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ABSTRACT 

 

This paper aims to find a proper methodology for evaluating job scheduling strategies for a data-intensive 

application such as video analytics applications used for smart cities that involve edge and cloud computing. 

To compare two simulation methods with the analytical modeling for such evaluation, we proposed a 

queueing model for a system consisting of some heterogeneous edge processors and one cloud processor 

and compared it with a simple simulation approach. We first defined the system's characteristics and 

developed a queueing model for the system to calculate the edges and cloud processors' working times. We 

use the state-space diagram of the system to determine the set of differential equations of the system and 

solved them to calculate the system components' performance measures. The results show that the proposed 

queueing model's computational time is significantly less than other existing techniques like the simulation. 

 

1 INTRODUCTION 

 

To provide a fast processing and network response time in the edge and cloud processing system used for 

different applications such as video analytics, the most important challenges are how to use online real-

time dispatching strategies. For instance, Real-time video surveillance systems based on security cameras, 

aerial surveillance systems, smart cars, and video-based IoT devices (e.g., home cameras) need high 

computing video processing nodes close to cameras or user devices. In most cases, such real cases use a set 

of available Edge processors (EPs) for image or video processing, while a Cloud Processor (CP) supports 

the EPs. Our recent work proposed a task scheduling method to dispatch the jobs for edge nodes in the fog 

computing infrastructure for such real-time (i.e., real-time video analytics when job arrival times are fixed 

and there is a hard deadline for processing the tasks). Using the proposed method, the achieved results show 

that better network performance can be achieved in fog computing involving edge nodes and cloud 

computing than cloud computing (Sharifi et al. 2021). For the smart cities that include a mix of processing 

powers, such as CPU and GPU-based edge servers and public clouds, infrastructure networks may not 

provide the required latency when the number of cameras increases to hundreds of thousands to control 

traffic in big cities (Ananthanarayanan et al. 2017). Therefore, providing a model that takes into account 

the scalability and calculates the processors' performance levels in a significantly short time is needed. 

 

In video analytics applications for smart cities, hundreds of thousands of cameras store their video frames 

on a database. Then, the stored data will be sent to a free processor for video processing based on demand. 

So, it can be assumed that the video processing for smart cities is not real-time. With this assumption, we 

proposed an analytic model based on a queuing system that can help have a good approximation of the 

processors' performance level to examine and optimize the data/task dispatching rules. Consider a video 

processing application that consists of several data processing jobs that arrive at random times with different 

sizes and should be dispatched among the existing EPs and CP. The edge processors are different in terms 

of processing speed and can handle a maximum of one job. It means that there is no queue for the edge 

processors, and if a job arrives when no edge processor is idle, the job should be processed on the cloud 

processor. The cloud processor can process different jobs in parallel, and its processing speed is much faster 

than the edge processors. Consider that the job number 𝑖 arrives at the time 𝑡𝑖 with the size of 𝑑𝑖, in which 

the arrival time and the size have uncertain values. For instance, in a video analytics application, the job's 
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size depends on the number of video frames defined in Kbytes. The processing power of the EPs are 

different from each other's and are significantly lower than the CP. The processing power of processor 

number 𝑗 is considered as 𝑝𝑗.  

 

In this paper, we work on a system consisting of a single queue that is together with a dispatching center, 

with 𝑚 heterogeneous EPs, and one CP. The jobs arrive in the dispatching center in stochastic times and 

are dispatched among the idle EPs or CP, while there is no latency between the dispatching center and 

processors. The EP's can process only one job at the moment, and no queue is for the EPs. The CP can 

process the jobs in parallel, so when a job arrives and there is no idle EP, the job dispatches to the CP. We 

develop a queueing model to calculate the performance level of EPs and CP.  

