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ABSTRACT

In real-time decision-making problems for complicated stochastic systems, a covariate that reflects the
state of the system is observed in real time and a state-dependent decision needs to be made immediately
to optimize some system performance. Such system performances, for complicated stochastic systems,
often are not in closed-form and require time-consuming simulation experiments to evaluate, which can be
prohibitive in real-time tasks. We propose two neural network-assisted methods to address this challenge by
effectively utilizing simulation experiments that are conducted offline before the real-time tasks. One key
step in the proposed methods integrates a classical simulation meta-modelling approach with neural networks
to jointly capture the mapping from the covariate and the decision variable to the system performance,
which enhances the use of offline simulation data and reduces the risk of model misspecification. A brief
numerical experiment is presented to illustrate the performance of the proposed methods.

1 INTRODUCTION

Modern stochastic systems often involve a sophisticated structure. Generally, the system performance is not
an analytical function of the decision variables, but a complex surface that can only be evaluated at points
through noisy samples. Simulation experiments have been widely used to generate these noisy samples,
which are used to evaluate the performance of a complex system. These simulation experiments can be
time-consuming for sophisticated systems. The system performance typically depends on a set of decision
variables, which serve as input parameters to the simulation experiments. In many applications, it is of
interest to search the feasible set of the decision variables with the objective to optimize the associated
system performance. This need drives the area of simulation optimization, also known as optimization
via simulation; see Fu et al. (2015), Amaran et al. (2016) for reference. The strategies for solving the
simulation optimization problems depend largely on the features of the objective function and the feasible
set. If the feasible set is discrete, the methodologies utilized can be found in the broad literature of discrete
optimization via simulation; see Andradóttir (2006), Ólafsson (2006), Kim and Nelson (2007), Nelson
(2010), Hong et al. (2015), Hong et al. (2020) among others. When the feasible set is continuous, under
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different circumstances, various methods are developed, including but are not limited to gradient-based
methodologies (Fu 2006; Fu 2010) and meta-model based methods (Barton and Meckesheimer 2006;
Barton 2013). Our work positions in the domain where the feasible set is continuous and the simulation
experiments are time-consuming to run.

In some scenarios, the objective functions and simulation experiments are involved with some additional
parameters different from the decision variables. These additional parameters, for example, include the
biometric characteristics for cancer treatment, the purchasing preference for marketing, and the ambient
information for the self-driving car. These parameters are denoted as the covariate, to be distinguished
from the decision variables (or, design points, in some literature). The optimal choice of decision variables
typically depends on the covariates, leading to the problems of simulation optimization with covariates.
When it is time-consuming to conduct simulation experiments, it is difficult for the conventional simulation
optimization strategies to be directly adopted into the framework for solving the covariate-involved problems.
This is especially the case when the problems are required to be solved in real time and a new covariate
value is observed that has never been seen before. There may not be enough time to run enough simulation
experiments associated with this new covariate in real time. This motivates the need to use simulation
experiments that have been run offline to support the real-time choice of optimal decision variable upon
observing the new covariate, without running new simulation experiments; see also Hong and Jiang (2019),
Gao et al. (2019) for the description of this need. Our work aims at providing new frameworks to facilitate
this need. Discrete simulation optimization problems with the covariate have been explored in Shen et al.
(2021), while we focus on the continuous simulation optimization problems in this work.

We provide two neural network-assisted frameworks to utilize offline simulation experiments to solve
the aforementioned real-time covariate-involved optimization problems. In the first framework, offline
simulations are run at selected values of the covariate and various decision variables. For each selected
value of covariate, the optimal decision variable is computed offline. Then a neural network is trained
through the pairs of covariates and the associated optimal decisions. Therefore, at the real-time stage, when
a new value of the covariate is observed, the approximate optimal decision is directly referred through the
trained neural network. In the second framework, we approximate the surface of the objective function with
respect to the covariate, using the neural network. We incorporate the neural network with the classical
meta-model, stochastic kriging model to approximate the performance of the simulation model. To be
more specific, given a covariate, the performance of the simulation model is estimated through a traditional
stochastic kriging model, while the parameters involved in the stochastic kriging model are approximated
with neural networks with respect to the covariate. The training of the neural networks is based on
maximizing the likelihood functions of the stochastic kriging models. With the trained neural networks in
hand, upon the new covariate is revealed, the approximate objective function is obtained without the need
of conducting simulation experiments. Furthermore, the objective function derived from the stochastic
kriging model can be optimized efficiently. In this way, the optimization problem is solved in real time.

Besides the neural networks, other machine learning models, e.g. regression models, can be adopted
into our methodologies as well. The main reason why neural networks are used in these frameworks is
largely due to the ambiguous surfaces with respect to the covariate. We might not have the prior information
of the mapping from the covariate. Neural networks preset no structural assumptions on the statistical
model, therefore are less risky to suffer the model misspecification. In addition, neural networks are capable
of approximating arbitrary functions, provided sufficient nodes and layers. Therefore, the utilization of
neural network helps to solve the aforementioned problems accurately. An introduction to neural networks
can be found in Masson and Wang (1990).

