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ABSTRACT

Bayesian optimization is a sample efficient sequential global optimization method for black-box, expensive
and multi-extremal functions. It generates, and keeps updated, a probabilistic surrogate model of the
objective function, depending on the performed evaluations, and optimizes an acquisition function to
choose a new point to evaluate. The acquisition function deals with the exploration-exploitation dilemma
depending on surrogate’s predictive mean and uncertainty. Many alternatives are available offering different
trade-off mechanisms; different options are also possible for the probabilistic surrogate model: Gaussian
Process regression is best suited for optimization over continuous search spaces while other approaches,
such as Random Forests or Gaussian Prcesses with ah-hoc kernels, deal with complex search spaces spanned
by nominal, numeric and conditional variables. This tutorial offers an introduction to these topics and
a discussion on available tools, real-life applications, and recent advances, such as unknown constraints,
multi-information sources and cost-awareness, and multi-objective optimization.

1 INTRODUCTION

Bayesian optimization (BO) is a sample-efficient sequential method well suited to optimize black-box,
expensive and multi-extremal objective functions, under a limited budget, typically a maximum number
of function evaluations (Archetti and Candelieri 2019; Frazier 2018; Shahriari et al. 2015). The basic
idea is that every observation collected by querying the objective function can improve the knowledge
about it, driving the choice of the next location to query while dealing with the well known exploration-
exploitation dilemma. More precisely, exploration refers to choosing a location where the uncertainty about
the objective function is large, while exploitation refers to choosing a location close to the current optimal
solution. Thus, exploration and exploitation are associated to two different types of search, that is global
and local, respectively. In other settings, such as evolutionary and metaheuristic approaches, exploration
and exploitation are also known as diversification and intensification (Glover and Samorani 2019).

The reference problem considered in this tutorial is:

max
x∈Ω

f (x) (1)

where Ω⊂ℜd is the so-called search space, f (x) : Ω→ℜ is black-box, expensive and multi-extremal,
and maximization is considered without loss of generality (i.e, max f (x) = min{− f (x)}).

The rest of the tutorial is organized as follows: Section 2 introduces the basic components of the BO
framework, Section 3 summarizes the most widely adopted methods for modelling f (x) and Section 4
analyses the most relevant exploration-exploitation trade-off mechanisms in literature. Section 5 provides
an overview of the application domains where BO is successfully applied, while Section 6 summarizes
recent advances – most of them derived from challenging problems arising from the considered application
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domains. Finally, relevant conclusions are provided, especially with respect to the most interesting and
challenging research directions for BO.

2 THE BAYESIAN OPTIMIZATION FRAMEWORK

Bayesian optimization is also known as Sequential Model-based Optimization (SMBO) (Candelieri 2019;
Hutter et al. 2013; Hutter et al. 2011), according to its sequential nature. Here, the basic framework is
explained: assume BO is at a generic iteration and that we have already sequentially chosen n locations
X1:n = {xi}i=1,...,n, with xi ∈ Ω, and observed the associated values y = {yi}i=1,...,n, possibly noisy, that
is yi = f (xi)+ ε , with ε a zero-mean Gaussian noise, ε ∼N (0,λ 2). Since querying f (x) is expensive
and we have a limited budget, we need a “clever” strategy to choose the next location, xn+1 to query. A
simple solution is to fit a regression – or interpolation – model f̂ (x) ≈ f (x) on the dataset of collected
observations, namely D1:n = (X1:n,y1:n), and then solve max

x∈Ω

f̂ (x), instead of (1). When a deterministic

regression method is used (e.g., an Artificial Neural Network or a Support Vector Machine), f̂ (x) is called
deterministic surrogate model and the described strategy collapses on a simple local search (i.e., only
exploitation), with the risk to converge and get stuck into a local maximum. To overcome this limitation,
an additional model, u(x), can be coupled to f̂ (x), specifically estimating the uncertainty throughout the
search space, as proposed, for instance, in Bemporad (2020): basically, uncertainty increases with the
distance from previously queried locations.

Using two decoupled models makes the role of the two antagonist search components – exploitation
and exploration – evident. On the other hand, BO offers a more elegant mechanism, consisting in training a
single probabilistic surrogate model which accounts for both exploitation – through the model’s predictive
mean, denoted with µ(x) – and exploration – through the model’s predictive uncertainty, denoted with σ(x).
Thus, one can easily notice that, moving from deterministic to probabilistic modelling, f̂ (x) is replaced
with µ(x), and u(x) is replaced with σ(x), but the main advantage is that only one model must be updated
at each BO iteration.