 

For this reason, we first define the states of the system. Then we use the state-space diagram of the under-

studied system to determine the set of the differential equation of the system's states. Finally, by solving 

the set of differential equations, we calculate the states' probabilities and each processor's working time in 

a steady-state condition to determine each processor's performance level. To validate and compare the 

proposed method's result, we also used the simulation technique for the first-in-first-out (FIFO) dispatching 

strategy in two different scenarios. 

 

2 LITERATURE REVIEW 

 

During the past decade, the researcher focused on new approaches to processor scheduling to improve 

computer-based processing. In this regard, Hamayun and Khurshid (2017) developed a new approach for a 

preemptive shortest job first, which improves the efficiency of CPU for the real-time and time-sharing 

environment, which improved the drawbacks of the preemptive shortest job first scheduling algorithm. 

Ramezani et al. (2015) developed a comprehensive multi-objective optimization model for task scheduling, 

considering minimizing task transfer time, task execution cost, power consumption, and task queue length. 

Dash and Samantra (2016) proposed a dynamic average burst round-robin algorithm for CPU scheduling. 

Hicham and Lotfi (2017) applied artificial neural network algorithms to optimize CPU   scheduling for 

cloud computing models. Kumari et al. (2017) investigated the design and implementation of a modified 

fuzzy-based CPU scheduling algorithm and presented a new set of fuzzy rules, which improved average 

waiting time and average turnaround time. Bitam et al. (2018) proposed a new bio-inspired optimization 

approach called Bees Life Algorithm for the job scheduling problem in the fog computing environment, 

which optimized the distribution of a set of tasks among all the fog computing nodes. Ma et al. (2019) 

proposed a deadline and cost-aware scheduling algorithm to minimize the execution cost of a workflow 

under deadline constraints in the infrastructure as a service model considering the virtual machine 

performance variation and acquisition delay. Doan et al. (2019) proposed scalable IoT video data analytics 

applications for Smart cities to end users, who could exploit scalability in both data storage and processing 

power to execute analysis on large or complex datasets. Harki et al. (2020) presented a review paper that 

was organized based on two distinct perspectives: the implementation strategies of CPU scheduling 

technique and criteria-based measures used. Grammenos et al. (2021) proposed an asynchronous iterative 

scheme that allows a set of interconnected nodes to distributively reach an agreement within a pre-specified 

bound in a finite number of steps and adopted the scheme context of task scheduling for data centers.  The 

readers are referred to by combining the Markov models and queueing systems to scheduling problems 

(Grillo et al. 2015, Cheng et al. 2016, Shen et al. 2019, Sharifi and Taghipour 2020, Ghaleb et al. 2020, 

Sharifi and Taghipour 2021, Sharifi et al. 2021) 

 

This paper tried to fill the literature gap by proposing a queueing-based process task scheduling with 

heterogeneous edge processors and a backup cloud processor used in smart cities with the assumptions 

discussed above. We first turn the processor's scheduling problem into a queueing model. Then we establish 

the set of differential equations between the system's states. Next, we solve the set of differential equations 

to calculate the state probabilities and processors' performance levels. Finally, we check the proposed 

model's connectivity by comparing the results with a simulation-based technique. Although the proposed 

queueing-based model is complicated in the design stage, it can measure the processors' performance levels 
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in a significantly short computational time compared with other techniques like simulation. The novelties 

of this paper are summarized as follows: 

 

 Developing a queueing-based model for a smart city processing center considering dispatching 

center, hundreds of thousands of Edge processors, and Cloud, 

 

 Deriving the general set of differential equations between the system's states, 

 

 Measure the performance of the different dispatching strategies using the proposed queueing-

based model's results and compare it with a simulation-based method. To the best of our 

knowledge, no similar paper compares analytics and simulation approaches for this problem.  

 

3 QUEUEING MODEL 

 

In this section, we first define the state of the system. Then we define the transition rates between the 

system's state. After that, we derive the set of differential equations between the system's states. Finally, 

we calculate all processors' performance levels, having the transition probabilities obtained by solving the 

set of differential equations. 

