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ABSTRACT

For a regenerative process, we propose various estimators of the density function of the cumulative reward
up to hitting a rarely visited set of states. The approaches exploit existing weak-convergence results for the
hitting-time distribution, and we apply simulation (often with previously developed importance samplers for
estimating the mean) to estimate parameters of the limiting distribution. We also combine these ideas with
kernel methods. Numerical results from simulation experiments show the effectiveness of the estimators.

1 INTRODUCTION

A regenerative stochastic process on a state space S possesses an increasing sequence of time points
at which the process “probabilistically restarts” (Kalashnikov 1994). An example is the queue-length
process (including any customer in service) of a stable GI/GI/1 queue, with the starts of busy periods being
regeneration times (Kalashnikov 1994, Example 1.2.2). Suppose that there is a set A ⊂S of rarely visited
states (e.g., large queue lengths in a stable queue), and for a given reward function on the state space S ,
consider the cumulative reward R up to first hitting A . Our goal is to estimate the density function f of R.

One reason for estimating f is that an analyst may glean important features of the distribution of R
from a graph of its density, arguably more easily than from a plot of its cumulative distribution function
(CDF) F . Another motivation arises in quantile estimation (Dong and Nakayama 2020). A central limit
theorem for the estimator of the q-quantile ξ = F−1(q) for 0 < q < 1 has an asymptotic variance that
includes f (ξ ), so constructing a confidence interval for ξ often entails estimating f (ξ ).

When sampling independent and identically distributed (i.i.d.) copies of R from F via crude simulation
(CS), we can estimate the density f through kernel methods (Silverman 1986), a class of nonparametric
techniques for function estimation. But since A is rarely visited, generating an observation of R from F
can be computationally costly as it entails simulating the process for a typically large number of transitions.
Rare-event simulation techniques, such as importance sampling (IS), have exploited regenerative structure
to obtain efficient estimators of the mean E[R] (e.g., Glynn et al. 2017 and Chapter VI of Asmussen and
Glynn 2007). Rather than replicating i.i.d. copies of R from F , the IS methods instead sample cycles
from a different distribution than the original, unbiasing results by multiplying by a correction factor, the
likelihood ratio. Compared to their CS counterparts, the IS estimators of E[R] can have much smaller
variance, with also substantially less computation cost. But ordinary kernel methods are then no longer
applicable to estimate f because i.i.d. replicates of R from F are not available.

We now consider estimating f by employing ideas from Glynn et al. (2018), which take advantage
of known weak-convergence results based on regenerative properties in an asymptotic regime in which
visiting the set A becomes rarer. These limit theorems (Kalashnikov 1997) generalize a classical result
of Rényi (Kalashnikov 1997, p. 3) establishing that for a geometric sum (i.e., the sum of a geometrically
distributed number of i.i.d. nonnegative random variables with finite mean), the ratio of the sum and its

978-1-6654-7661-4/22/$31.00 ©2022 IEEE 121



Nakayama and Tuffin

mean converges weakly to an exponential as the geometric’s parameter p shrinks to 0. Then simulation
is applied to estimate the limiting distribution’s parameters, where those related to rare events are dealt
with via existing IS methods for E[R]. Applying this approach, Glynn et al. (2018) develop so-called
exponential and convolution estimators for the CDF F of R, along with its q-quantile ξ = F−1(q) and the
conditional tail expectation γ = E[R | R > ξ ], the latter two being frequently employed risk measures in
finance, where ξ (resp., γ) is known as the value-at-risk (resp., conditional value-at-risk); see, e.g., Hong
et al. (2014). Our current paper extends the methods of Glynn et al. (2018) to handle the density f , and
also further combines the approaches with IS kernel techniques (Nakayama 2011).

The rest of the paper proceeds as follows. Section 2 reviews (ordinary) kernel density estimation. We
then describe the assumed regenerative structure in Section 3, and Section 4 explains the asymptotic regime
for the weak-convergence results upon which our density estimators are based. Sections 5 and 6 extend the
exponential and convolution estimators, respectively, of Glynn et al. (2018) to instead estimate densities.
We then combine the convolution estimator with kernels in Section 7. Section 8 presents numerical results,
and we give concluding remarks in Section 9.

2 REVIEW OF KERNEL DENSITY ESTIMATION

Consider a stochastic process X = [X(t) : t ≥ 0] evolving on a state space S ⊂ℜd . Let T = inf{t : X(t)∈A }
be the hitting time (or first passage time) to a set A ⊂ S , and let R =

∫ T
0 r(X(t))dt be the cumulative

reward up to T for a reward function r : S → ℜ+, where ℜ+ is the set of nonnegative real numbers. Let F
be the CDF of R; i.e., F(x) =P(R ≤ x), x ∈ ℜ. Under the assumption that F has a density f (with respect
to Lebesgue measure), the goal is to estimate f .