The advantages of our frameworks are two-fold. First, at the real-time stage, the pre-trained neural
network is used to recommend an optimal decision. This not only satisfies the realistic limitation of not
having enough time to run additional simulations, but also eliminates the need of temporarily calling all
the samples generated offline or executing time-consuming calculations such as high-dimensional matrix
inversion. Second, the neural-network assisted approaches have the potential to learn and model non-linear
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and complex relationships of the response surface with respect to the covariate, without imposing the
specific structual assumptions on the model. Therefore, the accuracy of prediction and robustness against
model-misspecification can be improved through the use of neural networks.

Our work is connected to and benefits from the literature of the area of meta-modelling. Meta-models,
or models of simulation models are used to approximate the mean performance of the simulation models
(Barton 2015). These models adopt the advantage of faster execution, and provide insight on the nature
of the model performance. In our work, we utilize the stochastic kriging meta-model to approximate the
response surface of the simulation model; see Ankenman et al. (2010) for reference. The stochastic kriging
model assumes that the performance of the simulation model is a sample path of a Gaussian process.
Compared with the ordinary kriging method, the stochastic kriging method is able to capture both the
intrinsic and extrinsic uncertainty in the design. As a nonparametric Bayesian model, the stochastic kriging
method imposes less structural assumptions and tends to be more resistant to overfitting than general
interpolators. The utilization of the common random numbers and gradient estimators help to enhance the
performance of the stochastic kriging; see Chen et al. (2012), Chen et al. (2013), Qu and Fu (2014). The
stochastic kriging method has been used in the input uncertainty analysis of the simulation model (Barton
et al. 2014; Xie et al. 2014; Xie et al. 2020). Meanwhile, the stochastic kriging-based optimization has
been widely used in the simulation optimization field as well, see Sun et al. (2014), Jalali et al. (2017),
L. Salemi et al. (2019), Semelhago et al. (2020).

2 METHODOLOGY

Simulation models provide insight into the behavior of stochastic systems, which help to improve the
system performance by changing the input parameters. The strategy of using the simulation experiments
to facilitate the optimization procedure is denoted as the simulation optimization, formulated as

x∗ = arg min
x∈X ⊆Rd

{
Eξ∼P [F(x,ξ )] = f (x)

}
,

where x ∈X ⊂Rd denotes the controllable design point of the simulation model and serves as the decision
variable of the optimization problem as well. In our work, we focus on the continuous optimization
problem. ξ ∼ P captures the random effects of the system. The objective function f (x) is named as the
response surface function of the system. Simulation experiments are conducted to evaluate the response
surface and therefore, facilitate the optimization problem. However, it is often the case that simulation
experiments are computationally intensive to execute. It is costly to collect sufficient simulation samples
for the optimization problem. Therefore, statistical models are often postulated for the response surface
with respect to the design points, which are convenient to run and evaluate. The statistical model is named
as the meta-model in the simulation community.

In some application scenarios, the stochastic systems involve the additional parameters that are observed
from the environment. These parameters are named as covariates, and the optimization problem is then
reformulated as

x∗(θ) = arg min
x∈X ⊆Rd

{
Eξ∼Pθ

[F(x,ξ ;θ)] = f (x;θ)
}
. (1)

Here, the covariate θ ∈ Θ ⊆ Rq influences both the distribution of the random effects P and the form of
the function F . The conventional strategy is executing simulation experiments to solve the problem (1)
once the covariate is observed. However, this approach might be impractical when the optimal solution
should be attained in real-time after a new covariate is revealed. Simultaneously, we are not able to obtain
the optimal solution in advance for every potential covariate θ as well, considering the expensive cost of
the simulation experiments.

To circumvent the challenge, we propose to utilize the neural network to facilitate the optimization
problem (1). We aim at providing the optimal solution x∗(θ) without executing the simulation experiments
at the real-time stage. Therefore, we need to implement simulation experiments in advance. With the data
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generated by the simulation models and the data analytics tools, we then build predictive models for solving
the problem (1). In our work, the predictive models are neural network-assisted. One brute-force strategy
is utilizing the neural network to approximate the optimal solution surface with respect to the covariate,
which is named as the neural network-assisted optimal solution surface method. We present the complete
procedure of this method in Section 2.2. The other methodology embeds the neural network into the
existing meta-model, exploiting more structural information of the simulation model. To be more specific,
we propose a neural network-assisted stochastic kriging model to approximate the surface of the objective
function with respect to the covariate, We name it as the neural network-assisted objective function surface
method. The details of the training procedure and the optimization procedure are included in Section 2.3.