 

3.1  The System's States 

 

Consider a system consist of 𝑚 EPs and one CP (in total 𝑚 + 1 processor). When the first job arrives, all 

processors are idle. So, the job can dispatch to all processors. Since we should pay processing costs for CP, 

we prefer to dispatch the jobs to EPs when an idle one is available. The state of the system is shown by a 

vector consist of 𝑚 binary value and an integer one at the end of the vector, such as [𝑥1  𝑥2  …   𝑥𝑚  𝑥𝑚+1]. 
In this string, the first 𝑚 elements are binary variables that define EPs' condition, and the last element is an 

integer variable that defines the condition of the CP. The value of 𝑥1;   𝑖 = 1, … , 𝑚 + 1, define the number 

of the job which is allocated to the processors. For example, for a system consist of three EPs and one CP, 

state [0  1  1  3] is the state that EP number one is idle, EP number 2 and 3 are working, and three jobs are 

allocated to the CP. 

 

3.2  Transition Rates 

 

At the beginning of the process, the system is in the state [0  0 …    0  0]. The model starts allocating the 

jobs to the processor from the first idle one. So, the first job will be allocated to EP number one, and the 

system moves to state [1  0 …    0  0]. The model consists of two types of transitions. The first type is related 

to job dispatching between the processors with the transition rate of 𝜆 (which is the rate of the arrival jobs). 

The second type of transition is related to the job's processing which depends on the job's size (𝑑) and the 

processor's speed (𝑝𝑗) and calculated as 𝜇𝑗 = 𝑝𝑗 𝑑⁄ . Consider the state [𝑥1  𝑥2  …   𝑥𝑚  𝑥𝑚+1]. Based on 

the values of 𝑥𝑗;   𝑗 = 1, … , 𝑚 + 1 the system will move to different other system states. Consider that 𝑦 is 

a variable that refers to the place of the first zero on the system's state. Now consider that the system moves 

to state [𝑥`1  𝑥`2  …   𝑥`𝑚  𝑥`𝑚+1] during a transition. Based on the values of 𝑥𝑖, two different cases may 

happen as follows: 

 

 Case 1: At least on zero is in the first 𝒎 elements of the system's state 

 

In this case, the value of 𝑥 𝑗̀ and the transition rates are provided in table 1. 

 

Table 1: Transition rates and the values of 𝑥 𝑗̀ for case one. 

Transition rate Values of 𝒙`𝒋 



Sharifi, Abhari, and Taghipour 

𝜆 
𝑥`𝑦 = 1 

𝑥 𝑗̀ = 𝑥𝑗 for all values of 𝑗 except 𝑦 

𝑥𝑘 . 𝜇𝑘;   𝑓𝑜𝑟   𝑘 = {1, … , 𝑚 + 1} − {𝑦} 𝑖𝑓 𝑥𝑘 ≠ 0  
𝑥`𝑘 = 𝑥𝑘 − 1 

𝑥 𝑗̀ = 𝑥𝑗 for all values of 𝑗 except 𝑘 

 

 Case 2: There is no zero is in the first 𝒎 element of the system's state 

 

In this case, the value of 𝑥 𝑗̀ and the transition rates are provided in table 2. 

 

Table 2: Transition rates and the values of 𝑥 𝑗̀ for case two. 

Transition rate Values of 𝒙`𝒋 

𝜆 
𝑥`𝑚+1 = 𝑥𝑚+1 + 1 

𝑥 𝑗̀ = 𝑥𝑗 for 𝑗 = 1, … , 𝑚 

𝑥𝑘 . 𝜇𝑘;   𝑓𝑜𝑟   𝑘 = {1, … , 𝑚} 𝑎𝑛𝑑 (𝑘 = 𝑚 + 1 𝑖𝑓 𝑥𝑚+1

≠ 0) 

𝑥`𝑘 = 𝑥𝑘 − 1 

𝑥 𝑗̀ = 𝑥𝑗 for all values of 𝑗 except 𝑘 

 

3.3  Set of Differential Equations 

 

For determining the set of differential equations between the system's states, a simple rule is available. 

