Processing Networks versus Activity Networks 

While business process models made with BPMN are essentially Activity Networks (ANs), business 
process models made with classical DES tools, like Simio and AnyLogic, are essentially Processing 
Networks (PNs).  

AN models abstract away from space: the nodes of an AN do not have a location in space, while 
PN models are spatial models: the nodes of a PN do have a location in space. 

In ANs with resource-constrained activities, there are (implicit) task queues, which (typically) have 
an unlimited capacity. PNs have combined object/task queues, which (typically) have a limited capacity 
due to limited space. 

3.5 Further Case Studies 

In (Wagner 2021), three further case studies of OEM/DPMN models are presented, with 
implementations in the JavaScript DES framework OESjs, in Simio and in AnyLogic: 
 

1. Make and Deliver Pizza 
2. Load-Haul-Dump 
3. Diagnostic Clinic 

4 CONCLUSIONS 

We have shown how Event Graphs and Event-Based Simulation (ES) can be incrementally extended 
by adding the concepts of objects, (resource-constrained) activities and processing activities. The 
resulting modeling and simulation framework, called OEM/DPMN, supports both Activity Networks 
(generalizing BPMN) and Processing Networks (generalizing GPSS), and provides a foundation for 
harmonizing and unifying the concepts and terminologies of established DES tools. 

Remarkably, the pioneering ES language/tool SIMSCRIPT abandoned the ES paradigm in a later 
version and adopted the PN paradigm of GPSS instead of adding the GPSS/PN concepts to ES, as we 
have done in the development of the layers of OEM/DPMN. In expressive DES models, both events 
and activities are needed. 
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