
Proceedings of the 2022 Winter Simulation Conference
B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew, T. Roeder, and
P. Lendermann, eds.

LET’S DO RANKING & SELECTION

Barry L Nelson

Department Industrial Engineering & Management Sciences
Northwestern University

Evanston, IL 60208, USA

ABSTRACT

Many tutorials and survey papers have been written on ranking & selection because it is such a useful tool
for simulation optimization when the number of feasible solutions or “systems” is small enough that all of
them can be simulated. Cheap, ubiquitous, parallel computing has greatly increased the “all of them can be
simulated” limit. Naturally these tutorials and surveys have focused on the underlying theory of R&S and
have provided pseudocode procedures. This tutorial, by contrast, emphasizes applications, programming
and interpretation of R&S, using the R programming language for illustration. Readers (and the audience)
can download the code and follow along with the examples, but no experience with R is needed.

1 INTRODUCTION

Due to the theoretical and practical success of ranking & selection (R&S) for simulation optimization, a
number of tutorials and survey papers have documented useful procedures and the theory behind them.
These include Kim and Nelson (2006), Frazier (2012), Chen et al. (2015), Hunter and Nelson (2017)
and Hong et al. (2021). This tutorial is distinctly different in that the emphasis is on actually applying
R&S procedures to realistic (although not real) problems; it was derived from an online Masterclass of
videos, text, software and experiments that can be found at http://users.iems.northwestern.edu/∼nelsonb/
RSMasterclass.html. The software and examples for this tutorial may be downloaded from http://users.iems.
northwestern.edu/∼nelsonb/WSC2022Tutorial.html. All code is written in R, and is most easily executed
from within RStudio (https://www.rstudio.com/), although Base R (https://www.r-project.org/) will suffice.
To follow along the reader should download the three RScript files Simulations.R, Procedures.R
and ParallelProcedures.R, open them in R or RStudio, and source them into the active window.
However, the tutorial is both useful and understandable even if you do not use R.

This tutorial will only attack the “best mean” problem: selecting which of k systems has the largest (or
near the largest) mean or expected value of performance with some statistical guarantee. We let Yj(x) be
an output from the jth independent and identically distributed (i.i.d.) replication of system x = 1,2, . . . ,k
with mean µ(x) = E[Yj(x)] and variance σ2(x) = Var[Yj(x)]. Larger µ(x) is considered better. We let x?

be the index of the best system (there are no ties in the examples), and x̂? the index of the system selected
by the R&S procedure if it selects only one. Many R&S procedures assume that the outputs are normally
distributed. Some procedures are fixed precision, which means they terminate when some prespecified
statistical guarantee is achieved, while others are fixed budget, which means they expend a computational
budget so as to attain as strong an inference as possible. All of the R&S procedures considered here treat
the systems as categorical, so x is just an index and not some location in decision space.

The tutorial will employ five simulation models having different characteristics that are described in
Section 2. In the sections that follow we walk the reader through several examples, including procedures
that exploit parallel computing. Real-world applications may be found in WSC Proceedings since 1983.

978-1-6654-7661-4/22/$31.00 ©2022 IEEE 180

http://users.iems.northwestern.edu/~nelsonb/RSMasterclass.html
http://users.iems.northwestern.edu/~nelsonb/RSMasterclass.html
http://users.iems.northwestern.edu/~nelsonb/WSC2022Tutorial.html
http://users.iems.northwestern.edu/~nelsonb/WSC2022Tutorial.html
https://www.rstudio.com/
https://www.r-project.org/

Nelson

2 THE MODELS

Five simulation models are employed in this tutorial to illustrate R&S. All of the R&S procedures are
coded for maximization, so in some cases the simulation output is the negative of the natural response.

1. TTF: Y (x) is the time to failure for k = 4 system designs that use redundancy to make the system
resistant to failure. The output is highly variable and simulation execution is slow.

2. Normal: Y (x)∼ N(µ(x),σ2), where there are k = 11 different values of µ(x), {0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, so x? = 11, and σ = 2. This model satisfies the assumptions of
any R&S procedure we try.

3. Invt: Y (x) is−(cost of the inventory policy) for an (s,S) system. There are k = 1600 combinations
of reorder point s and order-up-to level S that attempt to balance ordering, holding and lost sales
costs. In this example there are many systems with similar performance.

4. SAN: Y (x) is−(time to complete a stochastic activity network). The k = 5 systems allocate resources
to one of the activities A1,A2, . . . ,A5 to reduce the time to complete project. Specifically, the output
is Y (x) = −max{A1(x)+A4(x),A1(x)+A3(x)+A5(x),A2(x)+A5(x)}, where the distributions of
the activity times depend on x.

5. MM1: Y (x) is −(long-run average cost of waiting + cost of service) for an M/M/1 queue. There
are k = 100 different service rates that cost more for faster service. This is the second slowest
simulation, with low variance of output, but many close competitors.