While the probabilistic surrogate model offers an approximation of the objective function f (x), along
with an estimation about the predictive uncertainty, a specific mechanism is required to balance between
“trusting in prediction” (exploitation) and “giving a chance to uncertainty” (exploration). This mechanism is
called acquisition function (aka utility function or infill criterion), which can be denoted by α(x;(µ(x),σ(x)))
or simply α(x) by assuming the dependence on the updated probabilistic surrogate model. More precisely,
selecting the next location to query requires to solve an internal – aka auxiliary or ancillary – optimization
problem, whose computational cost is negligible with respect to querying f (x):

xn+1 = argmax
x∈Ω

α(x) (2)

The basic BO algorithm is summarized in the following Algorithm 1, while the details are discussed
in the following Sections 3 and 4.

3 PROBABILISTIC SURROGATE MODEL

This section describes the probabilistic surrogate models most widely adopted in BO approaches and tools,
starting from Gaussian Process (GP) regression (Gramacy 2020; Williams 2006), which is best suited
for optimization over search spaces spanned by continuous dimensions, and moving to Random Forest
(Ho 1995) and other Machine Learning regression methods able to deal with more complex search spaces
spanned by discrete, mixed and conditional variables.
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Algorithm 1: Basic Bayesian Optimization algorithm

Sample n0 random locations in Ω, that is X1:n0 (e.g., through Latin Hypercube Sampling);
Observe y1:n0 ;
Organize observations into D1:n0 = {(xi,yi)}i= ...,n0 ;
n← n0;
while termination criterion is not met do

train a probabilistic surrogate model on D1:n to obtain µ(x) and σ(x);
compute the acquisition function α(x,(µ(x)),σ(x));
find xn+1 = max

x∈Ω

α(x), with xn+1 6∈ D1:n (especially in the noise-free setting);

observe yn+1;
D1:n+1← D1:n∪{(xn+1,yn+1)};
n← n+1;

end
Result: (x+,y+) ∈ D1:n : y+ = max

i=1,...,n
{yi}

3.1 Gaussian Process Regression

A GP is a distribution over functions, completely specified by its mean and covariance (aka kernel),
respectively denoted with µ(x) and k(x,x′). A sample drawn from a GP consists in a collection of random
variables, any finite number of which have a joint Gaussian distribution. Denote with X̄1:q = {x̄i}i=1:q a
set of sampling locations, then a sample from the GP will be given by: f̂ (X̄1:q)∼N (µ(x),k(x,x′)) (i.e.,
sampling from a Multivariate Normal (MVN) distribution).

The covariance function has a crucial role in GP modelling, because it implies a specific prior distribution
over GP samples, drastically changing their smoothness. Many kernels are available as possible covariance
functions (Gramacy 2020; Archetti and Candelieri 2019; Williams 2006), with each one having at least one
internal hyperparameter to set up. Using a GP as a regression model requires to conditioning its mean and
covariance to the available set of observations. While the type of covariance – i.e., the kernel – is chosen
by the user, its hyperparameters are tuned by reducing the error between actual data and GP’s predictions.
This is usually done by Maximum Likelihood Estimation (MLE) or Maximum-a-Posteriori (MAP).

In BO the “dataset” on which training the GP consists of the observations collected so far, that is
D1:n = (X1:n,y1:n). The conditioned (aka trained) GP can be then used to make predictions for any x ∈Ω,
according to the following two equations:

µ(x) = k(x,X1:n)
[
K(X1:n,X1:n)−λ

2I
]−1y1:n (3)

σ(x) = k(x,x)−k(x,X1:n)
[
K(X1:n,X1:n)−λ

2I
]−1k(X1:n,x) (4)

where µ(x) is the prediction for f (x) and σ(x) is the uncertainty associated to the prediction. Moreover,
k(x,X1:n) is an n-dimensional vector such that its i-th component is given by k(x,xi) – with xi ∈ X1:n –
and K(X1:n,X1:n) is an n×n matrix whose entry Ki j = k(xi,x j).

It is important to remark that equations (3) and (4) refer to the GP model updated at current iteration and
are therefore to be intended as µn(x) and σn(x). Figure 1 shows a 1-dimensional example of a GP trained
on 6 observations and approximating f (x). As informally explained, it can be noticed how (predictive)
uncertainty increases with the distance from observations.