We first review estimating f via kernel methods. Suppose that R1,R2, . . . ,Rn are n i.i.d. observations
from CDF F . We can estimate F through the empirical CDF F̂n defined by

F̂n(x) =
1
n

n

∑
i=1

I (Ri ≤ x), (1)

where I (·) is the indicator function, which takes value 1 (resp., 0) when its argument is true (resp., false).
Thus, F̂n assigns a mass of size 1/n to each observed Ri, and F̂n(x) is the fraction of the n data points that
are at most x. As the derivative of F , the density f satisfies f (x) = limδ→0[F(x+ δ )−F(x− δ )]/(2δ ),
which suggests estimating f by f̂n,δ with

f̂n,δ (x) =
F̂n(x+δ )− F̂n(x−δ )

2δ
(2)

for a small but fixed δ > 0 known alternatively as the bandwidth, window width, or smoothing parameter.
Sometimes called the naive density estimator (Silverman 1986, Section 2.3), f̂n,δ (x) is a (central) finite
difference; e.g., see Section VII.1 of Asmussen and Glynn (2007). We next give an equivalent representation
of f̂n,δ in terms of a uniform density function to motivate the kernel estimators.

Let kU [−1,1) be the density function of a (continuous) uniform distribution on the interval [−1,1), so
kU [−1,1)(u) = I (−1 ≤ u < 1)/2. Using (1) allows us to rewrite f̂n,δ (x) in (2) as

f̂n,δ (x) =
1

2nδ

n

∑
i=1

I (x−δ < Ri ≤ x+δ ) =
1
n

n

∑
i=1

1
δ

kU [−1,1)

(
x−Ri

δ

)
. (3)

We can obtain other estimators of f by replacing kU [−1,1) in (3) with any density or more generally a
kernel k : ℜ → ℜ, which is a function with

∫
ℜ

k(u)du = 1; e.g., see (Silverman 1986, Section 2.4). This
then leads to the kernel density estimator f̂n,k,δ (with kernel k) defined by

f̂n,k,δ (x) =
1
n

n

∑
i=1

1
δ

k
(

x−Ri

δ

)
=

1
n

n

∑
i=1

kδ (x−Ri), (4)
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where kδ (u) = (1/δ )k(u/δ ) is the scaled kernel, and δ > 0 is the bandwidth. When k is a density, the
mean (resp., variance) of kδ equals that of k multiplied by δ (resp., δ 2), and the kernel estimator (4) is a
mixture of n scaled densities kδ , each translated by an Ri and with equal mixture weight 1/n. In practice,
δ = δn is usually chosen as a function of the sample size n such that δn → 0 and nδn → ∞ as n → ∞. Kernel
density estimators are generally biased, with the bias shrinking to 0 as δn → 0. (Chapter 5 of Silverman
1986 also discusses adaptive estimators of f with bandwidth depending on x or the distances between the
data points, but for simplicity, we do not consider these variants.)

The kernel is often taken as a density function that is symmetric (about the origin). Although these
properties are not required generally (Silverman 1986, Section 3.6.1), we will simplify our discussion by
assuming that k is a density (i.e., k(u)≥ 0 for all u ∈ ℜ and

∫
ℜ

k(u)du = 1) but not necessarily symmetric.
In addition to kU [−1,1)(u), other common choices for a symmetric kernel k include the Gaussian kernel
kN (u) = φ(u) = (2π)−1/2e−u2/2 (with CDF Φ), and the Epanechnikov kernel (Silverman 1986, p. 42).

Using a symmetric kernel k in (4) can lead to f̂n,k,δ assigning positive mass to sets of negative values
(i.e.,

∫ 0
−∞

f̂n,k,δ (x)dx > 0) when the bandwidth δ is sufficiently large. This may be undesirable when the
true density f of R has f (x) = 0 for all x < 0, as is the case under our assumption that the reward function
r(·) ≥ 0. One possible way to address this is to truncate f̂n,k,δ so that f̂n,k,δ (x) = 0 for x < 0, but then
f̂n,k,δ may not be a density as it may integrate to less than 1; Silverman (1986), Section 2.10, discusses
other issues also arising from truncation. Bagai and Prakasa Rao (1995) suggest instead choosing what we
call a positive-support kernel, i.e., a density function k whose support is contained in [0,∞), such as the
uniform[0,2) kernel kU [0,2)(u) =I (0 ≤ u < 2)/2 and the exponential kernel kE (u) = e−uI (u ≥ 0). When
r(·)≥ 0, positive-support kernels always result in

∫
∞

0 f̂n,k,δ (x)dx = 1, so f̂n,k,δ is a density. But the lack of
symmetry of k can lead to a less statistically efficient estimator of f . For a positive-support kernel k and
sample size n, Bagai and Prakasa Rao (1995) derive the bandwidth δ = δn (also depending on k and f ) that
asymptotically (as n → ∞) minimizes the mean integrated squared error (MISE) E[

∫
( f̂n,k,δ (x)− f (x))2 dx]

of the kernel density estimator. The optimal δn shrinks at a rate of order n−1/3 as n → ∞, leading to the
MISE optimally decreasing at a rate of order n−2/3, worse than the order n−4/5 optimal MISE rate for
symmetric kernels with optimal bandwidth of order n−1/5; e.g., see Section 3.3.2 of Silverman (1986).