2.1 Notation of Neural Network

Before we propose our methodologies, we first present the notations of the neural networks we used in
our work. Neural networks are computing systems that are used to approximate unknown mappings. In
our work, we utilize the fully-connected artificial neural network. For simplicity, we are going to use the
term neural network for the remaining parts. A neural network is composed with connected layers of
nodes, which are denoted as neurons. For each pair of the adjacent layers, the input of the t-th layer is the
output of the (t−1)-th layer. Assume the t-th layer possesses mt neurons, which indicates the dimension
of the t-th input. (For example, the number of neurons of the first layer (the input layer) is the same as the
dimension of the input.) Therefore, suppose the neural network has totally τ layers, the number of neurons
of the last layer mτ is the same with the dimension of the real observations. With the input and the output
layers excluded, the remaining layers are denoted as hidden layers, which are used to approximate the
complex mapping between the input and the output. Traditionally, the neural network is trained through
minimizing the loss between the output and the real observations. Other criterion can be adopted to obtain
the designated neural network depending on the application scenarios.

To be more specific, suppose the p-dimensional input of the neural network is denoted as

θn =
(

θ
(1)
n (1) ,θ (1)

n (2) , . . . ,θ (1)
n (p)

)
, n = 1,2, . . . ,N,

where the superscipt ”(1)” indicates the layer of the neural network. For the n-th input, the i-th element
of the associated output of the t-th layer is given by

θ
(t+1)
n (i) := ϕ

(
v(t)n (i)

)
, v(t)n (i) :=

mt

∑
j=0

w(t)
i, j θ

(t)
n ( j), i = 1, . . . ,mt+1, (2)

where ϕ(·) is the activation function. Meanwhile, it is required that θ
(t)
n (0) = 1, representing the constant

term. The synaptic weights w(t)
i, j are the parameters to be trained. Recall that the neural network has

totally τ layers. Therefore, the output vector of the n-th input is ~θ (τ)
n :=

(
θ
(τ)
n (1), . . . ,θ (τ)

n (mτ)
)
, while the

associated n-th real observation is ~On := (on(1), . . . ,on(mτ)) . Suppose the loss function selected is denoted
as L, in order to train the neural network, we aim at minimizing the mean loss

min
w

{
L (w) =

1
N

N

∑
n=1

L
(
~θ
(τ)
n , ~On

)}
, (3)

where w is a vector containing all synaptic weights. We select the l2-norm loss in our work. To solve
the optimization problem, the traditional strategy is applying the back-propagation algorithm, along with
certain optimization methods. After the training procedure, the neural network is then represented as

φτ−1 (φτ−2 . . .φ1 (θ)) , (4)

where φt denotes the mapping described in (2) from the t-th layer input to the t-th layer output, with the
optimal synaptic weights obtained via (3).
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2.2 Method I: Neural Network-Assisted Optimal Solution Surface

The first methodology is building the surface of the optimal solution with respect to the covariates. We first
select θ1,θ2, . . . ,θN ∈Θ. Then, with each θn, simulation experiments are then conducted to find x∗(θn)∈X .
For a fixed covariate, the problem reduces to a regular simulation optimization problem. Therefore, our
methodology does not require any specific optimization strategies. The selection of the optimization method
is supposed to depend on the problem itself. References for solving simulation optimization problems
include Fu et al. (2015), Amaran et al. (2016).

Assume that we implement sufficient simulation experiments to obtain the optimal solution for
each covariate θn. Here, we ignore the bias resulted from the optimization algorithms and the es-
timation error from the simulation model. At the end of the offline stage, we have the pairs of
{(θ1,x∗(θ1)),(θ2,x∗(θ2)), . . . ,(θN ,x∗(θN))} , where x∗(θn) denotes the optimal solution under the covariate
θn. Using these pairs of data, we are then able to approximate the surface of the optimal decision. Since the
sophisticated intrinsic mechanism between the covariate and the optimal decision is unknown, we utilize
the neural network to construct the surface of the optimal solution with respect to the covariates. The input
of the neural network is {θ1,θ2, . . . ,θN}. We denote the output as {x̂∗(θ1), x̂∗(θ2), . . . , x̂∗(θN)}. The real
observations are {x∗(θ1),x∗(θ2), . . . ,x∗(θN)}. By minimizing the loss L (w) = 1

N ∑
N
n=1 L(x̂∗(θn),x∗(θn)),

we obtain the approximate optimal decision surface, as is described in (4)

x̂∗(θ) = φτ−1 (φτ−2 . . .φ1 (θ)) , (5)

which is a mapping from the covariate space to the decision space. In terms of the neural network, our
methodology does not require any specific types of the activation function or the loss function.