Consider that the current state of the system is shown by 𝑆. The set of states that the state 𝑆 is reachable 

from them is shown by 𝐴, and the set of states that are reachable from state 𝑆 is shown by 𝐵. Consider that 

𝐴 consist of 𝑎 states that shown by (𝐴1, … , 𝐴𝑎), and 𝐵 consist of 𝑏 states that shown by (𝐵1, … , 𝐵𝑏). The 

state-space for this state is presented in Figure 1. 

 

 
Figure 1: state-space diagram of state 𝑆. 

 

In Figure 1, 𝛼𝐴𝑖
 is the transition rate from the state 𝐴𝑖 to state 𝑆, and 𝛼𝐵𝑖

 is the transition rate from state 𝑆 

to state 𝐴𝑖. For the state 𝑆, the differential equation is calculated in Equation (1) as follows: 

 

 
1 1

i i i

b a

S B S A A

i i

P P P 
 

 
     
 
  . (1) 

 

Considering the same logic, we can calculate the set of differential equations between the system's states. 

 

3.4  The Processors' Performance Levels 

 

By solving the set of differential equations, the real-time probability of each state can be calculated. In each 

state, if 𝑥𝑗 = 1, it means that the processor number 𝑗 is working. So, the probability that the processor 

number 𝑗 is working calculates by multiplying the value of 𝑥𝑗 to the state probability and summing up for 

all system's states. The working probability of each processor is equal to the performance level of the 
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processor. For example, if for a specific processor, the working probability at a fixed time is equal to 𝑝, it 

means that the processor %100 × 𝑝  of time is working. So, the usage performance of the processor is equal 

to %100 × 𝑝. 

 

4 NUMERICAL EXAMPLE 

 

To show how to use the above-mentioned method in a simplified way and calculate the processors' 

performance level, we focused on a system consisting of two EPs and one Cloud. The arrival rate of the job 

is equal to 𝜆 = 0.2 which means that the expected value between two consecutive arrivals is equal to 5 

seconds. To have a fair comparison between the queueing-based and simulation (which will be provided in 

Section 4.1) techniques, we consider that the size of the jobs has an Exponential distribution with an average 

of 1000 kilobytes for the simulation method. The processors' performance speed is considered 100, 50, and 

500 kilobytes per second, respectively. So, the processing rate (service rate) of the processors is equal to 

𝜇1 = 100 1000⁄ = 0.1, 𝜇2 = 50 1000⁄ = 0.05, and 𝜇3 = 500 1000⁄ = 0.5, respectively. The states of 

the system for a maximum of 4 under-processed jobs are presented in Table 3. For more than four under-

processed jobs, we can use the same logic of the last row of Table 3 to determine the system's states. 

 

Table 3: States of the system for a maximum of four under-processed jobs. 

Number of under-processed 

jobs 
States 

0 [0  0  0] 
1 [1  0  0], [0  1  0], [0  0  1] 
2 [1  1  0], [1  0  1], [0  1  1], [0  0  2] 
3 [1  1  1], [1  0  2], [0  1  2], [0  0  3] 
4 [1  1  2], [1  0  3], [0  1  3], [0  0  4] 

 

The state-space diagram of the instance is presented in Figure 2. In this figure, all blue arrows define the 

transitions due to the job's dispatching with the transition rate of 𝜆. 

 
Figure 2. The state-space diagram of a system consists of two EPs and one CP.

 

Considering the state-space diagram of Figure 2 and the transition rates between the system's status, the 

differential equation set between the system's rates is presented in Equations (2) to (6). 