All of the R&S procedures in the following sections take as an argument MySim which is the name
of the model to simulate, for example Invt. The simulation models themselves have arguments (type,
x, n, RandomSeed), where x defaults to system 1, n defaults to 1 replication, and RandomSeed
defaults to the background random number seed in R. The argument type determines whether the function
returns simulation results or the number of systems in this example. For instance, Invt("sim", 3,
10) generates 10 replications of system 3 for the Invt example using the background R seed, while
Invt("k") returns the number of systems, which is 1600. See Simulations.R for the code.

3 PROGRAMMING R&S

Most R&S procedures for the best mean problem either track sample means, say Ȳ (x) = ∑
n
j=1Yj(x)/n,

or sums of pairwise differences, say ∑
n
j=1(Yj(x)−Yj(x′)), so the R functions mean and sum appear in

the code. Sample variances S2(x) are often needed and computed using var. In the gCEI procedure of
Section 5, the sample means and variances are updated frequently so a well-known update formula is used.
Within the procedures we make use of the R function c to concatenate data, and cbind to bind vectors
of data into columns of a matrix

Many R&S procedures depend on critical values that can be expressed as the solution to numerical
root-finding problems. In the past great effort was expended to create tables of such values. However,
these critical values are very often quantiles of some complicated random variable that can nevertheless be
simulated easily. Thus, a more modern view is to treat finding these critical values as a quantile-estimation
problem, one that can often be solved in real time as we do in the next section.

Our R&S procedures return more than just the selected system, for instance how many replications
were obtained from each system and a point estimate of µ(x). To that end we use the list function of R
to concatenate all returned information which can be referenced using the result$component syntax.

Finally, the R&S procedures are coded for clarity rather than maximum efficiency. In particular, in
some functions certain loops could be avoided.

181

Nelson

Rinott <- function(alpha, n0, delta, MySim){
implements Rinott’s procedure
k = number of systems
1-alpha = desired PCS
n0 = first-stage sample size
delta = indifference-zone parameter
note: uses 99% UCB for Rinott’s h
k <- MySim("k")
h <- Rinotth(k, n0, 1-alpha, 0.99, 10000)$UCB
Ybar <- NULL
Vars <- NULL
Ns <- NULL

loop through the k systems
for (x in 1:k){

Y <- MySim("sim", x, n0)
S2 <- var(Y)
N <- ceiling(hˆ2*S2/deltaˆ2)
if (N > n0){
Y <- c(Y, MySim("sim", x, N-n0))

}
Ybar <- c(Ybar, mean(Y))
Vars <- c(Vars, S2)
N <- max(N, n0)
Ns <- c(Ns, N)}
list(Best = which.max(Ybar),

Ybar = Ybar, Var = Vars, N = Ns)}

Figure 1: Rinott with the call to estimate its critical value highlighted.

4 A BASIC TWO-STAGE PROCEDURE

Among the many fixed-precision procedures available, perhaps the easiest to implement is Rinott (1978).
Rinott’s procedure provides two guarantees when the outputs are normally distributed and systems are
simulated independently:

Probability of Correct Selection (PCS): Pr{x̂? = x?|µ(x?)−µ(x)≥ δ ,∀x 6= x?} ≥ 1−α

Probability of Good Selection (PGS): Pr{µ(x?)−µ(x̂?)< δ} ≥ 1−α

where α is the allowable error and δ is the allowable optimality gap. The PGS guarantee was established
by Matejcik and Nelson (1995). PCS and PGS are standard objectives for fixed-precision procedures; see
Eckman and Henderson (2018) for a broad discussion of the connections between PCS and PGS.

Rinott’s procedure obtains a first-stage sample of n0 replications from each system, calculates sample
variances, and then computes how many additional replications are needed from each system before selecting
the one with the largest sample mean; see Figure 1. The second-stage sample size is based on a power
calculation for detecting differences of at least δ , a calculation that can be done for each system separately,
without reference to the results from other systems. This makes Rinott easy to parallelize, but also
inefficient because it learns nothing from the results of the first stage, other than the sample variances.
Rinott’s procedure is based on a very pessimistic scenario: µ(x?)−µ(x) = δ , ∀x 6= x?. To try Rinott on
the TTF problem, execute the statements below, but select your own seed.
set.seed(211256)
result <- Rinott(0.05, 50, 1000, TTF)
result
$Best
[1] 2
$Ybar
[1] 9410.758 9754.664 8356.336 9119.266
$Var
[1] 82758221 63909810 78679034 127332540
$N
[1] 809 625 769 1244

With the seed shown above we obtain x̂? = 2 when 1−α = 0.95 and δ = 1000; the number of replications
per system ranges from 625 to 1244. One way to state the conclusion is “with 95% confidence, the true
mean time to failure of system 2 is no more than 1000 time units from that of the true best system (PGS),
and if the best and second-best differ by 1000 or more time units then with 95% confidence system 2
is the unique best (PCS).” Looking at the sample means, δ = 1000 time units is quite generous; it was