In this way, at the real-time stage, every time we observe a θ , we could immediately refer to the
approximate optimal solution (5). An obvious advantage of this methodology is that the approximate
optimal solution is attained via directly referring. Therefore, this methodology is suitable for the problems
that require rapid action in different environments, such as the self-driving cars (Katrakazas et al. 2015).
An illustrative example and more details for experiments are presented in Section 3. Note that, in general,
the neural network approximation does not preserve the feasibility of the mapping from the covariate space
to the decision space at all times, unless the simplicity of the feasible region is assumed. Therefore, one
drawback of this methodology is the lack of the theoretic support.

2.3 Method II: Neural Network-Assisted Objective Function Surface

In stead of directly approximating the surface of the optimal solution with respect to the covariate, we
also propose to build the meta-model of the objective function (response surface of the simulation model)
regarding both the decision variable x and the covariate θ . Here, we propose a neural network-assisted
stochastic kriging model to fit the response surface of the simulation experiments. Thus, given a fixed
covariate, the meta-model reduces to a traditional stochastic kriging model. Meanwhile, the parameters
involved in the stochastic kriging are modelled as mappings of the covariate. These unknown mappings
are approximated through the neural networks. To be more specific, given the covariate, the output of the
simulation model with the input x is represented as

Ym(x;θ) = β (θ)>g(x)+M(x;θ)+ εm(x;θ). (6)

Here, g(x) is a vector, of which each element is a preset function. β (θ) denotes the parameter vector,
and each element is an unknown function of θ . M(x;θ) is a mean-zero, second-order stationary Gaussian
process, accounting for the spatial dependence of the response surface. Here, the covariate θ controls the
covariance of the Gaussian process, and the detailed form will be presented in the following part. εm(x;θ)
denotes the intrinsic uncertainty of the simulation experiments, which are i.i.d. samples drawn from a
mean-zero distribution. The covariate θ and the design point x both influence the variance of the intrinsic
uncertainty. Thus, Var [εm(x;θ)] =V (x;θ).



Zhang, He, Zhan, and Zheng

In particular, M(x;θ) is assumed to be a mean-zero, second-order stationary Gaussian process, thus
the covariance matrix of two arbitrary points x and x′ is represented as

ΣM;θ
(
x,x′
)
= τ

2(θ)RM
(
x− x′;γ (θ)

)
. (7)

Here, τ2(θ) denotes the variance of the Gaussian process under the covariate θ . RM (x− x′;γ (θ)) is the
correlation matrix, where γ (θ) is another parameter involved, indicating the decaying of the correlation
between design points. It is required that RM (0;γ (θ)) = 1 and RM (∞;γ (θ)) = 0. Common choices for
the covariance matrix include the Gaussian kernel and the Matérn kernel. Although our methodology does
not require a certain type of the correlation, here we utilize the Gaussian kernel correlation to illustrate our
methodology, which is in the form of

RM
(
x− x′;γ (θ)

)
= e−γ(θ)‖x−x′‖2

. (8)

The reason for representing the response surface with the meta-model described in (6) is two-fold. First,
the predictor of the stochastic kriging is a linear combination of the given basis functions and correlation
functions, as is shown in (10). This predictor serves as the objective function at the real-time stage, and
can be optimized efficiently. In addition, the stochastic kriging model leads to a sequential, adaptive
design of the simulation experiments that jointly considers the placement of design points and simulation
efforts. This sequential design helps fit the response surface more efficiently with the limited simulation
resources. Second, we propose to use the neural network to fit the parameters involved in the stochastic
kriging because the neural network possesses a high accuracy of fitting, along with a low risk of model
misspecification. Meanwhile, the utilization of the neural network helps to deal with the high-dimensional
covariates and brings a computational efficiency.

2.3.1 Model Training

In this part, we focus on the training procedure of the model (6) with the simulated samples. First,
we select N covariates {θ1,θ2, . . . ,θN} ∈ Θ. We assume that for different covariates, the design points
remain the same, as well as the simulation resources. Thus, we select K points of the decision variable
{x1,x2, . . . ,xK}. For each xk, we perform Mk times simulation experiments to estimate f (xk;θ) with the
obtained Ym(xk),m = 1,2, . . . .Mk. Therefore, at the end of the offline simulation stage, we have totally
N
(
∑

K
k=1 Mk

)
pairs of (θn,xk,Ym). In addition, we let

Ȳ (θ) = (Ȳ (x1;θ),Ȳ (x2;θ), . . . ,Ȳ (xK ;θ))
>
, (9)

where Ȳ (xk;θ) = 1
Mk

∑
Mk
m=1Ym(xk;θ) denotes the sample mean of the output at (θ ,xk), as shown in (6). We

denote ΣM;θ as the covariance matrix of the design points xk,k = 1,2, . . . ,K and Σε;θ as the covariance
matrix implied by the intrinsic noise, with (k,k′)-th element Cov

[
∑

Mk
m=1 εm (xk;θ)/Mk,∑

Mk′
m=1 εm (xk′ ;θ)/Mk′

]
.