3 REGENERATIVE PROCESS

A drawback of the kernel estimators of Section 2 is that generating i.i.d. copies of R from F can be
computationally expensive when A is rarely visited. To obtain more efficient methods for estimating f ,
we will now impose additional structure on the process X = [X(t) : t ≥ 0], which will enable us to adapt
approaches from Glynn et al. (2018). Specifically, we first approximate the CDF F of R using existing
weak-convergence results (Kalashnikov 1997) in an asymptotic regime where visits to the set A become
rarer (in the sense of (7) below). We then apply simulation to estimate the limiting distribution’s unknown
parameters, some of which relate to rare events, and we will exploit previously developed IS methods
designed to efficiently estimate E[R] to handle such parameters.

To accomplish this, we now assume that X is a (non-delayed) regenerative process (Kalashnikov 1994).
Thus, X has a sequence of regeneration times 0 = Γ0 < Γ1 < Γ2 < · · · , so the process “probabilistically
restarts” at each Γi. An example of a regenerative process is a positive-recurrent continuous-time Markov
chain (CTMC) on a discrete state space S with a fixed starting state x0 ∈ S , and successive entry times
to x0 form a regeneration sequence (Kalashnikov 1994, Example 2.1 on p. 15).

For each i ≥ 1, define τi = Γi −Γi−1, and [X(Γi−1 + s) : 0 ≤ s < τi] is called the ith (regenerative)
cycle, which has length τi. Also, define Yi =

∫
Γi
Γi−1

r(X(t))dt as the reward accrued during cycle i. As
X is regenerative, (τi, [r(X(Γi−1 + s)) : 0 ≤ s < τi]), i ≥ 1, is a sequence of i.i.d. pairs of cycle lengths
and reward processes during cycles. For i ≥ 1, let Ti = inf{t ≥ 0 : X(Γi−1 + t) ∈ A } be the time elapsing
after Γi−1 until the next hit to A . For x,y ∈ ℜ, let x∧ y = min(x,y) and x∨ y = max(x,y). For i ≥ 1, let
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Di =
∫ Ti∧τi

Γi−1
r(X(t))dt be the reward accrued during the ith cycle up to hitting A or the end of the cycle,

whichever occurs first. The regenerative property ensures that (τi,Yi,Di,I (Ti < τi)), i = 1,2, . . ., are i.i.d.
4-tuples. To simplify notation, let (τ,Y,D,I (T < τ)) = (τ1,Y1,D1,I (T1 < τ1)).

We can give a stochastically equivalent representation for the cumulative reward R up to time T in terms of
independent quantities. To do this, let W1,W2, . . . be i.i.d., each with CDF GW (x) =P(Y ≤ x | τ < T ), so Wi is
distributed as the reward in a cycle that does not hit A . Independent of the Wi, further define M as a geometric
random variable with parameter p =P(T < τ) (and support starting from 0), so P(M = l) = (1− p)l p for
l = 0,1,2, . . .. Independent of M and the Wi, additionally let V be a random variable with CDF H defined
by H(v) =P(D ≤ v | T < τ), so V is distributed as the reward in a cycle up to hitting A given that T < τ .
For G as the CDF of the geometric sum S = ∑

M
i=1Wi, the regenerative property of X implies

R D
= S+V ∼ F, with S ∼ G independent of V ∼ H, (5)

where D
= denotes equality in distribution, and ∼ means “distributed as”. Thus, the independence of S and

V ensures that F = G⋆H, where ⋆ is the convolution operator; i.e., G⋆H(x) =
∫

G(x− y)dH(y).
If p > 0, then the expectation µ of the cumulative reward R up to T satisfies

µ =
E[D]

p
≡ ζ

p
, (6)

where ζ and p =E[I (T < τ)] are means of “cycle-based random variables” (i.e., measurable with respect
to the sigma-field of X up to τ); e.g., see Goyal et al. (1992) and Glynn et al. (2017).

4 ASYMPTOTIC REGIME

We will exploit existing generalizations (Kalashnikov 1997) of a classical result of Rényi (Kalashnikov
1997, p. 3) establishing that the ratio of a geometric sum and its mean converges weakly to an exponential as
the geometric’s parameter p shrinks to 0. For a theoretical framework to accommodate this, we parameterize
the problem by introducing a rarity parameter ε > 0 and examine the behavior of R ≡ Rε and S ≡ Sε as
ε → 0, where we assume that

p ≡ pε → 0 as ε → 0, (7)

which is what we meant before by saying that the set A is “rarely visited”. We next describe two stochastic
models satisfying (7).
Example 1 For a stable GI/GI/1 queue, let X(t) be the total number of customers in the system at time t ≥ 0,
where the first customer arrives at time t = 0 to an empty system. Thus, the state space is S = {0,1,2, . . .},
and the process X is regenerative, regenerations occurring when a customer arrives to an empty system
(Kalashnikov 1994, pp. 16–17). Let A = {bε ,bε +1,bε +2, . . .} be the set of states in which there are at
least bε ≡ ⌊1/ε⌋ customers in the system, so for ε > 0 small, T represents the first time when there is a
large number bε of customers in the system. Theorem 1 of Sadowsky (1991) shows that (7) then holds.
Example 2 A highly reliable Markovian system (HRMS) comprises a fixed number of components, each
with exponentially distributed failure times, and a finite number of repairpersons, who fix each failed
component in an exponentially distributed time. Each state in the (discrete) state space S keeps track of
the set of currently failed components, as well as any other necessary information, e.g., about queueing
of failed components. At time t = 0, all components are operational, and the resulting process X on S
is a positive-recurrent CTMC, making it regenerative. The system fails when certain combinations of
components are down, and let A denote the set of those states, so T is the first time to system failure.
The rarity of system failures results from having failure rates as positive powers of ε and repair rates as
constants. Then Shahabuddin (1994) provides conditions guaranteeing (7).