182

Nelson

gcei <- function(n0, Nmax, MySim){
Algorithm that simulates system
with most negative gCEI or sum of gCEI
k = number of systems
n0 = reps for initial variance estimate
Nmax = max replications before termination
k <- MySim("k")
Ybar <- rep(0, k) # vector of sample means
Sum2 <- rep(0, k) # vector of sums of squares
N <- rep(0, k) # vector of sample sizes
Y <- rep(0, k)
gCEI <- rep(0, k)
xpath <- NULL
Ypath <- NULL
get n0 reps from each system
for (i in 1:k){
for (j in 1:n0){
Y[j] <- MySim("sim", i)

}
Ybar[i] <- mean(Y)
Sum2[i] <- (n0-1)*var(Y)
N[i] <- n0

}
x <- which.max(Ybar)

start sequential allocation
while(sum(N) < Nmax){
xstar <- which.max(Ybar) # current best
xpath <- c(xpath, x)
Ypath <- c(Ypath, Ybar[xstar])

Npath <- c(Npath, sum(N))
calculate scaled gCEIs
S2 <- Sum2/(N - 1)/N
for (i in 1:k){

v <- sqrt(S2[xstar] + S2[i])
gCEI[i] <- -(1/(2*v))*

dnorm((Ybar[i] - Ybar[xstar])/v)
}
gCEI[xstar] <- 0
x <- which.min((S2/N)*gCEI)
if ((S2[xstar]/N[xstar])*sum(gCEI) <=

(S2[x]/N[x])*gCEI[x]){x <- xstar}
simulate x and update statistics

Yx <- MySim("sim", x)
difference <- Yx - Ybar[x]
Ybar[x] <- Ybar[x] + difference/(N[x]+1)
Sum2[x] <- Sum2[x] + difference*(Yx - Ybar[x])
N[x] <- N[x] + 1

}
list(xstar = xstar, xpath = xpath,

Ypath = Ypath, N = N, Ybar = Ybar)}

Figure 2: gCEI procedure, with the code to compute the gradient of CEI and choose the next system to
simulate highlighted.

chosen so that this illustration would not take too long to execute. The smaller δ is or the larger the
sample variances are, the more replications are required to select the best system because the number of
replications is proportional to S2(x)/δ 2.

We call Rinott’s critical value h here. In the example it is the 0.95 quantile of a random variable we
can simulate, so we use an upper confidence bound on h to be conservative. The code for Rinotth is
included in Procedures.R.

5 OPTIMAL ALLOCATION OF A FIXED BUDGET

At the other end of the coordination spectrum from Rinott’s procedure are Bayesian or Bayesian-inspired
procedures that attempt to sequentially allocate each individual replication of a fixed budget of replications
as effectively as possible, perhaps even optimally based on some objective. See Chen and Lee (2011),
Frazier (2012) and Chen et al. (2015) for overviews.

Recently Chen and Ryzhov (2019) established an important connection between some Bayesian R&S
procedures and the static rate-optimal allocation of Glynn and Juneja (2004), where “rate optimal” means
that this allocation drives the (frequentist) probability of incorrect selection to 0 at the fastest possible rate.
Figure 2 displays one of these procedures, gCEI (Avci et al. 2021).

After expending an initial n0 replications on each system, gCEI allocates one replication at a time until
a replication budget Nmax is exhausted. After each replication the posterior distribution of the system means
is updated, the gradient of complete expected improvement (CEI) is computed, and the next replication is
allocated to the system that the gradient indicates will decrease CEI the most. CEI is a Bayesian acquisition
function due to Salemi et al. (2019) that computes the expected positive gain of each system over the
current sample best system, with respect to the posterior distribution of both.

183

Nelson

0 100 200 300 400

1
2

3
4

5

replication

x

Figure 3: Plot of sequential replication allocation of gCEI for the SAN problem.

To try gCEI on the SAN problem with a budget of 500 replications, execute the statements below, but
select your own seed.
set.seed(12211956)
result <- gcei(20, 500, SAN)
plot(result$xpath, xlab="replication", ylab="x")
result$xstar
[1] 4
result$N
[1] 63 20 91 190 136

Notice that system 4 is selected, implying it has the largest sample mean after expending a total of 500
replications. The plot (Figure 3) shows how gCEI allocates replications to systems after the initial 20
replicatons for each. System 4 received the most replications (190) which is often the case in the rate-optimal
allocation. No confidence statement is associated with this result, but given a limited budget, gCEI and
similar procedures are highly effective in minimizing selection error.

6 ELIMINATING PROCEDURES

Particularly when the number of systems is large, it often makes sense to try to eliminate clearly inferior
systems from further simulation as soon as possible. There are two basic strategies:

Subset & select: Get a small number of replications from all systems, select a subset Ŝ⊆{1,2, . . . ,k}
that is as small as possible but still contains the best with high probability, then apply an efficient R&S
procedure to the remainder. This usually requires splitting the allowable α error between subset and
selection: Pr{x? ∈ Ŝ} ≥ 1−α/2. Of course, subset selection is useful by itself as a screening tool.