Assume that we exactly know β (θ),ΣM;θ and Σε;θ , the predictor of the response surface at an arbitrary x0
for the observed θ is

f̂ (x0;θ) = β (θ)>g(x0)+ΣM;θ (x0, ·)> [ΣM;θ +Σε;θ ]
−1 (Ȳ (θ)−Gβ (θ)) , (10)

where ΣM;θ (x0, ·) is the vector of the covariance of x0 with all K design points, defined in (7), and

G =
(

g(x1)
> ,g(x2)

> , . . . ,g(xK)
>
)>

. This predictor possesses an explicit form with respect to x, and

therefore can be optimized in real time. Recall that the covariance matrix ΣM;θ is determined by τ2(θ)
and γ(θ). Therefore, before the real-time stage, we are supposed to have the estimators of β (θ), τ2(θ),
γ(θ) and Σε;θ , Ȳ (θ).
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In terms of the estimation for β (θ), τ2(θ) and γ(θ), we utilize the Maximum Likelihood Estimation
(MLE) method. Before we propose the estimation procedure of the neural network-assisted stochastic
kriging model, we first present the existing results of the traditional stochastic kriging model, where the
covariate θ vanishes (Ankenman et al. 2010). For an experiment design (xk,Mk),k = 1,2, . . . ,K, the
log-likelihood function of β , τ2 and γ is

`
(
β ,τ2,γ

)
= − ln

[
(2π)K/2

]
− 1

2
ln
[∣∣τ2RM(γ)+Σε

∣∣]− 1
2
(Ȳ −Gβ )

> [
τ

2RM(γ)+Σε

]−1
(Ȳ −Gβ ) . (11)

Recall that in our neural network-assisted stochastic model, the mappings β (θ), τ2(θ) and γ(θ) are all
approximated by the neural networks. Therefore, by substituting β , τ2 and γ with β (θ), τ2(θ) and
γ(θ) in (11) and maximizing the log-likelihood functions, we attain the approximated neural network-
assisted stochastic kriging model. Thus, we train the neural networks

(
β̂ (θ), τ̂2(θ), γ̂(θ)

)
via solving the

optimization problem

max
wβ ,wτ2 ,wγ

1
N

N

∑
n=1

`n
(
β (θ),τ2(θ),γ(θ)

)
.

Here, the synaptic weights wβ ,wτ2 ,wγ are the parameters to be optimized in the corresponding neural
networks. The n-th log-likelihood function is

`n
(
β (θn),τ

2(θn),γ(θn)
)
=− ln

[
(2π)K/2

]
− 1

2
ln
[∣∣τ2(θn)RM(γ(θn))+Σε;θn

∣∣]
− 1

2
(Ȳ (θn)−Gβ (θn))

> [
τ

2(θn)RM(γ(θn))+Σε;θn

]−1
(Ȳ (θn)−Gβ (θn))

(12)

where Ȳ (θn) is defined in (9) and Σε;θn ≈ Diag
{

V̂ (x1;θn)/M1,V̂ (x2;θn)/M2, . . . ,V̂ (xK ;θn)/MK
}

with

V̂ (xk;θn) =
1

Mk−1 ∑
Mk
m=1 (Ym(xk;θn)− Ȳ (xk;θn))

2. We now have the approximated
(

β̂ (θ), τ̂2(θ), γ̂(θ)
)

,
θ ∈Θ.

In order to make the prediction of the response surface, we should know Ȳ (θ) and Σε;θ as well.
For the intrinsic uncertainty matrix Σε;θ , since it is a diagonal matrix, we then focus on the elements
V̂ (xk;θ),k = 1,2, . . . ,K. Since for each θn, we have V̂ (xk;θn). We regard {θn,n = 1,2, . . . ,N} as the input
and

{
V̂ (xk;θn) ,n = 1,2, . . . ,N

}
as the real observations of a neural network. Then, following the procedure

presented in Section 2.1, we attain the trained neural networks ˆ̂V (xk;θ) ,k = 1,2, . . . ,K and Σ̂ε;θ . Similarly,
we train the neural network ˆ̄Y (θ) by regarding {θn,n = 1,2, . . . ,N} as the input and {Ȳ (θn),n = 1,2, . . . ,N}
as the real observations. In this way, we complete the estimation of the neural network-assisted stochastic
kriging model.

