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ABSTRACT 

EMS is critical to health care industry. In this tutorial, we provide a glimpse of significant research 
achievements in EMS operations management. We focus on simulation modeling and their use in real-time 
ambulance dispatching, routing (ED selection), and redeployment/relocation decisions. We introduce 

optimization-based studies on ambulance management policies that have gained significant attention over 
the recent decade. We next describe our recent studies that optimize two emerging service models with the 
potential of revolutionizing EMS delivery, especially in areas with poor EMS access. Lastly, we describe 
prominent challenges at present, offer reflections on ongoing work, and outline future research.   

1 INTRODUCTION 

Emergency Medical Services (EMS) is a system that provides emergency medical care. Following an 

emergency call, once EMS is activated by an incidence that causes serious illness or injury, the focus of 
EMS is emergency care of the patient(s). As one of the most important health care services, EMS plays a 
vital role in saving people’s lives and reducing the rates of mortality and co-morbidity. Further, EMS 
constitutes a significant portion of healthcare expenditure and a sizeable portion of healthcare workforce, 
EMS delivery is critical to operational success and sustainability of the entire healthcare system.   
 Access to EMS has been a serious challenge, especially in resource-deprived settings. Hence, effective 

management of EMS resources (mainly ambulances) is critical to excellent EMS delivery. From the 
perspective of operations research, the central tenet is to manage the resources such that emergency requests 
as many as possible can be transported to emergency departments (EDs) within a reasonable time-window. 
Further, a peak of emergency demand can severely overcrowd EDs, which are usually less prepared in the 
aforementioned settings. Analyses (often simulation based) are to help assess the impact of EMS resource 
management decisions on patient heath and EMS outcomes. Acknowledging their importance and 

sensitivity, OR researchers have studied these decision problems since the 1960s, as reported by Aringhieri 
et al. (2017), Reuter-Oppermann et al. (2017), and Bélanger et al. (2018). In addition, simulation is often 
embedded in a stochastic optimization framework for resource management optimization. Subsequently, 
OR researchers strive for a fine balance between simulation fidelity and optimization tractability. 
Increasingly, OR researchers expand the boundary of their simulation models to analyze patient health and 
EMS outcomes more systematically, given more detailed patient and service data, and more advanced 

computational power becoming available. Recently, OR researchers have actively applied simulation to 
predict the impact of emerging service models on augmenting patient health and EMS outcomes, which are 
realized by advances in transportation and information technologies. Examples of these emerging models 
include staffing drones in the ambulance fleet of EMS agencies and broadcasting emergency requests to 
nearby community-based citizen responders.  
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 In this tutorial, we will review important models and solution approaches, not necessarily exhaustively, 
on EMS operations management. We will focus on real-time ambulance dispatching, routing, and 
redeployment/relocation decisions. In Section 2, we will provide details on a representative EMS 

simulation, and illustrate how to perform real-time ambulance management policy analyses and what to 
consider in terms of performance indices. Recently, many studies in the OR literature have embedded 
simulation to aid in the optimization of ambulance management policies. In Section 3, we will overview 
these optimization-based studies. Furthermore, technology innovation is a critical driver to the emergence 
of new service models that can augment EMS delivery and outcomes. In Sections 4 and 5, we will introduce 
two such models, following technology innovation in informatics and logistics. We will present our recent 

studies under these two emerging models. To conclude, we in Section 6 will provide reflections on several 
years of our research in this area and point out future research directions. We will focus on how simulation, 
and operations research in general, can really make a difference in real-world practice.         

2 SIMULATION FOR AMBULANCE MANAGEMENT 

To serve an emergency request, three main decisions should be addressed in a (near) online fashion, that is 
(1) which ambulance should be dispatched to serve an emergency request, (2) which ED facility should the 

patient be transported to, and (3) where to redeploy/relocate the ambulance after the service. To facilitate 
the management practice, proper real-time dispatching, routing and redeployment policies (DRRPs) are 
desired, often in such a way to maximize the number of emergency requests served within a time threshold, 
and to minimize the waiting times of patients. Comprehensive system analyses of DRRPs remain in great 
need, for which OR researchers have developed a variety of useful simulation models.   
 Aboueljinane et al. (2013) present a review of the simulation models in this area, many of which take 