Continuous screening: Iteratively replicate, eliminate, replicate, eliminate and so on until one
system remains. Such procedures usually exploit pairwise comparisons and control overall error via (say)
the Bonferroni inequality. They also need to account for taking “multiple looks” at the simulation output.

The subset selection procedure of Nelson et al. (2001) is shown in Figure 4. This procedure takes an
equal number of replications from each system and returns a subset that is guaranteed to contain x? with
probability ≥ 1−α when outputs are normally distributed and systems are simulated independently. To
try Subset on the MM1 problem with two different sample sizes execute the statements below, but select
your own seed.

184

Nelson

Subset <- function(alpha, n, MySim){
function to do subset selection
k = number of systems
n = number of replications (equal)
1-alpha = confidence level
simulate:
k <- MySim("k")
Yall <- NULL
for (x in 1:k){
Yall <- cbind(Yall, MySim("sim", x, n))

}

subset selection
Ybar <- apply(Yall, 2, mean)
S2 <- apply(Yall, 2, var)/n
tval <- qt((1-alpha)ˆ(1/(k-1)), df = n-1)
Subset <- 1:k
for (i in 1:k){
for (j in 1:k){
if (Ybar[i] < (Ybar[j]-

tval*sqrt(S2[i] + S2[j]))){
Subset[i] <- 0
break}}}

list(Subset = Subset[Subset != 0],
Ybar = Ybar, S2 = S2)}

Figure 4: Subset with the elimination step highlighted.

set.seed(12211956)
result10 <- Subset(0.05, 10, MM1)
result10$Subset
[1] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
set.seed(12211956)
result100 <- Subset(0.05, 100, MM1)
result100$Subset
[1] 27 28 29 30 31 32 33

The correct statement for the 100 replication case is “with 95% confidence the system with the minimum
expected cost is one of {27,28,29,30,31,32,33}.” Of course these indices x correspond to a particular
service rate, which in this example is 1+ x/5 customers/time. Not suprisingly, the subset size tends to
be smaller when the number of replications is larger; in the best case it contains one system that can be
declared to be the best with 1−α confidence. However, sequentially increasing the number of replications
for Subset until one system remains does not control the overall error and should be avoided. Nelson
et al. (2001) suggest passing the subset to Rinott’s procedure to make the final selection.

Fully sequential simulation and elimination requires a different type of statistical architecture, but
algorithmically it is very simular to subset selection. To illustrate we present Paulson’s procedure (Paulson
1964), which assumes independent simulations, normally distributed output, and equal variances. However,
Procedures.R also containsKN (Kim and Nelson 2001) which allows unequal variances and is statistically
more efficient than Paulson.

Paulson requires as input an initial sample size from each system n0 to estimate variances, and a
smallest practically significant difference δ as in Rinott. To try Paulson on the Normal problem
execute the statements below, but select your own seed.
set.seed(12211956)
result <- Paulson(0.05, 10, 0.1, Normal)
result
$Best
[1] 11
$n
[1] 2035
$Elim
[1] 422 465 607 517 554 817 903 968 1741 2035 0

Recall that in this problem we know that x? = 11, and that the true means are spaced 0.1 apart; thus, the
best and second-best are separated by exactly δ . The $Elim result shows the number of iterations at
which each inferior system was eliminated (0 if not eliminated), which follows how close they are to being

185

Nelson

Paulson <- function(alpha, n0, delta, MySim){
function for Paulson with lambda = delta/2
k = number of systems
n0 = first-stage sample size
1-alpha = desired PCS
delta = indifference-zone parameter
k <- MySim("k")
II <- 1:k
Active <- rep(TRUE, k)
Elim <- rep(0, k)
get n0 from each system and
compute pooled variance
Yn0 <- matrix(0, nrow=k, ncol=n0)
for (i in 1:k){
for (j in 1:n0){
Yn0[i,j] <- MySim("sim", i)}}

S2 <- mean(apply(Yn0,1,var))

start sequential
a <- eta(alpha, k, n0)*k*(n0-1)*S2/delta
Ysum <- apply(Yn0, 1, sum)
r <- n0
main elimination loop
while(sum(Active)> 1){
r <- r + 1
ATemp <- Active
for(i in II[Active]){
Ysum[i] <- Ysum[i] + MySim("sim", i)}

for(l in II[Active])
if((Ysum[l] - max(Ysum[Active]))

< min(0, -a+delta*r/2)){
ATemp[l] <- FALSE
Elim[l] <- r}

Active <- ATemp}
list(Best = II[Active], n = r, Elim=Elim)}

Figure 5: Paulson fully sequential procedure with the elimination step highlighted.

the best. Paulson does not have a proven PGS guarantee, only PCS; therefore, the correct statement is
“with 95% confidence system 11 is the best, provided it is at least 0.1 units better than the second-best”
(which it is in this case). A variation of Paulson by Zhong and Hong (2018) does guarantee PGS.