2.3.2 Real-Time Stage

With the approximated parameters of the stochastic kriging model in hand, during the online application
stage, we are then able to make the real-time decision. Assume the observed covariate is θ , with the
plugged-in estimators, the approximated objective function is represented as

ˆ̂f (x;θ) = β̂ (θ)>g(x)+ Σ̂M;θ (x, ·)>
[
Σ̂M;θ + Σ̂ε;θ

]−1
(

ˆ̄Y (θ)−Gβ̂ (θ)
)

(13)

If we assume a Gaussian correlation in the form of (8), the approximated objective function can be further
simplified as

ˆ̂f (x;θ) =g(x)>β̂ (θ)+ τ̂
2(θ)

K

∑
j=1

K

∑
i=1

ai, j;θ e−γ̂(θ)‖x−xi‖2
f̂ (x j;θ)

− τ̂
2(θ)

K

∑
j=1

K

∑
i=1

ai, j;θ e−γ̂(θ)‖x−xi‖2
g(x j)

>
β̂ (θ).

(14)
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where ai, j;θ denotes the (i, j)-th element of the matrix A .
=
[
Σ̂M;θ + Σ̂ε;θ

]−1
. The arithmetic representation

of the function (14) also supports the selection of the model (6). First, in some scenarios, the dimension of
the covariate is significantly higher than the dimension of the decision variable. The inverse matrix A is a
K×K matrix, where the simulation sample size K depends on the dimension of the decision variable. Thus,
the high-dimensional covariates do not result in the prohibitive computational complexity of inversing the
matrix. Second, given a fixed covariate, (14) reduces to a closed-form function. The objective function
involves merely linear combinations of simple functions selected in g(x) and exponential squared terms,
which can be optimized efficiently with gradient-based methods. Thus, at the real-time stage, we solve the
optimization problem

x∗(θ) = argmax
x∈X

ˆ̂f (x;θ). (15)

In terms of the optimization methods, we refer to the meta-model based simulation optimization method-
ologies; see Section 5.6 of Barton and Meckesheimer (2006). Since the stochastic kriging is a global
meta-model, global optimization methodologies including the multistarts methods (Boender and Kan 1987)
and the Lipschitzian optimization methods (Jones, Perttunen, and Stuckman 1993) can be adopted. For
low-dimensional decision variables, a simpler grid search strategy is also feasible. An illustrative example
and detailed experiment descriptions are included in Section 3.

Compared with traditional stochastic kriging model, our neural network-assisted model possesses the
merits including the prediction accuracy and the computational efficiency (see online additional experiments
part). However, sequential sampling strategies, which are widely employed in stochastic kriging approaches,
cannot be naturally adopted into our models, for the reason that we require design points {xk}K

k=1 remain
the same under different values of covariate.

3 EXPERIMENTS AND EVALUATION

In this section, we implement our two neural network-assisted methodologies with a multi-product newsven-
dor problem (see Özler et al. (2009)). The multi-product newsvendor problem is a stochastic inventory
control problem, where a retailer determines the optimal order quantities for d different products. The
aim of the retailer (decision-maker) is maximizing the expected profit with the random demand. Thus, the
problem is formulated as

max
x∈Rd

d

∑
i=1

E
[
−ciqi + pi min(qi,Di)+ si (qi−Di)

+] . (16)

Here x = (q1,q2, . . . ,qd)
> denotes the ordering quantities for each product. For the i-th product, Di denotes

the random demand, pi denotes the sales price, ci denotes the purchasing cost and si is the salvage value.
It is required that si ≤ ci ≤ pi. Besides, we assume that Di ∼N (µi,σ

2
i ), and the demands for different

products are independent. In this way, the covariate for the problem is a 4d-dimensional vector

θ =
(
µ1,σ

2
1 , p1,s1, . . . ,µd ,σ

2
d , pd ,sd

)
.

Denoting the cumulative distribution function of the i-th product demand by Fi, the optimal order quantity
for the i-th product is

q∗(µi,σ
2
i , pi,si) = F−1

i

(
pi− ci

pi− si

)
,

which we regard as the benchmark results for our methodologies.
For the two methodologies proposed in Section 2, we adopt the same experiment settings. In our

experiments, we set d = 3. In terms of the feasible set, we let X = [1,22]3. For the covariates, we
let µi ∈ [8,13],σ2

i ∈ [1,6], pi ∈ [1.1,1.6],si ∈ [0.1,0.6] for i = 1,2,3. We first pick 10 points evenly in
each dimension for the covariate, and then randomly select N ≈ 100,000 covariates for the simulation

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3877499


Zhang, He, Zhan, and Zheng

experiments among these 1012 points. We divide the samples into the training set and the testing set, taking
70% and 30% of the whole set separately. Thus, the training set contains Ntrain ≈ 70,000 samples and the
testing set contains Ntest ≈ 30,000 samples.