In Example 1, rarity arises by letting the set A =Aε recede from state 0 as ε shrinks, but the transition
dynamics remain unchanged. In contrast, the set A in Example 2 does not change as ε shrinks, but rarity
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instead comes from the failure rates becoming smaller with fixed repair rates. As we are now actually
considering a family of models indexed by ε , we sometimes (but not always) add a subscript ε in our
notation (e.g., S = Sε , Wi =Wε,i, or F = Fε ) to emphasize the dependence on ε .

To try to apply Rényi’s theorem for geometric sums in our regenerative setting, consider Sε = ∑
Mε

i=1Wε,i
in (5). Rényi’s result covers the case when the summands’ distribution remains fixed as pε shrinks, but
our Examples 1 and 2 violate this assumption. Kalashnikov (1997) provides generalizations to address this
when (7) holds. For example, the conditions in Theorem 3.2.5 of Kalashnikov (1997) ensure that the ratio
of Sε to its mean ηε = Eε [Sε ] converges weakly to an exponential: for all y ∈ ℜ,

Pε(Sε/ηε ≤ y)→ 1− e−y+ as ε → 0, (8)

where x+ = max(x,0), x ∈ ℜ. If the cumulative reward Rε = Sε +Vε in (5) further has only a “negligible”
contribution from Vε (e.g., pεEε [Vε ]→ 0 as ε → 0 when Eε [Wε,i] = 1), then we also have

Pε(Rε/µε ≤ x)→ 1− e−x+ as ε → 0, (9)

where µε = Eε [Rε ]; e.g., see Theorems 3.2.5 and 3.4.1 of Kalashnikov (1997) for specific assumptions.
Nakayama and Tuffin (2019) give an example (Section 8 provides a simpler model) where Vε is not negligible
relative to Rε , so (8) holds more generally than (9). Glynn et al. (2018) develop simulation methods that
exploit (8) or (9), and we next extend those approaches to construct density estimators.

5 EXPONENTIAL ESTIMATOR OF THE DENSITY f

The weak convergence in (9) suggests that for fixed but small ε > 0,

Fε(x) = Pε(Rε ≤ x) = Pε(Rε/µε ≤ x/µε)≈ 1− e−x+/µε ≡ F̃exp,ε(x), (10)

which we call the exponential CDF approximation. This suggests approximating the density f of F by

f̃exp,ε(x)≡ (1/µε)e−x/µε I (x ≥ 0). (11)

Glynn et al. (2018) use (10) to develop simulation estimators of the CDF F and associated risk measures,
and we now adapt this to estimate the density f .

Dropping the subscript ε to simplify notation, we next construct a simulation estimator µ̂n of µ in
(11). To do this, we apply measure-specific importance sampling (MSIS; Goyal et al. 1992), which
independently estimates the numerator and denominator in (6) using crude simulation and importance
sampling, respectively. Let n be our computation budget of the total number of cycles to simulate, and for
a fixed user-specified parameter β ∈ (0,1), we simulate nCS ≡ ⌊βn⌋ (resp., nIS ≡ n−nCS) cycles using CS
(resp., IS), where ⌊·⌋ denotes the floor (round-down) function. Goyal et al. (1992) select β to minimize the
asymptotic variance (in the corresponding central limit theorem as n → ∞ for fixed ε > 0) of the resulting
overall estimator of µ . To estimate the numerator ζ =E[D] in (6), we generate Di, i = 1,2, . . . ,nCS, as nCS
i.i.d. copies of D sampled using CS. Generating each Di entails simulating a cycle until either it ends or
A is hit, whichever occurs first. A CS estimator of ζ is then

ζ̂n ≡
1

nCS

nCS

∑
i=1

Di. (12)

Independently of the simulation runs employed to construct ζ̂n in (12), we use IS to estimate the
denominator p = P(T < τ) in (6) as follows. Applying a change of measure leads to

p = E[I (T < τ)] =
∫

I (T < τ)dP=
∫

I (T < τ)
dP
dP′ dP′ = E′[I (T < τ)L], (13)
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where P′ (resp., E′) denotes the probability measure (resp., expectation) under IS, with P absolutely
continuous with respect to P′, and L = dP/dP′ is the resulting likelihood ratio. The representation (13)
motivates the following approach to estimate p. Let (I (T ′

i < τ ′
i ),D

′
i,L

′
i), i = 1,2, . . . ,nIS, be i.i.d. copies

of the cycle-based random vector (I (T < τ),D,L) generated via IS. Then an IS estimator of p is

p̂n =
1

nIS

nIS

∑
i=1

I (T ′
i < τ

′
i )L

′
i, (14)

which is unbiased. Choosing P′ appropriately, which is problem-specific, can lead to p̂n having much
smaller variance than its CS counterpart, but a poorly selected P′ can lead to larger (or even infinite)
variance; see Asmussen and Glynn (2007), Section V.1 and Chapter VI, and Rubino and Tuffin (2009) for
further details on IS and particular approaches for various settings, including those in Examples 1 and 2.