 

   000 000
0P P     (2) 

             3 1 2 30 0 0 0 10 0 1 00 1
1

x x x x x
P x P P P x P    

  
              (3) 

1 1 31 1 1

1 0 2

0 1 2

0 0 3

1 1 2

1 0 3

0 1 3

0 0 2

0 0 0

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1
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           2 3 1 301 01 11 01 1
1

x x x x
P x P P x P    

  
             (4) 

             1 3 2 310 10 00 11 10 1
1

x x x x x
P x. P P P x P     

  
              (5) 

                1 2 3 311 11 01 10 11 1 11 1
1

x x x x x x
P x P P P P x P     

       
               . (6) 

 

The performance level of all processors can be calculated using Equations (7) to (9) as follows: 

 

    
1 10 11

0

EP x x
x

Pl P P




   (7) 

    
2 01 11

0

EP x x
x

Pl P P




   (8) 

        00 01 10 11
1

CP x x x x
x

Pl P P P P




    . (9) 

 

The range of 𝑥 in equations (3) to (7) is 𝑥 = 1, … , ∞. For solving the set of differential equations presented 

above, we codded all equations in MATLAB R2021a on a laptop with Intel(R) Core (TM) i7-4500U CPU 

@ 1.80GHz   2.39 GHz laptop with 8.00 GB RAM. For this reason, we cute-of the set of equations for 𝑥 ≥
10 and calculates the probabilities for the set of equations with 𝑥 ≤ 9. The results show that this cutting-

off has no effects on the states' probabilities, and the sum of the states' probabilities for the states with 𝑥 ≤
9 still is an equal one. We run the codes for 𝑡 = 0, 10,20, … ,1000, and the performance levels for different 

values of 𝑡 are presented in Figure 3. 

 

 
Figure 3: Performance levels of the processors. 

 

As shown in figure 3, the EP1, EP2, and CP's performance levels are equal to 0.5851, 0.7649, and 0.2624, 

respectively. It means that EP1 is processing the jobs in %58.51 of the time, while this value for EP2 and 

EC is equal to %76.49 and %26.24. In this instance, the priority of jobs' dispatching is the EP with the 

highest processing speed. If we want to dispatch the job processors with the lowest processing speed, we 

need to order the EPs ascendingly. The new strategy results are equal to %68.58 for EP1, %58.61 for EP2, 

and %31.33 for CP. The total computational times for calculating the processors' performance level for all 

values of 𝑡 were less than 1 second for both instances. 

 

4.1  Comparing the Proposed Model with Simulation 
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To compare the presented model with simulation, we first solved the same instances by a simulation 

technique. We coded the simulation model in MATLAB R2021a and ran each instance 100000 times. The 

flowchart of the used simulation technique is provided in figure 4. 

 

 
Figure 4: The flowcharts of the used simulation technique. 

 

The primary instance is the FIFO dispatching strategy when the jobs are dispatched among idle processors 

based on their descending processing speed (from highest to lowest). After 1000 hours of the system's 

mission time, the simulation technique results are equal to %59.13 for EP1, %76.83 for EP2, and %25.80 

for CP. The computational time for this instance is equal to 7.42 seconds. The second solved instance is the 

FIFO dispatching strategy when the jobs are dispatched among idle processors based on their ascending 

processing speed (from lowest to highest). After 1000 hours of the system's mission time, the simulation 

technique results are equal to %68.13 for EP1, %59.09 for EP2, and %32.02 for CP. The computational 

time for this instance is equal to 8.18 seconds. When comparing the queuing model and simulation, the 

queuing system is more favorable if the problem is simple. For complex queuing systems such as video 

analytics discussed above, simulation (more technically known as discrete-event simulation) has been used 

most of the time. 