For the evaluation of the methodologies, we calculate both the mean squared error (MSE) and the mean
relative squared error (MRSE) as

MSE =
1

Ntest

Ntest

∑
n=1
‖x̂∗ (θn)− x∗ (θn)‖2

2 ; MRSE =
1

Ntest

∑
Ntest
n=1 ‖x̂∗ (θn)− x∗ (θn)‖2

2

∑
Ntest
n=1 ‖x∗ (θn)− x̄∗ (θn)‖2

2

,

where x̄∗ (θn) =
1

Ntest
∑

Ntest
n=1 x∗ (θn) and ‖ · ‖2 denotes the Euclidean distance (l2-norm). We also plot the

optimal order quantity surface with respect to the sales price and the salvage value, in Figure 1. Since
there is no difference between the three products, we only plot the first product order quantity. Besides,
we record the execution time for each step. All the experiments are based on running TensorFlow 2 and
Python 3.7 on Nvidia GTX 1050 Ti (GPU) and Google Colaboratory.

Figure 1: Optimal solution surfaces.

Method I: Neural Network-Assisted Optimal Solution Surface

In this part, we describe the procedure of solving problem (16) using the methodology introduced in Section
2.2. First, we obtain the optimal order quantities for each covariate θn,n = 1,2, . . . ,N. The optimization
strategy we adopt is the grid search.

Then we train the neural network with the training set, (θn,x∗(θn)),n = 1,2, . . . ,Ntrain. The neural
network we apply has 4 hidden layers, containing 64, 32, 16, 8 nodes respectively in each hidden layer.
The activation function utilized is the tanh function.
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We apply the backward propagation method to minimize the mean squared loss on the training set.
The training time is about 623.8791 s for 150 epochs. The MSE and MRSE are included in Tablet 1. At
the online stage, referring the approximate optimal decision (5) costs about 0.02422 ms.

Method II: Neural Network-Assisted Objective Function Surface

First, for the design points x, we select evenly in the feasible set with a interval at length of 0.5. Then,
for each θn in the training set and each selected design points, we perform M = 10 times simulation
experiments to estimate the response surface. In order to fit the model (6), we adopt the Gaussian kernel
(8) and let g(x) = (x,x3,ex)>. β (θ) is approximated with a 4-hidden-layer neural network with 64, 32,
16 and 8 nodes respectively. τ2(θ) is approximated with a 3-hidden-layer neural network with 32, 16
and 8 nodes respectively. γ(θ) is approximated with a 3-hidden-layer neural network with 32, 16 and 8
nodes respectively. In all three neural networks, we adopt the tanh function as the activation function.
The training time of maximizing the likelihood function (12) is about 5879.4987 s (150 epochs), using the
backward propagation method.

We test the trained model on the test set. In terms of the optimization method, we adopt a multistart
strategy with the truncated Newton method. For the test covariates, the mean time of referring the objective
function (14) and then solving the optimization problem (15) is approximately 0.6662 ms. The MSE and
MRSE are included in Tablet 1.

Table 1: Optimal decision prediction error.

Solution Suface Method Objective Function Method
MSE 0.001492 0.3055

MRSE 0.00036 0.07455

Evaluation

As is shown in Figure 1 and Tablet 1, both Method I and Method II demonstrate the plausible accuracy,
while Method I appears to be more accurate for this experiment setting. Since Method I is a brute force
fitting of the solution response surface, it is not surprising that given the large size of the offline simulation
data, Method I provides a good fitting performance on the solution response surface. However, as indicated
before, the neural network-approximated mappings do not preserve the feasibility all the time, and Method
I lacks theoretical support. We will do more experiments in the future work to explore the reliance of
Method I on the size of the offline simulation data. Meanwhile, we discuss the pros and cons of Method
II. The advantages of Method II include:

• Method II incorporates the meta-modelling method, and therefore possesses a more stable structure,
inheriting the advantages of classical meta-modelling approaches. Compared with Method I, Method
II does not completely depend on the training of the neural network, especially when there are not
sufficient offline simulation data.

• In some applications, it is not necessary to find the optimal solution, but only feasible solutions.
Method II then possesses the advantage of having an objective function surface, providing useful
information.

When the offline simulation data size is sufficiently large, Method II might have a lower prediction
accuracy than Method I. We will further explore the pros and cons of Method II in future work, based on
more numerical experiments and dedicate theoretical analysis. Besides, additional experiment results for
comparing Method II with traditional stochastic kriging models and neural networks are presented in the
online supplementary materials.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3877499
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4 CONCLUSION AND FUTURE WORK

In this work, we propose two neural network-assisted methods to address real-time optimization problems
for complicated stochastic systems with covariates, by effectively utilizing simulation experiments that
are conducted offline before the real-time tasks. In the first method, we use brute-force neural networks
to approximate the optimal solution surface with respect to the covariate, and the real-time tasks are
accomplished via referring the approximate optimal decision via the neural network. For the second
methodology, we propose a neural network-assisted stochastic kriging model to approximate the objective
function surface with respect to the covariate. In this way, the real-time decision is made efficiently based on
the explicit objective function. Experiment results indicate that both the methodologies possess the accuracy
of solving the real-time optimization problems. Admittedly, it is possible that our methodologies result
in a low optimization accuracy when the offline simulation experiments are not sufficient. Meanwhile,
the neural network-assisted frameworks might suffer from overfitting the models. We will do more
thorough comparisons in future work, and we are also working on providing more theoretic results of our
methodologies. Other potential future works include introducing technologies from the neural network to
deal with other problems involved in the simulation optimization area.
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Andradóttir, S. 2006. “An Overview of Simulation Optimization via Random Search”. Handbooks in operations research and