7 COMMON RANDOM NUMBERS

R&S procedures that employ pairwise comparisons can often be “sharpened” by using common random
numbers (CRN) because

Var(Y (x)−Y (x′)) = Var(Y (x))+Var(Y (x′))−2Cov(Y (x),Y (x′)).

CRN tends to make Cov(Y (x),Y (x′)) > 0, reducing the variance of the difference. For instance, in the
Invt simulation the demand does not depend on the system (choice of (s,S)). Therefore, CRN implies
that each system sees exactly the same sequence of demands, and therefore reacts similarly to it (positive
correlation). However, R&S procedures employing CRN usually require equal sample sizes across all
systems to insure a favorable effect.

We illustrate the impact of CRN by altering Subset to exploit it; see Figure 6. The basis of Subset
is all pairwise differences. SubsetCRN takes a random number seed as input, obtains all n replications
of each system x as a batch, and starts the simulation of each batch with that same seed; see the blue
highlight. Notice that in R it is faster to compute the variance-covariance matrix of the outputs than to
compute variances of all pairwise differences; see the red highlight.

To try SubsetCRN on the MM1 problem with sample size 10, execute the statements below, but select
your own seed. Notice that the size of the subset drops from 16 systems to 3 relative to the previous
application of Subset to independently simulated systems. We display the upper-left portion of the
estimated correlation matrix among systems to show the strong positive correlation induced by CRN.
resultCRN <- SubsetCRN(0.05, 10, 12211956, MM1)
resultCRN$Subset
[1] 29 30 31
resultCRN$corr[1:3, 1:3]

[,1] [,2] [,3]
[1,] 1.0000000 0.8503456 0.8524638
[2,] 0.8503456 1.0000000 0.9653994
[3,] 0.8524638 0.9653994 1.0000000

186

Nelson

SubsetCRN <- function(alpha, n, seed, MySim){
function to do subset selection with CRN
k = number of systems
n = number of replications (equal)
1-alpha = confidence level
seed = random number seed
simulate:
k <- MySim("k")
Yall <- NULL
for (x in 1:k){
Yall <- cbind(Yall, MySim("sim", x, n, seed))

}

subset selection
Ybar <- apply(Yall, 2, mean)
S2 <- cov(Yall)/n
tval <- qt(1-alpha/(k-1), df = n-1)
Subset <- 1:k
for (i in 1:k){
for (j in 1:k){
if (Ybar[i] < (Ybar[j]-tval*
sqrt(S2[i,i] + S2[j,j] - 2*S2[i,j]))){
Subset[i] <- 0
break}}}

list(Subset = Subset[Subset != 0],
Ybar = Ybar, S2 = S2, corr=cor(Yall))}

Figure 6: SubsetCRN with simulation of each system using CRN highlighted in blue and use of the
variance of the difference highlighted in red.

bootRS <- function(alpha, n0, delta, B, dn, MySim){
procedure to implement bootstrap R&S
k = number of systems
n0 = first-stage sample size
1-alpha = desired PCS
delta = indifference-zone parameter
B = number of bootstrap samples to estimate PGS
dn = increment to increase n0
k <- MySim("k")
PGS <- 0
Yall <- NULL
for (x in 1:k){
Yall <- cbind(Yall, MySim("sim", x, n0))

}
increment n0 until bootstrap PGS >= 1 - alpha
while(TRUE){
bsum <- 0
Ybar <- apply(Yall, 2, mean)
xstar <- which.max(Ybar)

for (i in 1:B){
Ybarstar <-
apply(apply(Yall, 2, sample, replace=TRUE),

2, mean)
diffs <- Ybarstar - Ybarstar[xstar] -

(Ybar - Ybar[xstar])
bsum <- bsum + prod(as.numeric(diffs <= delta))}

PGS <- bsum/B
print(c("N=", n0, "PGS =",PGS))
if (PGS < 1 - alpha){
Ytemp <- NULL
for (x in 1:k){
Ytemp <- cbind(Ytemp, MySim("sim", x, dn))}

Yall <- rbind(Yall, Ytemp)
n0 <- n0 + dn}

else{break}}
list(Best = xstar, PGS=PGS, N = n0)}

Figure 7: bootRS for expected value with bootstrapping step highlighted.

For subset selection, sharper comparisons means a smaller subset with the same number of replica-
tions. For procedures like Paulson or KN it means reaching a selection with fewer overall replications.
Procedures.R contains a version of KN that exploits CRN.

8 BOOTSTRAP R&S

All of the R&S procedures presented to this point assumed the performance measure was the mean of
normally distributed output data. The Holy Grail for R&S is a procedure that works for virtually any
performance measure (mean, probability, quantile) and data type (normal, non-normal). Two insights make
this possible: If we can construct estimators θ̂(x) of (generic) parameters θ(x) such that

Pr
{

θ̂(x)− θ̂(x?)− (θ(x)−θ(x?))≤ δ , ∀x 6= x?
}
≥ 1−α (1)

then PGS = Pr{θ(x?)−θ(x̂?)≤ δ} ≥ 1−α holds, where x̂? = argmaxxθ̂(x). Further, given replications of
output data from each system, we can estimate the probability in (1) using bootstrapping, and then increase
the number of replications until it is ≥ 1−α . More specifically, bootstrapping estimates the probabililty
that the current sample best system x̂? satisfies (1); see Lee and Nelson (2016). The procedure bootRS
in Figure 7 implements this approach for selecting the system with the largest expected value.