We combine the estimators ζ̂n from (12) and p̂n from (14) to obtain the MSIS estimator of µ in (6) as

µ̂n =
ζ̂n

p̂n
. (15)

Putting µ̂n into (11) results in the following.

Proposition 1 For a reward function r : S → ℜ+, the exponential density estimator f̂exp,n of f based on
(11) satisfies

f̂exp,n(x) = (1/µ̂n)e−x/µ̂nI (x ≥ 0), (16)

where µ̂n is from (15).

6 CONVOLUTION ESTIMATOR OF THE DENSITY f

With the rarity parameter ε reintroduced, the exponential approximation in (11) essentially assumes that
Vε makes a negligible contribution to Rε in (5). But for stochastic models in which this is not the case
(e.g., see Section 8 and Nakayama and Tuffin 2019), Glynn et al. (2018) give other estimators for the
CDF and risk measures of Rε based on a convolution arising from (5) to more explicitly account for the
contribution of Vε to Rε . The resulting so-called convolution estimators can apply more generally than the
exponential estimators in Section 5, with the convolution estimators often having less bias, especially when
ε is not so small, which is useful in practice because actual systems have a fixed ε > 0. We next extend this
convolution approach to construct a density estimator. Dropping again the subscript ε to simplify notation,
we have that (5) implies that the density f of S+V ∼ F , with S ∼ G independent of V ∼ H, satisfies

f (x) =
∫

g(x− y)dH(y), (17)

assuming that G has density g (with respect to Lebesgue measure); e.g., see Billingsley (1995), eq. (20.37).
To develop an estimator of the density f based on (17), we will use (8) to approximate the density

g of S by an exponential with mean η . To construct an estimator of H, Glynn et al. (2018) again apply
MSIS with total sample size n and a user-specified allocation parameter β ∈ (0,1), as in Section 5. Recall
that H is also the conditional CDF of D given that T < τ and p = P(T < τ), so we have

H(y) = P(D ≤ y | T < τ) =
P(D ≤ y,T < τ)

p
=
E[I (D ≤ y,T < τ)]

p
=
E′[I (D ≤ y,T < τ)L]

p
(18)

through a change of measure, where as in Section 5, E′ is the expectation operator under IS, and L is the
corresponding likelihood ratio. We previously obtained in (14) an IS estimator p̂n of the denominator p of
(18). From the same IS data used in (14), we then construct an IS estimator Ĥn of H as

Ĥn(y) =
1

p̂n nIS

nIS

∑
i=1

I (D′
i ≤ y,T ′

i < τ
′
i )L′

i. (19)
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Section 7 will consider instead replacing (19) with an IS kernel estimator of H.
We next develop an estimator of g in (17) by extending ideas from Glynn et al. (2018). In (8), Wald’s

identity (Ross 1995, Theorem 3.3.2) yields η = E[S] = E[M]E[W ] = (1− p)E[W ]/p. The CDF of W is
GW (x) =P(Y ≤ x | τ < T ) =P(Y ≤ x,τ < T )/(1− p), so η =E[YI (τ < T )]/p. We apply CS to estimate
E[YI (τ < T )] via 1

nCS
∑

nCS
i=1YiI (τi < Ti), where (Yi,I (τi < Ti)), i = 1,2, . . . ,nCS, are i.i.d. copies of the

cycle-based random vector (Y,I (τ < T )) generated under CS. This then results in

η̂n =
1

p̂n nCS

nCS

∑
i=1

YiI (τi < Ti) (20)

as an MSIS estimator of η . Recalling (8), we obtain a parametric estimator of the exponential approximation
G̃exp(s) = 1− e−s+/η to the CDF G of S as Ĝexp,n(s) = 1− e−s+/η̂n . The corresponding estimator of the
density g̃exp(s) = (1/η)e−s/ηI (s ≥ 0) of G̃exp is

ĝexp,n(s) = (1/η̂n)e−s/η̂nI (s ≥ 0). (21)

The convolution estimator of the density f (x) in (17) is then

f̂⋆,n(x) =
∫

y∈[0,x]
ĝexp,n(x− y)dĤn(y), (22)

and the following works out an expression for f̂⋆,n(x).

Proposition 2 For a reward function r : S → ℜ+, the convolution estimator f̂⋆,n in (22) of the density f
of R satisfies

f̂⋆,n(x) =
1

p̂n η̂n nIS

nIS

∑
i=1

I (D′
i ≤ x,T ′

i < τ
′
i )L′

i e−(x−D′
i)/η̂n (23)

where p̂n is from (14) and η̂n is from (20).

Proof. Putting (21) and (19) into (22) leads to

f̂⋆,n(x) =
∫

y∈[0,x]

1
η̂n

e−(x−y)/η̂nI (y ≤ x)
1

p̂n nIS

nIS

∑
i=1

I (D′
i ∈ dy)I (T ′

i < τ
′
i )L′

i

=
1

p̂n η̂n nIS

nIS

∑
i=1

I (T ′
i < τ

′
i )L′

i

∫
y∈[0,x]

e−(x−y)/η̂n I (y ≤ x)I (D′
i ∈ dy),

which equals (23).