management science 13:617–631.
Ankenman, B., B. L. Nelson, and J. Staum. 2010. “Stochastic Kriging for Simulation Metamodeling”. Operations Re-

search 58(2):371–382.
Barton, R. R. 2013. “Response surface methodology”. Encyclopedia of Operations Research and Management Science:1307–1313.
Barton, R. R. 2015. “Tutorial: Simulation Metamodeling”. In Proceedings of the 2015 Winter Simulation Conference, edited

by L. Yilmaz, V. W. Chan, I.-C. Moon, T. M. Roeder, C. Macal, and M. D. Rossetti, 1765–1779. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc.

Barton, R. R., and M. Meckesheimer. 2006. “Metamodel-based Simulation Optimization”. Handbooks in Operations Research
and Management Science 13:535–574.

Barton, R. R., B. L. Nelson, and W. Xie. 2014. “Quantifying Input Uncertainty via Simulation Confidence Intervals”. INFORMS
Journal on Computing 26(1):74–87.

Boender, C., and A. R. Kan. 1987. “Bayesian Stopping Rules for Multistart Global Optimization Methods”. Mathematical
Programming 37(1):59–80.

Chen, X., B. E. Ankenman, and B. L. Nelson. 2012. “The Effects of Common Random Numbers on Stochastic Kriging
Metamodels”. ACM Transactions on Modeling and Computer Simulation (TOMACS) 22(2):1–20.

Chen, X., B. E. Ankenman, and B. L. Nelson. 2013. “Enhancing Stochastic Kriging Metamodels with Gradient Estimators”.
Operations Research 61(2):512–528.

Fu, M. C. 2006. “Gradient estimation”. Handbooks in Operations Research and Management Science 13:575–616.
Fu, M. C. 2010. “Stochastic Gradient Methods for Simulation Optimization”. Wiley Encyclopedia of Operations Research and

Management Science.
Fu, M. C. et al. 2015. Handbook of Simulation Optimization, Volume 216. New York: Springer.
Gao, S., C. Li, and J. Du. 2019. “Rate Analysis for Offline Simulation Online Application”. In Proceedings of the 2019 Winter

Simulation Conference, edited by N. Mustafee, K.-H. G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J.
Son, 3468–3479. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Hong, L. J., W. Fan, and J. Luo. 2020. “Review on Ranking and Selection: A new Perspective”. arXiv preprint arXiv:2008.00249.
Hong, L. J., and G. Jiang. 2019. “Offline Simulation Online Application: A New Framework of Simulation-Based Decision

Making”. Asia-Pacific Journal of Operational Research 36(06):1940015.
Hong, L. J., B. L. Nelson, and J. Xu. 2015. “Discrete Optimization via Simulation”. In Handbook of Simulation Optimization,

9–44. Springer.
Jalali, H., I. Van Nieuwenhuyse, and V. Picheny. 2017. “Comparison of Kriging-based Algorithms for Simulation Optimization

with Heterogeneous Noise”. European Journal of Operational Research 261(1):279–301.
Jones, D. R., C. D. Perttunen, and B. E. Stuckman. 1993. “Lipschitzian Optimization without the Lipschitz Constant”. Journal

of optimization Theory and Applications 79(1):157–181.



Zhang, He, Zhan, and Zheng

Katrakazas, C., M. Quddus, W.-H. Chen, and L. Deka. 2015. “Real-time Motion Planning Methods for Autonomous On-road
Driving: State-of-the-art and Future Research Directions”. Transportation Research Part C: Emerging Technologies 60:416–
442.

Kim, S.-H., and B. L. Nelson. 2007. “Recent advances in ranking and selection”. In Proceedings of the 1994 Winter Simulation
Conference, edited by R. Barton, S. Henderson, B. Biller, M. hua Hsieh, and J. Shortle, 162–172. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc.

L. Salemi, P., E. Song, B. L. Nelson, and J. Staum. 2019. “Gaussian Markov Random Fields for Discrete Optimization via
Simulation: Framework and Algorithms”. Operations Research 67(1):250–266.

Masson, E., and Y.-J. Wang. 1990. “Introduction to Computation and Learning in Artificial Neural Networks”. European Journal
of Operational Research 47(1):1–28.

Nelson, B. L. 2010. “Optimization via Simulation over Discrete Decision Variables”. In Risk and Optimization in an Uncertain
World, edited by J. J. Hasenbein, 193–207. Catonsville, Maryland: INFORMS.
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