3.2 Random Forest

Random Forest (RF) is an ensemble learning method whose training algorithm consists into generating a
multitude of Decision Trees (DTs) by combining bagging – to sample a subset from the available dataset
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Figure 1: A simple 1-dimensional example (i.e., Ω= [−10,10]) showing a GP approximating f (x) depending
on 6 observations. Predictive mean, µ(x), and standard deviation, σ(x), are depicted.

– and random feature selection. More precisely, every DT of the forest is trained on a different sample of
the dataset and features. Injecting randomness simultaneously with bagging and random feature selection
works surprisingly well for almost any kind of problems, allowing for generating a collection of DTs with
controlled variance. As far as inference is concerned, an RF’s prediction is computed as an aggregation
of the individual trees’ predictions. In the case of a RF regression model, mean and median are the most
common aggregation operators. Moreover, being an ensemble of different regression models, it is also
possible to compute the standard deviation of the individual trees’ predictions. Thus, just like for GP, both
RF’s predictive mean, µ(x), and standard deviation, σ(x), are available, making RF a suitable probabilistic
surrogate model for BO, where the training dataset is D1:n = (X1:n,y1:n) and the features are the dimensions
spanning the search space Ω.

While GP is best suited to model smooth objective functions in a search space spanned by continuous
variables, it cannot “naturally” deal with discrete, mixed and conditional variables. A taxonomy about
possible “workarounds” is presented in (Garrido-Merchán and Hernández-Lobato 2020), while in (Ru et al.
2020) a GP’s kernel specifically defined to deal with mixed continuous and categorical variables is proposed,
leading to the so-called CoCaBO algorithm (Continuous-Categorical Bayesian Optimization).

Contrary to GP, RF can naturally deal with discrete, mixed and conditional variables. This has motivated
the wide and successful adoption of RF in the Automated Machine Learning (AutoML) setting (He et al.
2021; Hutter et al. 2019). Indeed, searching for the best ML algorithm along with the optimal configuration
of its hyperparameters, given a dataset, requires to optimize a black-box, potentially multi-extremal and
largely expensive – in terms of computational resources and time – performance metric (e.g., accuracy on
k-fold cross validation), exactly the problem (1). However, ML algorithms are characterized by mixed and
conditional hyperparameters: an example of a discrete hyperparameter is the activation function of the units
of an Artificial Neural Network. An example of a conditional hyperparameter is the number of units in
the i-th layer of an Artificial Neural Network: this hyperparamenter is “active” if and only if the value of
another hyperparameter “number-of-layers” is equal to or greater than i (because otherwise the i-th layer
of the Artificial Neural Network does not exist). It is easy to understand how much complicated the search
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space can be in the case of an AutoML task, with conditional hyperparameters implying a hierarchical
organization among the search space’s dimensions.

RF can be adopted as a probabilistic surrogate model also in the case that Ω has continuous dimensions.
Differences with respect to a GP are clearly depicted in Figure 2: discontinuity in the RF probabilistic
surrogate model is implied by the underlying ensemble of DTs of the forest. There is another relevant
difference with GP regression: the RF’s predictive mean and standard deviation are black-box, because they
are computed as aggregation of the individual DTs’ predictions. As better detailed in Section 4, working
with a discontinuous and black-box probabilistic surrogate model has an impact on how the acquisition
function is optimized to select the next location to query.

Figure 2: A simple 1-dimensional example (i.e., Ω= [−10,10]) showing an RF approximating f x) depending
on 6 observations. Predictive mean, µ((x), and standard deviation, σ(x), are depicted.

3.3 Other Approaches

Following the idea of replacing the GP with an RF, any kind of probabilistic regression model or ensemble
– as well as boosting or bagging – of (deterministic) regression models can be used as an alternative to
GP as well as RF.

In Snoek et al. (2015) a Deep Learning model having a Bayesian linear regression layer as the last
hidden layer is proposed with the aim to replace GP with a model that scales better but retains most of the
GP’s properties. Indeed, the resulting model is an adaptive basis regression, a statistical technique which
scales linearly in the number of observations, and cubically in the basis function dimensionality. This
allows to explicitly manage the trade-off between computational time and model capacity. The resulting
algorithm, named DNGO, has been extensively tested on hyperparameters optimization of Convolutional
Neural Networks. Empirical results show that DNGO provides the same modelling properties of a GP but
with a significantly lower computational cost. In Springenberg et al. (2016), a Bayesian Neural Network
has been suggested as an alternative to GP. The algorithm is called BOHAMIANN (Bayesian Optimization
with HAMIltonian Artificial Neural Network) and has been tested with a three layers neural network with
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50 tanh units.