a Discrete Event Simulation approach. First and foremost, they are able to replicate the dynamics of EMS 
operations (Figure 1). An emergency request enters an EMS agency when a citizen witness calls to report 
an emergency case for himself or for a third person. Dispatchers at the EMS operation center are in charge 
of answering the calls and assigning a color code to each request, based on the preliminary assessment on 
the severity of injury over the call. After the initial assessment (i.e. initial triage), the operator dispatches 
an ambulance following a given dispatching policy. Upon ambulance crew (paramedics, emergency 

technicians) arriving at the emergency scene, they may perform field assessment (i.e., field triage) jointly 
with the dispatcher. The crew then rescues the patient and, if necessary, transports him/her to a hospital. 
Usually the ambulance crew is responsible for the patient’s care until he/she is handed to the hospital staff.  

 
 

 

 

Figure 1. Representative EMS operational process. 

2.1 Environment Generator 

An environment in this context refers to a catchment area of an EMS agency. It is typically modeled with 
a planar graph G = (N, E) with n nodes and m arcs. Each node is a centroid representing a small part of the 
whole area served by the EMS. Each arc models the connection between two nodes. There are three types 

of nodes, that is, the emergency demand nodes, the ambulance bases, and the ED facilities. There are further 
needs of manually adding or deleting nodes and arcs, and also moving nodes and, by consequence, all 
connected arcs. In addition, there are needs of further classifying the nodes as a proper way to generate the 
emergency demand. For example, for urban areas, it is also possible to characterize each node as residential, 
commercial, public utility space, and business offices. The graph G = (N, E) is an undirected and labeled 
graph. The labels on the arcs (u, v) are the distance ld among u and v, and the average speed ls on that arc. 
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One can use such labels to compute travel times and/or distances among two nodes in G. To this end, on 
can use some ad-hoc version of the classic label-setting shortest-path algorithm (e.g., Dijkstra). 

2.2 Simulation Input Specification 

2.1.1 Spatial-Temporal Profile of Emergency Demand 

As reported by many authors (e.g., Channouf et al. 2007; Setzler et al. 2009), emergency demand is not 
static, but, rather, fluctuates during a week and hour by hour in a day. A nodal demand table can be used to 
specify the relative demand fluctuation over a day with respect some normal demand at different urban 
areas (e.g., office nodes should have a higher relative demand during business hours of the day). Then 
according to the characteristics of each demand node, the model allows a negative (low) or positive (high) 

variation of some predefined (normal) demand arrival rate. Let 𝑤𝑢
𝑖  be the table entry on the demand scaler 

with respect to time interval i = 1, 2, 3, 4 (morning, afternoon, evening, night) and each node u.  

 One method to specify the generation rates of emergency demand at each node during each time interval 

is as follows. First, the model can take the total number of daily emergency requests just as an input, denoted 

by D. Then the total volume is distributed into different time intervals as D = D1 + D2 + D3 + D4, where 

these Di’s are the numbers of requests to be generated during the morning, afternoon, evening, and night 

time intervals, respectively. During each interval i, the Di requests are further distributed over all the nodes 

belonging in ND as follows. For each node 𝑢 ∈ 𝑁𝐷, denote 𝐷𝑢
𝑖  to be the number of requests that should be 

generated at u during time interval i, and define it as 𝐷𝑢
𝑖 =

𝑤𝑢
𝑖 𝐷𝑖

∑ 𝑤𝑣
𝑖

𝑣∈𝑁𝐷

, according to the characteristics of each 

nodal and its fluctuations over the day. Then the generation rate of node u is equal to 𝐷𝑢
𝑖  divided by the 

duration of time interval i. Finally, one can use the demand volume at each node to specify the total 

ambulance workload. Alternatively, one can specify the total ambulance workload first as a target 

percentage of full utilization, and in turns, specify the values of Di’s. 

2.1.2 Capacity of the ED Facilities 

The capacity of each facility located at node u can be derived from the total demand D plus the number of 
patients 𝐷′ that arrive at the ED on their own. Let 𝑇𝑆 be the average service time and 𝑛𝐸 be the number of 
ED facilities, then one can compute the minimum necessary hourly capacity of the ED located at node 𝑢 ∈
𝑁𝐸  as 𝐶𝑢 = (𝐷 + 𝐷′)𝑇𝑠/(24𝑛𝐸). The main assumption on the computation is to have patient requests 
evenly distributed among the ED facilities in such a way to have always one patient to utilize one unit of 
ED capacity as soon as it is released by another patient. Finally, given a scalar ranging in [1,2], the final 

capacity can be set in [𝐶𝑢, 2𝐶𝑢].      