7 CONVOLUTION-KERNEL ESTIMATOR OF THE DENSITY f

The IS estimator Ĥn in (19) of the CDF H of V in (5) has a point mass at each D′
i, i = 1,2, . . . ,nIS.

Assuming that H has a density h, we now devise an IS kernel (Nakayama 2011) estimator of h, which
we then convolve with the exponential density estimator ĝexp,n in (21) of the geometric sum S to obtain a

convolution-kernel estimator of the density f of R D
= S+V .

As h(y) = limδ→0[H(y+ δ )−H(y− δ )]/(2δ ), this suggests using a bandwidth δ > 0 to estimate h
by the finite difference [Ĥn(y+δ )− Ĥn(y−δ )]/(2δ ) = 1

2δ p̂n nIS
∑

nIS
i=1 I (y−δ < D′

i ≤ y+δ )I (T ′
i < τ ′

i )L′
i.

Then just as the ordinary kernel estimator (4) generalizes (3), replacing I (y−δ < D′
i ≤ y+δ )/(2δ ) with

kδ (y−D′
i) leads to the IS kernel estimator ĥ◦n,k,δ of h with

ĥ◦n,k,δ (y) =
1

p̂n nIS

nIS

∑
i=1

kδ (y−D′
i)I (T ′

i < τ
′
i )L′

i. (24)
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Recalling the convolution for f in (17), we next consider a convolution-kernel density estimator

f̂ ◦⋆,n,k,δ (x) =
∫

∞

y=−∞

ĝexp,n(x− y) ĥ◦n,k,δ (y) dy (25)

of f , with ĝexp,n from (21). Proposition 3 below will derive an expression for f̂ ◦⋆,n,k,δ . To do this, let
ψk(θ) =

∫
eθuk(u)du, θ ∈ ℜ, be the moment generating function (MGF) of a kernel k. Also, for z ∈ ℜ,

define the lower incomplete (or partial) moment-generating function (LIMGF) (Winkler et al. 1972) of k as

ψ
↓
k (θ ,z) =

∫ z

u=−∞

eθuk(u)du, (26)

so ψk(θ) = limz→∞ ψ
↓
k (θ ,z). While the MGF ψk(θ) for a particular k may be infinite for some θ , the

LIMGF always satisfies

ψ
↓
k (θ ,z)< ∞, for all θ ∈ ℜ+ and z ∈ ℜ (27)

because θ ≥ 0 implies ψ
↓
k (θ ,z) ≤ eθz ∫ z

u=−∞
k(u)du ≤ eθz since k is a density. We will later give simple

expressions for ψ
↓
k (θ ,z) for particular choices of densities k.

Proposition 3 Consider a reward function r : S → ℜ+, a kernel function k that is a density, and any
bandwidth δ > 0. The convolution-kernel estimator f̂ ◦⋆,n,k,δ in (25) of the density f of R satisfies

f̂ ◦⋆,n,k,δ (x) =
1

p̂n η̂n nIS

nIS

∑
i=1

I (T ′
i < τ

′
i )L′

ie
(D′

i−x)/η̂nψ
↓
k

(
δ

η̂n
,
x−D′

i

δ

)
(28)

for LIMGF ψ
↓
k (·, ·) in (26), where p̂n is from (14) and η̂n is from (20).

Proof. Putting (21) and (24) into the right side of (25) leads to

f̂ ◦⋆,n,k,δ (x) =
1

p̂n η̂n nIS

nIS

∑
i=1

I (T ′
i < τ

′
i )L′

i

∫
∞

y=−∞

e−(x−y)/η̂nI (y ≤ x)kδ (y−D′
i)dy

=
1

p̂n η̂n nIS

nIS

∑
i=1

I (T ′
i < τ

′
i )L′

ie
−x/η̂n

∫ x

y=−∞

ey/η̂nkδ (y−D′
i)dy. (29)

In (29), substituting u = (y−D′
i)/δ gives kδ (y−D′

i)dy = k(u)du, so the integral in (29) satisfies∫ x

y=−∞

ey/η̂nkδ (y−D′
i)dy = eD′

i/η̂n

∫ (x−D′
i)/δ

u=−∞

e(δ/η̂n)uk(u)du = eD′
i/η̂nψ

↓
k

(
δ

η̂n
,
x−D′

i

δ

)
, (30)

which (27) ensures is finite because r(·)≥ 0 implies δ/η̂n ≥ 0. Putting (30) into (29) establishes (28).