187

Nelson

To try bootRS on the TTF problem with δ = 1000 execute the statements below, but select your own
seed. Notice that n0 is rather large at 50; bootRS needs a large initial number of replications to avoid
early stopping. Here B is the number of bootstrap samples to estimate PGS (200), and dn is the increment
of additional replications to add if the desired PGS has not been achieved (100). A very small increment
is not advised as bootstrapping itself takes time, and also to avoid premature stopping. As it executes
bootRS displays the estimated PGS to show progress.
set.seed(12211956)
resultBoot <- bootRS(0.05, 50, 1000, 200, 100, TTF)
[1] "N=" "50" "PGS =" "0.5"
[1] "N=" "150" "PGS =" "0.695"
[1] "N=" "250" "PGS =" "0.765"
[1] "N=" "350" "PGS =" "0.78"
[1] "N=" "450" "PGS =" "0.855"
[1] "N=" "550" "PGS =" "0.915"
[1] "N=" "650" "PGS =" "0.955"
resultBoot$Best
[1] 2

Notice that the total sample size of 4× 650 is comparable to our previous application of Rinott, but
Rinott assumed normally distributed output while bootRS does not.

9 PARALLEL R&S

Parallel computing is an enormous asset for R&S. See Hunter and Nelson (2017) for an overview, and Ni
et al. (2017), Luo et al. (2015), Pei et al. (2020), Pei et al. (2022) and Zhong and Hong (2022) for recent
algorithms. Here we consider the simplest version of parallelization that can be done easily on a personal
computer with multiple cores and threads. For this purpose we will use the doParallel library for R;
the key commands are listed below.
Packages needed for parallel computation
library(doParallel)
library(foreach) #<-- should be installed by doParallel
library(parallel) #<-- should be installed by doParallel
Useful commands
detectCores() #<-- number of available workers
cl <- makeCluster(4) #<-- make a cluster of 4 workers
registerDoParallel(cl) #<-- register the cluster
ptime <- system.time({ CODE HERE })[3] #<-- a wrapper for timing code
getDoParWorkers() #<-- verify number of parallel workers doParallel will use
stopCluster(cl) #<-- obvious

After loading the doParallel library, execute detectCores() to find out how large a parallel
worker cluster you can recruit on your machine, and then make and register the cluster with something
less than all of them.

Parallel R&S introduces new statistical and computational issues; we focus on the computational ones
here and recommend Hunter and Nelson (2017) and Luo et al. (2015) for discussions of the statistical
issues. Hunter and Nelson (2017) view a R&S procedure as a collection of “jobs” that must be executed
by a worker. A job may consist of (a) a list of systems to simulate, how many replications to obtain and
what random numbers to use for each; (b) a list of non-simulation calculations and the other jobs that must
complete before these calculations can be undertaken; or (c) both simulations and calculations. Simulation
and calculation jobs may be completed in parallel, but calculation jobs must wait for the other required
jobs to complete, and it is this coupling that slows down parallel R&S procedures.

188

Nelson

We will test a simple example, SubsetParallel, which parallelizes the simulations of each system
in SubsetCRN. Recall that SubsetCRN obtains n replications from each system using CRN, then does
pairwise comparisons. Thus, it can be viewed as k simulation jobs followed by one calculation job that
depends on all of the simulation results being completed. Specifically, SubsetCRN employs the following
loop to execute the k simulation jobs and to build an n×k matrix Yall in which each column corresponds
to a system:
for (x in 1:k){
Yall <- cbind(Yall, MySim("sim", x, n, seed))
}

SubsetParallel replaces this serial loop with a parallelized loop that builds, say, 6 columns of
replications at a time if the number of workers in the cluster is 6:
Yall <- foreach(x=1:k, .combine=cbind) %dopar% {MySim("sim", x, n, seed)}

To try SubsetParallel and compare it to SubsetCRN for the Invt example, execute the statements
below (your cluster may be larger or smaller depending on detectCores()). The [3] element returned
by system.time is the wall-clock time consumed in seconds; notice that the parallel version is about
50% faster on this 1600 system problem.
cl <- makeCluster(6)
registerDoParallel(cl)
ptimeSC <- system.time({resultSC <- SubsetCRN(0.05, 100, 12211956, Invt)})[3]
ptimeSP <- system.time({resultSP <- SubsetParallel(0.05, 100, 12211956, Invt)})[3]
ptimeSC

elapsed
8.17

ptimeSP
elapsed
3.97

Timings are not perfectly repeatable, even with the same code, due to dependence on what else is happening
on your computer. However, if you check resultSC$Subset and resultSP$Subset you will see
they are identical; SubsetParallel is simply SubsetCRN with parallel simulations.