Another motivation to replace GP with other modelling strategies is to overcome the limitation implied
by the underlying stationarity assumption. Indeed, GP assumes the same kernel to be used throughout
the entire search space Ω. An assumption which might be not desirable in many real-world problems.
Different approaches are possible, from using non-stationary kernels (Higdon et al. 1999; Schmidt and
O’Hagan 2003) to Treed-GP (Gramacy and Lee 2008; Civera et al. 2017; Civera et al. 2020), aimed at
partitioning the search spaces into sub-regions – via DT regression – and then training a stationary GP
model specifically for each sub-region model. Another possibility is to use Deep Gaussian Processes, as
recently proposed in (Hebbal et al. 2019).

4 ACQUISITION FUNCTION

A plethora of acquisition functions has been proposed (Archetti and Candelieri 2019; Shahriari et al. 2015),
offering different trade-off mechanisms between exploration and exploitation. This tutorial proposes – for
the first time, at the author knowledge – an organization of acquisition functions into two families: the
“mean-variance” and the “sampling-based”. The acquisition functions belonging to the former family can
be applied to whichever probabilistic surrogate model. On the contrary, those belonging to the latter family
require to perform a sampling procedure, which is available only for some modelling strategy, such as GP
regression modelling.

4.1 Mean-Variance Acquisition Functions

All the acquisition functions belonging to this family works by only considering the predictive mean, µ(x),
and the standard deviation, σ(x), of the probabilistic surrogate model. Therefore, any model providing these
two components – analytically as well as black-box – can be used to compute the following acquisition
functions. The common idea is to include an exploration “bonus” – aka uncertainty “bonus” – to the
“exploitative” choice based on the predictive mean only.

Expected Improvement (EI) (Jones et al. 1998; Mockus et al. 1978) measures the expectation of
the improvement over the current best observed value (aka best seen) y+ = max

i=1,..,n
{yi}, depending on the

predictive distribution of the probabilistic surrogate model:

αEI(x) =
(
µ(x)− y+

)
Φ(z)+σ(x)φ(z)

if σ(x) > 0, αEI(x) = 0 otherwise, where Φ(z) and φ(z) are the probability distribution and cumulative
distribution of the standard normal, respectively, and z = µ(x)−y+

σ(x) if σ(x)> 0 and z = 0 otherwise.
The first term in αEI(x) increases with the predictive mean decreasing, while the second term increases

with the predictive uncertainty increasing. Thus, this acquisition function, in a sense, automatically balances
between exploitation and exploration. To further increase exploration, an additional hyperparameter, ξ , can
be added into EI equation, also replacing (µ(x)−y+) with (µ(x)−y+−ξ ) both in αEI(x) and z equations.
However, setting a suitable value for ξ is difficult, because it depends on the codomain of f (x), which is
unknown a-priori being f (x) black-box.

A different solution is given in (Preuss and Von Toussaint 2018), which proposes to deterministically
alternates between maximization of EI and maximization of GP’s predictive standard deviation (i.e, uncer-
tainty) to switch between exploitative and explorative decisions, reporting successful results.

Upper Confidence Bound (UCB) (Srinivas et al. 2012) is an acquisition function that manages
exploration-exploitation by being optimistic in the face of uncertainty:
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αUCB(x) = µ(x)+
√

βσ(x)

Also UCB consists of two terms, representing – even in a more clear way – the “trust in predictions”
(i.e., µ(x), exploitation) and the “uncertainty bonus” (i.e., σ(x), exploration). As in EI, an hyperparamenter
allows to increase/decrease the relevance of the uncertainty bonus, but in this case it is just a multiplier and
it is therefore easier to identify a suitable value for it. Specifically, in (Srinivas et al. 2012) a logarithmic
scheduling is provided with a convergence proof, under a limited budget of queries. However, (Berk
et al. 2020) has recently obtained better performances by randomly sampling β from a given distribution,
proving that this allows to identify more suitable β values and to outperform the original UCB on a range
of synthetic and real-world problems.

Figure 3 shows differences between EI and UCB, also with respect to underlying the probabilistic
surrogate model, specifically GP and RF. With respect to the GP, the next location selected according to
EI is more biased towards exploitation than that chosen according to UCB. More precisely, in the case of
EI, xn+1 is close to the the location associated to the best function evaluation observed so far, while UCB
gives some more chance to exploration offering, consequently, a better global search mechanism. On the
contrary, in the case of RF there is not any difference in the choice of the next location xn+1 between
adopting EI or UCB.

Figure 3: An example showing the differences between αEI(x) and αUCB(x), and the associated next query
location xn+1 (vertical grey lines), depending on the probabilistic surrogate model (GP – on the left – and
RF – on the right).