Evaluating f̂ ◦⋆,n,k,δ (x) in (28) requires computing ψ
↓
k (θ ,z), which we need to do for only θ ≥ 0 because

r(·) ≥ 0 implies δ/η̂n ≥ 0 in (28). We now give the LIMFG ψ
↓
k (θ ,z) for some particular choices of

kernel k. The uniform[−1,1) kernel kU [−1,1) has a finite MGF ψkU [−1,1)(θ) = [eθ − e−θ ]/(2θ) for all

θ ∈ ℜ, and LIMGF ψ
↓
kU [−1,1)

(θ ,z) = [eθ((z∧1)∨−1)− e−θ ]/(2θ). The Gaussian kernel kN has a finite MGF

ψkN (θ) = eθ 2/2 for all θ ∈ ℜ, and LIMGF ψ
↓
kN
(θ ,z) = eθ 2/2Φ(z−θ). The uniform[0,2) kernel kU [0,2) has

a finite MGF ψkU [0,2)(θ) = [e2θ −1]/(2θ) for all θ ∈ ℜ, and LIMGF ψ
↓
kU [0,2)

(θ ,z) = [eθ((z∧2)∨0)−1]/(2θ).
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While the exponential kernel kE has finite MGF for only θ < 1, in which case ψkE
(θ) = 1/(1−θ), its

LIMGF ψ
↓
kE
(θ ,z) = 1

θ−1 [e
(θ−1)z −1]I (z ≥ 0) is finite for any θ ∈ ℜ; also see (27).

Similar to the discussion in the last paragraph of Section 2, choosing a symmetric kernel k can lead
to ĥ◦n,k,δ in (24) assigning positive mass to sets of negative values (i.e.,

∫ 0
−∞

ĥ◦n,k,δ (y)dy > 0) when the

bandwidth δ is sufficiently large. Thus, (25) then shows that
∫ 0

x=−∞
f̂ ◦⋆,n,k,δ (x)dx > 0 is possible. This may

be undesirable when the true density f of R has f (x) = 0 for all x < 0, as is the case under our assumption
that the reward function r(·)≥ 0. Selecting instead a positive-support kernel avoids these issues, but can
lead to a statistically less-efficient estimator of f ; see the last paragraph of Section 2.

8 NUMERICAL RESULTS

We next provide numerical results comparing the previous sections’ estimators of the density f of the
cumulative reward R up to a hitting time T to a set A for a simple tractable model. A variation of a 3-state
CTMC of Goyal et al. (1992), our model is a semi-Markov process (SMP; Section 4.8 of Ross 1995)
X = [X(t) : t ≥ 0] on state space S = {0,1,2} and A = {2}. The SMP starts in state 0, and returns to
state 0 are regenerations of X . Figure 1 shows the transition probabilities of the embedded discrete-time
Markov chain (DTMC) Z = [Z j : j = 0,1,2, . . .] of X . From state 0, the embedded DTMC moves to state 1
with probability p ∈ (0,1), and returns to state 0 (regeneration) with probability 1− p. From state 1, the
DTMC goes to state 2 with probability 1, so P(T < τ) = p. (To make the embedded DTMC regenerative,
we also specify the probability of going from state 2 to state 0 to be 1.) Let E (λ ) denote an exponential
distribution with rate λ > 0, and U (a,b) be a uniform distribution on an interval (a,b) with a < b. Given
Z, the holding times in each state Z j visited are independent, where successive holding times for visits to
state 0 (resp., 1) are E (λ0) for some λ0 > 0 (resp., U (a,b) for some 0 ≤ a < b < ∞). (While the holding
times in state 2 do not matter for the process up to T , we define its distribution as E (λ2) for some λ2 > 0.)

0

E (εw0)

1

U (0,ε−w1)

2

E (λ2)

1− p

p = ε 1

1

Figure 1: The edge labels are the transition probabilities of the embedded DTMC Z of an SMP X , with
the holding-time distribution to each visit to a state below that state, where w0, w1, and λ2 are constants.

Define the reward function r(·)≡ 1, so the cumulative reward R is the hitting time T to state 2. The SMP
X has only two possible types of paths for T ∧ τ , corresponding to paths of Z with 0 → 0 and 0 → 1 → 2.
Let M be the number of cycles completed before the first visit to A , so M is geometric with parameter p
and support {0,1,2, . . .}; i.e., P(M = m) = (1− p)m p for m ≥ 0. Let A1,A2, . . . be the successive holding
times in state 0, where each Ai ∼ E (λ0). Also, let B ∼ FB = U (a,b) be the holding time in the first visit
to state 1, so R = S+V with S = ∑

M
i=1 Ai and V = AM+1 +B in (5).

To work out the CDF F of R, rewrite R as R = S′+B, where S′ = ∑
M+1
i=1 Ai ∼ E (pλ0) (Kalashnikov

1997, p. 7). As a consequence, F is the convolution of E (pλ0) and FB. The density fB of FB = U (a,b) is
given by fB(y) = I (y ∈ (a,b))/(b−a), so the density f of R is

f (x) = I (x ≥ 0)
∫ x

0
pλ0e−pλ0(x−y) fB(y) dy =

I (x ≥ 0)
b−a

e−pλ0x
[
epλ0(b∧x)− epλ0(a∧x)

]
. (31)

To incorporate the asymptotic regime of (7) into the model, we make visiting A before regenerating
rare by having p = ε for small ε > 0. We further set the exponential holding time in state 0 to have
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rate λ0 = εw0 for a constant w0 ≥ 0, and the holding time in state 1 is uniform on (a,b) = (0,ε−w1) for
w1 ≥ 0. Varying (w0,w1) allows investigating the viability of the various estimators. The mean of S′