Parallelizing R&S procedures can be tricky: unexpected behavior can occur, and the particular com-
puter architecture and operating system matters. As a very high-level statement, the savings from doing
simulations and computations in parallel has to overcome any computing overhead (e.g., message passing)
and coordination bottlenecks (e.g., idling workers while waiting for computations to complete). Pei et al.
(2020) discuss these issues in a message passing environment by comparing parallel subset selection, GSP
(Ni et al. 2017) and bi-PASS (described below).

Bisection Parallel Adaptive Survivor Selection (bi-PASS) is a state-of-the-art parallel R&S algorithm
created for problems with thousands to millions of systems. bi-PASS eliminates sytems by comparing them
to an estimate of the mean of the best system that is learned collectively, avoiding pairwise comparisons,
and it controls the expected false elimination rate (EFER) for systems as good as the best. bi-PASS can be
executed as a fixed-budget procedure, as we do here, in which case it typically returns a subset of systems.

Two versions of bi-PASS are included in Procedures.R: bipassSlow which has no parallel
simulations, and bipassFast which does (see Figure 8). The only problems for which bi-PASS makes
any sense are Invt (1600 systems) and MM1 (100 systems), although neither is large enough to get the
full benefit. bi-PASS has solved million system problems in as little as 12 minutes. One would expect the
most benefit on the large Invt problem, but in fact a greater speed up is obtained for MM1. Why? For
Invt the simulations are very fast, and thus the computational overhead of parallelizing the simulations
is more than what is saved. For MM1, on the other hand, the simulations are much slower so there is a
benefit of executing batches of them in parallel.

189

Nelson

bipassFast <- function(c, n0, dn, Nmax, MySim){
synchronized biPASS with pooled variance
k = number of systems
c = constant needed to guarantee EFER
n0 = first-stage sample size
dn = batch size per run
Nmax = maximum number of replications
MySim <- MySim # make the simulation local
k <- MySim("k")
g <- function(t, calpha=c)

{sqrt((calpha + log(t+1))*(t+1))}
II <- 1:k
Active <- rep(TRUE, k) # systems not eliminated
Elim <- rep(0, k) # rep when elimination occurs
get n0 reps and compute pooled variance
Yn0 <- foreach(i=1:k, .combine=rbind)
%dopar% {MySim("sim", i, n0)}
S2 <- mean(apply(Yn0,1,var))

start sequential elimination
Ysum <- apply(Yn0, 1, sum)
r <- n0
N <- n0*k
main elimination loop
while(sum(Active) > 1 && N < Nmax){
r <- r + dn
N <- N + dn*sum(Active)
Ynew <- foreach(i=II[Active], .combine=rbind)
%dopar% {MySim("sim", i, dn)}
Ysum[Active] <- Ysum[Active] +

apply(Ynew, 1, sum)
rmuhat <- sum(Ysum[Active])/sum(Active)
for(l in II[Active]){
if(Ysum[l] - rmuhat <= -g(r/S2)*S2){
Active[l] <- FALSE
Elim[l] <- r}}

}
list(Best = II[Active], n = r, Elim=Elim,

Means = Ysum[Active]/r)}

Figure 8: bi-PASS with parallelized portions highlighted in blue. The estimated mean of the best system,
times the current number of replications, is rmuhat.

To try bi-PASS on MM1 execute the commands below. Notice that the critical value c for bi-PASS
does not depend on the number of systems being compared, only the first-stage sample size n0 because
bi-PASS controls the EFER, not PCS or PGS. Parallized bi-PASS is roughly 50% faster here. Next try the
same experiment on Invt.
cl <- makeCluster(6)
registerDoParallel(cl)
set.seed(12211956)
ptimeBS <- system.time({resultBS <- bipassSlow(5, 10, 20, 15000, MM1)})[3]
set.seed(12211956)
ptimeBF <- system.time({resultBF <- bipassFast(5, 10, 20, 15000, MM1)})[3]
ptimeBS
elapsed

53.39
ptimeBF
elapsed

25.36

ACKNOWLEDGEMENTS

This work was partially supported by National Science Foundation Grant No. DMS-1854562.

REFERENCES
Avci, H., B. L. Nelson, and A. Wächter. 2021. “Getting to “Rate-Optimal” in Ranking & Selection”. In Proceedings of the

2021 Winter Simulation Conference, edited by S. Kim, B. Feng, K. Smith, S. Masoud, Z. Zheng, C. Szabo, and M. Loper.
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Chen, C.-H., S. E. Chick, L. H. Lee, and N. A. Pujowidianto. 2015. “Ranking and Selection: Efficient Simulation Budget
Allocation”. In Handbook of Simulation Optimization, edited by M. Fu, 45–80. New York: Springer.

Chen, C.-H., and L. H. Lee. 2011. Stochastic Simulation Optimization: An Optimal Computing Budget Allocation. Singapore:
World Scientific.