Recently, some papers proposed to address the selection of the next location to query as a bi-objective
optimization problem: maximizing the predictive mean (exploitation) while maximizing uncertainty (ex-
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ploration). For instance, Žilinskas and Calvin (2019) considers global optimization with respect to the
theory of rational decision making under uncertainty. The important outcome is that EI results a special
case of the bi-objective optimization setting, because it lays on the Pareto frontier of all the predictive
mean and standard deviation pairs computed for – theoretically – every possible location in Ω. Moreover,
taking a decision by randomly sampling from the Pareto frontier, as proposed in De Ath et al. (2021),
De Ath et al. (2020) empirically proved to outperform other acquisition functions: the main motivation
is that the Pareto frontier offers a significantly larger set of Pareto-efficient solutions than single-objective
acquisition functions like EI and UCB.

4.1.1 Sampling-based Acquisition Functions

The most relevant difference between GP modelling and other alternative probabilistic surrogate models
is that GP is a distribution and it is possible to drawn sample from it (as already described in Section 3).
This consideration has enabled the design of many acquisition functions that, contrary to those belonging
to the “mean-variance” family, can only be computed for a GP-based surrogate model. The most simple
“sampling-based” acquisition function consists into drawing a sample from the GP trained on the current
set of observations, and selecting xn+1 as the location maximizing this sample. This simple procedure
makes BO collapsing into Thompson Sampling (TS), which is a sequential optimization method by itself.
Recently, Russo and Van Roy (2016) has performed an analysis on TS, proving that it is biased towards
exploitation and proposing an ε-greedy step to give more chance to exploration, leading to a more effective
exploration-exploitation trade-off.

BO research has further extended the TS approach by considering to drawn more than one sample
at each BO iteration, with the aim to estimate the location of the maximizer, instead of the value of the
maximum. This means that the reference problem becomes argmax

x∈Ω

f (x) instead of max
x∈Ω

f (x).

This paradigm shift has led to acquisition functions such as Entropy Search (ES) (Hennig and Schuler
2012), Predictive Entropy Search (PES) (Henrández-Lobato et al. 2014), Max-Value Entropy Search
(MES) (Wang and Jegelka 2017), and Knowledge-Gradient (KG) (Frazier 2018; Scott et al. 2011).

Although these acquisition functions proved to improve sample-efficiency of the BO framework, they
rely on GP sampling, that is sampling from a MVN distribution, a really expensive procedure whose
computational cost increases with the dimensionality of the search space Ω. Furthermore, they can be
applied on GP-based surrogate models, only.

4.1.2 Optimizing the Acquisition Function

At this point it should be clear that solving the auxiliary problem (2) depends on both the specific acquisition
function considered and the probabilistic modelling strategy adopted. More specifically, the solver to use
depends on the specific regression algorithm: due to the black-box and piecewise-constant nature of
predictive mean µ(x) – and standard deviation σ(x) – of a RF regression model, derivative-free global
optimization solvers are needed, such as Adaptive Random Search (Zabinsky 2013; Zhigljavsky 2012)
or Evolutionary methods (Tzanetos et al. 2020; Simon 2013). Although these methods requires a huge
number of function evaluations to find a global optimum, it is important to remark that they are applied on
α(x), which is not query-expensive – contrary to f (x) – but only black-box and potentially multi-extremal.

Analogously to RF, any other ensemble/bagging/boosting based regression model will require to use a
derivative-free algorithm. On the contrary, when the probabilistic surrogate model is a GP, both derivative-
free and gradient-based algorithms can be used, specifically in the case of mean-variance acquisition
functions.
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4.2 Monitoring the Optimization Process

Contrary to gradient-based methods, BO does not guarantee an improvement of the current solution from an
iteration to the next. This is basically due to the need to balance – at each iteration – between exploitation
and exploration as well as to the fact that the surrogate model is just an approximation of the actual objective
function.

Monitoring the evolution of the BO process over the sequentially performed function evaluations is
crucial, especially when querying the objective function is significantly expensive (in terms of time and/or
resources). For instance, one could think to adopt an early stopping criterion in the case that there is not
any improvement after a fixed number of consecutive BO iterations.

A common practice consists in plotting the value of best seen at each iteration, y+n , with n = 1, ...,N and
N the overall number of function evaluations, that is best value observed so far, y+n = max

i=1,...,n
{yi}. Figure 4

shows an example related to the optimization of the same function reported in the previous pictures, with
both GP and RF used as a surrogate model, and each one combined with EI and UCB, separately.