(resp., S = S′−AM+1) is 1/(pλ0) = ε−(w0+1) (resp., 1/(pλ0)− (1/λ0) = ε−(w0+1)− ε−w0), so both E[S′]
and E[S] are of order ε−(w0+1) as ε → 0. The mean of B (resp., V = AM+1 +B) is b/2 = ε−w1/2 (resp.,
(1/λ0)+ (b/2) = ε−w0 +(ε−w1/2)), so E[B] and E[V ] are of respective orders ε−w1 and ε−max(w0,w1) as
ε → 0. Hence, if w0+1 > w1 (resp., w0+1 < w1), S′ and S typically make the dominant (resp., a negligible)
contribution to R = S+V = S′+B compared to B and V . If w0+1 = w1, then S, S′, V , and B each typically
contribute comparably to R. Thus, as we will see in Figure 2, the weak convergence in (9) does not hold
when w0+1 ≤ w1, but (8) is still valid. The exponential estimator of Section 5 is then only appropriate for
w0 +1 > w1, but the convolution estimators of Sections 6 and 7 are applicable for all w0 and w1 as ε → 0.

For w0 = 1 and w1 ∈ {1,2}, Figure 2 plots the exact density f in (31), the exponential estimator
(“Exp. est.”) f̂exp,n in (16), the convolution estimator (“Conv”) f̂⋆,n in (23), and the convolution-kernel
estimator (“Conv:k”) f̂ ◦⋆,n,k,δ in (28), for k as the Gaussian kernel kN , the U [0,2) kernel kU [0,2), or the
exponential kernel kE (Section 2). All of the estimators apply MSIS (Section 5), where for IS, we change
p to p′ = 0.8 for Z (as in Goyal et al. 1992) and use the original CDFs (given Z) for the holding times. All
estimators are based on simulating a total of n = nCS+nIS = 105 independent cycles, where we determined
the MSIS allocation parameter β (used in nCS = ⌊βn⌋) to approximately minimize the variance of the
MSIS estimator µ̂n in (15) of µ , the variance estimated from a small pilot run. While the end of Section 2
mentions asymptotically optimal bandwidths δ = δn of order n−1/5 (resp., n−1/3) for symmetric (resp.,
positive-support) kernels to minimize MISE, such asymptotics may take effect in practice for only enormous
sample sizes, especially when kernels are combined with IS. Instead, our kernel estimators used a bandwidth
δ = 500/

√
nIS, chosen based on ad-hoc experiments to avoid oversmoothing.

The top panels of Figure 2 have w1 = 1 < w0 +1, so the exponential and convolution (both without
and with kernels) estimators are all valid: the estimators get closer to the exact density as ε shrinks from
0.3 (left panel) to 10−2 (right panel). For the larger ε , the true density has a mode at a positive x, which
the exponential estimator does not capture, but the convolution estimators do, although placing the mode
somewhat to the right of the true mode. For the smaller ε , the true mode’s location moves left, making it
virtually indistinguishable from the origin, which is the mode of the exponential estimator.

Figure 2’s bottom panels have w1 = 2=w0+1, invalidating the exponential estimator, but the convolution
estimators (without and with kernels) are all still valid as ε → 0. The convolution estimators get closer to
f as ε shrinks from 0.3 (left panel) to 10−2 (right panel), but the exponential estimator does not.

Zooming in on the left panels of Figure 2 reveals that the Conv:kN estimators have been truncated at
the origin as they assign positive mass to negative values (see the last paragraph of Section 7). In contrast,
the estimators with positive-support kernels kU [0,2) and kE do not require truncation.

Figure 3 examines the convolution estimators (without and with kernels) in more detail. The left panel
shows the errors (i.e., differences of estimator and f ) for different kernels, where the Gaussian kernel kN
does about the same as the non-kernel convolution estimator. The kernels kU [0,2) and kE have larger errors,
in line with the theory (last paragraph of Section 2) for ordinary (non-IS) kernel estimators. The right panel
shows that for kN , varying the bandwidth δ can lead to different errors, where δ = 500 results in some
difference (with some improvement for some small x) compared to the non-kernel convolution estimator.

9 CONCLUDING REMARKS

We provided density estimators of the cumulative reward R= S+V until hitting a rare set A of a regenerative
process X . The estimators exploit known weak-convergence results that show that S or R divided by its
mean converges to an exponential, which Glynn et al. (2018) use to construct exponential and convolution
estimators of the CDF of R and related risk measures. We extended these approaches to estimate the density
and further incorporated kernels. We introduced a simple model for which numerical results show that
our density estimators can do well, and also demonstrate when the exponential estimator can lead to poor
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Figure 2: The exact density and estimators for the 3-state SMP with w0 = 1 are plotted for w1 = 1 (top
panels) and for w1 = 2 (bottom panels), with ε = 0.3 (left panels) and ε = 10−2 (right panels).
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Figure 3: When ε = 10−2 and (w0,w1) = (1,2), errors are plotted for different kernels (left panel) and for
different bandwidths for the Gaussian kernel (right panel).

results. (Nakayama and Tuffin 2019 consider another more complicated model that could also be used.)
Further work is needed to determine how to choose the bandwidth δ for the convolution-kernel estimator.
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