Chen, Y., and I. O. Ryzhov. 2019. “Complete Expected Improvement Converges to an Optimal Budget Allocation”. Advances
in Applied Probability 51(1):209–235.

190

Nelson

Eckman, D. J., and S. G. Henderson. 2018. “Guarantees on the Probability of Good Selection”. In Proceedings of the 2018
Winter Simulation Conference, edited by M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson,
351–365. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Frazier, P. 2012. “Tutorial: Optimization via Simulation with Bayesian Statistics and Dynamic Programming”. In Proceedings
of the 2012 Winter Simulation Conference, edited by C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M.
Uhrmacher, 79–94. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Glynn, P., and S. Juneja. 2004. “A Large Deviations Perspective on Ordinal Optimization”. In Proceedings of the 2004 Winter
Simulation Conference, edited by R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, 577–585. Piscataway, New
Jersey: Institute of Electrical and Electronics Engineers, Inc.

Hong, L. J., W. Fan, and J. Luo. 2021. “Review on Ranking and Selection: A New Perspective”. Frontiers of Engineering
Management 8(3):321–343.

Hunter, S. R., and B. L. Nelson. 2017. “Parallel Ranking and Selection”. In Advances in Modeling and Simulation, edited by
A. Tolk, J. Fowler, G. Shao, and E. Yücesan, 249–275. New York: Springer.

Kim, S.-H., and B. L. Nelson. 2001. “A Fully Sequential Procedure for Indifference-zone Selection in Simulation”. ACM
Transactions on Modeling and Computer Simulation (TOMACS) 11(3):251–273.

Kim, S.-H., and B. L. Nelson. 2006. “Selecting the Best System”. In Handbooks in Operations Research and Management
Science, edited by S. G. Henderson and B. L. Nelson, Volume 13, 501–534. New York: Elsevier.

Lee, S., and B. L. Nelson. 2016. “General-purpose Ranking and Selection for Computer Simulation”. IIE Transactions 48(6):555–
564.

Luo, J., L. J. Hong, B. L. Nelson, and Y. Wu. 2015. “Fully Sequential Procedures for Large-scale Ranking-and-Selection
Problems in Parallel Computing Environments”. Operations Research 63(5):1177–1194.

Matejcik, F. J., and B. L. Nelson. 1995. “Two-stage Multiple Comparisons with the Best for Computer Simulation”. Operations
Research 43(4):633–640.

Nelson, B. L., J. Swann, D. Goldsman, and W. Song. 2001. “Simple Procedures for Selecting the Best Simulated System when
the Number of Alternatives is Large”. Operations Research 49(6):950–963.

Ni, E. C., D. F. Ciocan, S. G. Henderson, and S. R. Hunter. 2017. “Efficient Ranking and Selection in Parallel Computing
Environments”. Operations Research 65(3):821–836.

Paulson, E. 1964. “A Sequential Procedure for Selecting the Population with the Largest Mean from k Normal Populations”.
The Annals of Mathematical Statistics 35:174–180.

Pei, L., B. L. Nelson, and S. R. Hunter. 2020. “Evaluation of bi-PASS for Parallel Simulation Optimization”. In Proceedings of
the 2020 Winter Simulation Conference, edited by K. G. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder,
and T. R., 2960–2971. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Pei, L., B. L. Nelson, and S. R. Hunter. 2022. “Parallel Adaptive Survivor Selection”. Operations Research. Forthcoming.
Rinott, Y. 1978. “On Two-stage Selection Procedures and Related Probability-Inequalities”. Communications in Statistics -

Theory and Methods 7(8):799–811.
Salemi, P., E. Song, B. L. Nelson, and J. Staum. 2019. “Gaussian Markov Random Fields for Discrete Optimization via

Simulation: Framework and Algorithms”. Operations Research 67(1):250–266.
Zhong, Y., and L. J. Hong. 2018. “Fully Sequential Ranking and Selection Procedures with PAC Guarantee”. In Proceedings of

the 2018 Winter Simulation Conference, edited by M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson,
1898–1908. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Zhong, Y., and L. J. Hong. 2022. “Knockout-tournament Procedures for Large-scale Ranking and Selection in Parallel Computing
Environments”. Operations Research 70:432–453.

AUTHOR BIOGRAPHY
BARRY L. NELSON is the Walter P. Murphy Professor in the Department of Industrial Engineering and Management Sciences
at Northwestern University. He is a Fellow of INFORMS and IISE. His research centers on the design and analysis of computer
simulation experiments on models of stochastic systems. His e-mail address is nelsonb@northwestern.edu.

191

mailto://nelsonb@northwestern.edu

	INTRODUCTION
	THE MODELS
	PROGRAMMING R&S
	A BASIC TWO-STAGE PROCEDURE
	OPTIMAL ALLOCATION OF A FIXED BUDGET
	ELIMINATING PROCEDURES
	COMMON RANDOM NUMBERS
	BOOTSTRAP R&S
	PARALLEL R&S