The value at iteration 0 is the best value observed on the so called initial design, that is a set of locations
randomly chosen just to initialize the surrogate model. Common choices for selecting these initial locations
are Latin Hypercube Sampling or Uniform Sampling, with a minimum sample size equal to the number of
the search space’s dimensions plus one. Due to this randomness in its initialization, BO can converge to a
different optimal solution, even keeping fixed the surrogate model, the acquisition function, and the overall
number of function evaluations. One of the best practice adopted in almost all the research studies is to
perform multiple independent runs, starting from different initial designs, and then plotting the average
and standard deviation of the best seen at each BO iteration.

Figure 4: Best seen for four BO’s settings, separately, different for surrogate model (GP or RF) and
acquisition function (EI or UCB).
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5 TOOLS AND APPLICATIONS

Research on BO has been largely active during last years, leading to several software tools and libraries, both
open-source and commercial. Here, some of the most relevant ones are reported – the list cannot be exhaustive.

Spearmint, is a Bayesian optimization library written in Python under a collaboration between machine
learning researchers at Harvard University and the University of Toronto.

Sequential Model-based Algorithm Configuration (SMAC3) Hutter et al. (2011) is a library for
optimizing algorithm hyperparameters, originally written Java (SMAC) then reimplemented in Python 3
(SMAC3). This library is developed by the AutoML Group of theUniversity of Freiburg.

Robust Bayesian Optimization (RoBo) Klein et al. (2017) is a library written in Python and maintained
by the AutoML Group of the University of Freiburg. Its structure is modular, allowing to easily add and
exchange components such as surrogate models and acquisition functions.

Scikit-Optimize is a modular BO library written in Python, by the same authors of the most famous
Python machine learning library named Scikit-Learn.

mlrMBO Bischla et al. (2017) is a flexible and comprehensive R toolbox for BO. mlrMBO is designed
in a modular style, so each component can easily be replaced or adapted to specific use cases.

BayesOpt Martinez-Cantin (2014) is a library written in C++ extremely efficient, portable and flexi-
ble. It offers common interfaces for several programming languages C, C++, Python, MATLAB and Octave.

As far as commercial solutions are concerned, SigOpt is one of the most interesting and successful
examples of Bayesian optimization as a Service. The core of this service was initially created for a
project named MOE (Metrics Optimization Engine) by the Cornell University. The user has to interact
through REST API in several languages like Java, R and Python with the most updated version of each
language. The main idea behind the optimization service is that the user is totally “blind” with respect
to the computational architecture infrastructure running the BO process. To use this service, the user has
to subscribe an Academia or Enterprise account. Other two Bayesian optimization as a service solutions
are OPTaaS – accessible via API in R and Python and published by the company Mind Foundry – and
VUKU – produced by PROWLER.io company.

All these libraries and services can be considered as general-purpose BO tools, and have been largely
adopted to develop specific applications. The number of domains in which BO has been – and is still –
adopted are so many that is quite impossible to provide a complete overview. In the following a selection
of the most relevant ones is reported.

BO has been successfully adopted for structural design, especially in aeronautics, such as in Chunna
and Qifeng (2019), Palar et al. (2019), and Chaudhuri et al. (2019).

Another relevant application domain is drug design/discovery. Traditionally, this problem was ad-
dressed through high-throughput screening (HTS) for measuring in vitro the effect of hundreds of chemical
reactions. HTS has largely failed to meet the initial expectations, leading to the development of computa-
tional techniques enabling virtual HTS. Advancements in computational chemistry have made it possible
to compute in silico properties of pharmacological interest for a certain molecule. The large search space
of possible candidate molecules and the black-box nature of the objective function made BO best suited for
solving this optimization problem, with enormous cost-savings in the discovery phase thanks to the BO’s
sample efficiency (Griffiths and Hernández-Lobato 2020; Meldgaard et al. 2018; Pyzer-Knapp 2018).
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Analogously, BO has been also used for pharmaceutical product development to reduce the number
of experiments required to obtain the optimal formulation and process parameters (Sano et al. 2020).

Another domain characterized by optimization problems quite similar to those of drug design/discovery
is new material design, examples of BO applications are reported in Packwood (2017) and Lookman et al.
(2019), where possible combinations of components are so many and the cost for producing and testing a
new single material are so high that a sample efficient search strategy is the only reasonable approach.