 

To better compare these two techniques in terms of average computational times, we compare ten different 

examples with 3 to 30 EPs. The parameters of these ten examples, such as the EPs and CP processing rate, 

the average time interval between two consecutive arrivals, and the average size of the jobs, are produced 

randomly. The computational time of these examples is presented in table 4. moreover, the detailed result 

of the example with 20 EPs is provided in table 5. Although we did not provide the performance level of 

the processors in these ten examples, the results for both techniques were equal considering two decimal 

numbers. For the example with 20 Eps, the initial parameters are as 𝜆 = 10, the average size of the jobs is 

considered as 2000 kilobytes, and the CP's performance level is equal to 𝜇𝐶𝑃 = 1. The performance level 

of the EPs is provided in Table 5. 

 

Table 4: The average computational time of both methods in solving ten examples. 

Number of EPs 
Average computational times (Seconds) 

Queueing-based Simulation 

3 1.13 35.03 

4 1.31 41.73 

5 1.43 44.50 

6 1.71 100.77 

7 2.17 127.21 

8 3.13 144.89 

9 5.51 189.90 

Finnish a job's 

processing

END

x = x - 1

Arrive a 

new job

is any 

available 

idle EP?

Allocate the 

job to EP

Allocate the job to the

first available EP

x = x + 1

END
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10 8.16 255.86 

20 27.13 1155.61 

30 86.14 4816.16 

 

As is reported in Table 4, the computation time of the queueing-based technique is significantly lower than 

the simple simulation-based technique. 

 

Table 5: Processing rate and performance level (%) of the processor for the example with ten Eps. 

EP 1 2 3 4 5 6 7 8 9 10 

𝜇 0.500 0.460 0.435 0.415 0.395 0.375 0.330 0.320 0.295 0.275 

Performance level 95.22 95.18 95.06 94.87 94.70 94.51 94.72 94.49 94.48 94.45 

 11 12 13 14 15 16 17 18 19 20 

𝜇 0.245 0.225 0.210 0.200 0.180 0.140 0.125 0.110 0.080 0.050 

Performance level 94.67 94.75 94.81 94.71 94.94 95.82 96.01 96.30 97.18 98.18 

 

The performance level of CP for the solved problem is equal to 82.92%. Moreover, as is mentioned before, 

the output of both techniques was equal to two decimal numbers. In this work, our results show that the 

proposed queueing-based model can calculate the exact value of the processor's performance level in a 

significantly less computational time compared with the simulation technique.  

 

5  CONCLUSION AND FURTHER STUDIES  

 

This paper was inspired by the lack of comparisons between analytical and simulation methods for 

evaluating the smart cities' video analytics applications. The simplified system used for smart cities consists 

of 𝑚 heterogeneous edge processors and one backup cloud processor.  There is no queue for the edge 

processors in the simplified system, and the jobs that arrive and face no idle edge processors are allocated 

to the cloud processor. A novel queuing-based method was presented to model the simplified system. In 

the queuing model, we proposed the general formulas for calculating the set of differential equations 

between the system's states. Then we solved this set of differential equations and calculated the performance 

level of all processors. Finally, we used a simple event-driven simulation technique for the simplified model 

for comparing the proposed model. We solved two scenarios of the first-in-first-out (FIFO) dispatching 

strategy and showed that the queueing-based method could calculate the exact values of the processors' 

performance level same as a simulation but in a significantly less processing time.  

 

This work's novelty compares the new queuing-based model presented for a video analytics application in 

smart cities and compares it with a simulation-based approach.  The results show that the presented model 

can achieve similar results in a short amount of time.  

 

For future studies, two-direction can be considered. The first direction is related to the real-time video 

analytics with hard deadline characteristics used for smart cities. We considered the video applications with 

the jobs that can be divided into the subtasks and submitted to the edge and Cloud (Pudasaini and Abhari, 

2019; Pudasaini and Abhari, 2020). We plan to use the proposed queuing system when dividing a job into 

sub-tasks that may provide better performance. The second direction considers the scalability of the systems 

with much more processing nodes and examining the smart cities applications beyond the video analytics 

when having latency between their units to draw the problem nearer to the real-time IoT 5G network of 

smart cities applications. 
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