Automated control: among the many applications in which BO provides data efficient auto-tuning
of control devices, a typical example is tuning a parameters of a Proportional Integral Derivative (PID)
controller (Schillinger et al. 2017; Neumann-Brosig et al. 2019). Other examples are related to the optimal
control of complex cyberphysical systems, such as water distribution networks (Candelieri et al. 2020;
Candelieri et al. 2018).

Another relevant application domain which has recently taken advantages of BO is Finance. In Gonza-
lvez et al. (2019) GP-based BO is adopted to optimize, over time, the parameters of a simple trend-following
trading strategy, to make it adaptive with the aim to produce larger returns compared against its basic
implementation.

A specific application domain which has been largely exploiting BO is AutoML, leading to specific
software libraries and services for addressing Hyperparameter Optimization (HPO), Combined Algorithm
Selection and Hyperparameter optimization (CASH) and, more recently, Neural Architecture Search (NAS).

Among the most relevant tools one can consider Auto-WEKA, Auto-sklearn and Auto-PyTorch – all
developed by the AutoML Group – as well as, AutoKeras, Hyperopt, Google AutoML Tables, Amazon
SageMaker Autopilot and Azure Automated Machine Learning.

6 RECENT ADVANCES

In this section the most recent advances in BO are summarized. One of the areas that has been investigated
is related to BO under unknown constraints, where the reference problem becomes:

max
x∈Ω

f (x)

subject to gi(x)≥ 0, i = 1, ...,m

where constraints gi(x) are black-box and expensive to query as f (x). Most of the proposed approaches
make two assumptions: (i) constraints are decoupled with respect to the objective function, meaning
that feasibility can be evaluated separately from f (x), and (ii) the constraints are statistically independent
among them and on the objective function. In Gramacy and Lee (2011) the integrated expected conditioned
improvement (IECI) approach is proposed, basically extending EI in order to also deal with feasibility.
In Basudhar et al. (2012) a Probabilistic Support Vector Machine (PSVM) is used to calculate the so-called
probability of feasibility and the optimization scheme alternates between a global search for the optimal
solution, depending on both this probability and the estimated value of the objective function – modelled
through a GP – and a local refinement of the PSVM through an adaptive local sampling scheme. In Gardner
et al. (2014) a penalty approach has been considered where a penalty is assigned to the acquisition
function in case of infeasibility, with the aim to move away from infeasible regions. Analogously to EI,
also an extension for PES has been proposed, namely Predictive Entropy Search with Constraints (PESC)
in Hernández-Lobato et al. (2015).

A related topic is the optimization of a partially defined objective function, also known as optimiza-
tion under crash constraints or over non-computable domains. Here the constraints are associated to the
computability/observability of the objective function (Sacher et al. 2018; Bachoc et al. 2019): if a location
x violates one of the unknown constraints gi(x) then it is impossible to observe f (x). A recent approach
has been proposed in Candelieri (2019) which overcomes the limitations related to the assumptions of the
previous research works. The approach is named SVM-CBO (Support Vector Machine based Constrained
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BO) and is organized in two phases: the first is aimed to provide a first estimate of the feasible/computable
region in Ω (i.e., feasibility determination) and the second is BO performed within this estimated region,
only. Recently, extension of this approach has been proposed to optimize the hyperparameters of an
Artificial Neural Network, while satisfying constraints related to its deployability on a tiny device, more
precisely a Micro Controller Unit (MCU) having limited hardware resources (i.e., RAM and ROM) (Perego
et al. 2020). This lead to the so-called AutoTinyML framework.

Analogously to resource constraints for tiny-ML, resource-efficiency has been becoming crucial for
AutoML. As it typically runs on large – often cloud-based – computational platforms, it is “energivorous”
and, consequently, also a significant emitter of CO2. This issue makes AutoML strictly linked to the
Red-AI (Dhar 2020) and Green-AI (Schwartz et al. 2019) topics. The analysis over 60 papers from
top conferences (i.e., the 2018 Annual Meeting of the Association for Computational Linguistics, the
2018 Conference on Neurological Information Processing Systems (NeurIPS), and the 2019 Conference
on Computer Vision and Pattern Recognition) has concluded that almost all the studies have prioritized
accuracy over efficiency. As main result, the authors report that the total cost of producing accurate ML
models increases linearly with (i) the cost of executing the model on a single example, (ii) the size of the
training dataset and (iii) the number of AutoML experiments, which controls how many times the model
is trained on the dataset. This warning has been recently received by the scientific community, especially
after the astonishing results reported in Strubell et al. (2019), which has analysed the training process
of many Natural Language Processing (NLP) models to estimate the energy cost in kilowatts required.
When these figures are converted into approximate carbon emissions it comes out that the carbon footprint
of training a single large NLP model is equal to around 300.000 kg of carbon dioxide emissions, that is
the amount of CO2 emitted by 125 round-trip flights between New York and Beijing or, equivalently, five
American average cars in their lifetimes, including their manufacturing processes.

Indeed, a promising recent research direction for AutoML has been focused multi-objective optimiza-
tion, in which measures of resource efficiency are used as objectives along with the accuracy of the trained
models data (Elsken et al. 2018; Dong et al. 2018; Zhou et al. 2018).

As far as the BO research community is concerned, recent advances in the multi-objective optimization
framework have been proposed, such as in Belakaria and Deshwal (2019), Belakaria et al. (2020), Paria
et al. (2020),and Shu et al. (2020).

Multiple Information Source Optimization (MISO) is the setting arising when the problem (1) can
be solved by using a set of less expensive approximations of f (x), namely information sources, each own
having its own specific query cost. The final goal of MISO is to solve (1) while keeping low the overall
cumulated query cost. When the different sources come with an explicit information about their quality
of approximation, usually named fidelity, MISO specializes in multi-fidelity optimization (Kennedy and
O’Hagan 2000). Knowledge about fidelities can be exploited to sort hierarchically the sources leading
to efficient and effective multi-fidelity optimization methods (Peherstorfer et al. 2017; Sen et al. 2018;
Marques et al. 2018; Kandasamy et al. 2019).

(Lam et al. 2015) first addressed the situation where fildelity of each source is unknown and can change
over the search space. The approach uses a separate GP for each information source and then fuse their
predictions – and associated uncertainties – through the method proposed by (Winkler 1981), which came
to represent the standard practice for the fusion of normally distributed data. Successively, (Poloczek et al.
2017) proposed to use a GP to capture the model discrepancy of each information source with respect to
f (x), while a single statistical model is used to perform BO jointly on the search space and the information
sources. A kernel able to deal with both location and source is used to exploit correlations across different
information sources. This allows reducing the uncertainty on all the information sources whenever a new
function evaluation is performed, even if it comes from a less accurate source. Recently, Ghoreishi and
Allaire (2019) has further extended these approaches by adapting KG to work in the MISO setting and also
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considering black-box constraints. The main drawback in fusing GPs – that is the technique underlying
all these MISO methods – is that it requires the computation of correlations according to an additional set
of points, randomly selected, whose size affects both the computational cost and the smoothness of the
resulting fused GP. More recently, a completely different approach has been proposed in Candelieri and
Archetti (2021b), based on GP sparsification (Schreiter et al. 2016), instead of fusion. The idea is to select
only “reliable” observations collected on the approximating sources to “augment” the set of those collected
by querying f (x). The model trained on this augmented set is named Augmented Gaussian Process (AGP).
Selection of augmenting observations is based on a simplified discrepancy measure and GPs’ predictive
uncertainties. A UCB based acquisition function is also proposed, accounting also for cost of each source.

MISO is also linked to the Green-AI topic: in AutoML information sources can be small portions
of a large dataset, used with the aim to moving towards the best hyperparameters configuration of a ML
algorithm while reducing time, energy and costs for training each model. An example of MISO for
Green-AI has been recently proposed in Candelieri et al. (2021).

MISO approaches are based on the assumption that each source has its own query cost and that it is
constant throughout the entire search space. However, recent research papers have been giving evidence
of problems where the cost of each source is location dependent, such as hyperparameter optimization of a
ML algorithm. This has been leading to the recent research topic known as cost-aware BO (Candelieri and
Archetti 2021a; Abdolshah et al. 2019; Lee et al. 2020; Guinet et al. 2020), where not only the objective
function – and cheap sources, in the MISO setting – but also the cost function has to be modelled according
to the cost incurred for querying the locations selected along the sequential optimization process.

7 CONCLUSIONS

Bayesian optimization has been summarized in this tutorial, discussing about different possible choices
regarding the probabilistic surrogate model and the acquisition function. An overview on tools and
applications has been given, remarking the relevance and effectiveness of BO in solving practical problems
and enabling disruptive innovations such as Automated Machine Learning and Green-AI. Many challenging
– and still open – research directions have been discussed, which will require, in the author’s opinion, further
investigation during the next years. Stimulating research questions have been coming from application
domains, leading to innovative solutions, each addressing a different topics, such as unknown constraints,
multi-objective and multi-information source optimization. The future will for sure ask research to a
unifying BO approach, over the different considered settings.
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