2.1.3 Further Specifications 

Independent of the demand generation, one can differentiate emergency requests by their urgency levels. 
Often the urgency is codified into categories and thus the urgency code is treated as a discrete random 
variable. As a result, probability distributions of ambulance rescue duration and patient release time (length 
of stay) at ED further differ by the urgency code. Moreover, increasing evidence in the emergency medicine 

literature on patient survival has allowed such further differentiation of patients and their urgency levels. 
Consequently, we have witnessed increasing emphasis on using patient survival to evaluate EMS 
performance in the OR/MS research literature. Finally, the modeling and analysis of ambulance operations 
management is often under the assumption that ED has sufficient capacity and thus the primary ED selection 
by the EMS can always be guaranteed without ambulance diversion, i.e., the initially contacted ED can 
always take in the emergency patient. However, in real practice, ED selection can be largely affected by 
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proactive ambulance diversion, which essentially prolongs the ambulance mission time and introduces 
additional endogenous uncertainty to the rescue process.                 

2.2 Modeling and Analysis of Real-Time Policies  

The main aim with the developed simulation is to evaluate real-time policies (i.e., DRRPs) for the 

management of ambulances in terms of their impact on patient health related performance indices, such as 

ambulance transport time and rescue duration, and EMS system performance indices, such as occupancy 

of ambulances and overcrowding of ED facilities. Before introducing commonly considered DRRPs, we 

define an estimate of the number of ambulances needed at each base 𝑏 ∈ 𝑁𝐵 . We denote it to be 𝐴𝑏
𝑒 . 

Partition the entire node set N in such a way that each node u is assigned to the base closest to it. Let 𝑁𝑏 be 

the subset of demand nodes assigned to base b. We use one interval for illustration, say morning for having 

the peak demand during a day. Thus, we remove the superscript 1 (indicating the morning interval) from 

𝑤𝑢
1. Let 𝑊𝑏 be the sum of the morning weights of the nodes in 𝑁𝐵, that is 𝑊𝑏 = ∑ 𝑤𝑢𝑢∈𝑁𝑏

. Then the number 

of ambulances needed at base 𝑏 ∈ 𝑁𝐵 is estimated as 𝐴𝑏
𝑒 = 𝐴 × 𝑊𝑏/(∑ 𝑤𝑢)𝑢∈𝑁𝐷∪𝑁𝐵

.   

2.2.1 Ambulance Dispatching 

The most common dispatching policy in real settings is to assign an available ambulance from the closest 

base to the request (Cunninghame-Greene and Harries 1988). We refer to this policy, essentially static, as 

the D-Closest policy, as stated in Aringieri et al. (2018a). D stands for “Dispatching” and it applies in this 

subsection. This policy has been proven to perform, on average, uniformly better than the other dispatching 

rules by Larsen et al. (2002). Note that to ensure operational excellence by D-Closest, strategic location of 

ambulances is critical. When periodic redeployment is also considered for the ambulances, D-Closest can 

be slightly modified to improve the dispatching. See Lee (2014) for the centrality-based dispatching policy.      

 Alternatively, one can select to dispatch an ambulance from a list of sufficiently close bases, i.e., those 

close enough to reach the request within some time threshold. We refer to this policy as D-LSCB. Let 𝐿𝐵 

be such a list of sufficiently close bases. Then the D-LSCB policy selects a base from which to dispatch an 

ambulance as argmax𝑏∈𝐿𝐵:𝐴𝑏
𝑎>0{𝐴𝑏

𝑎 − 𝐴𝑏
𝑒 }, where 𝐴𝑏

𝑎  is the number of ambulances available in 𝑏 at the 

moment of the decision. D-LSCB is similar to those reported in Bandara et al. (2014), Haghani et al. (2004). 

 Two possible extensions of the two policies introduced above are the cutoff priority queue (D-CPQ) 

and the smart assignment (D-SA) policies when patient request urgency is differentiated. The D-CPQ 

involves temporarily suspending all emergency requests of lower urgency when available ambulances are 

fewer than a given threshold. The rationale here is that it is more desirable to ration the use of ambulances, 

i.e., freeing up potential ambulance resource to deal with the peaking emergency demand of higher urgency. 

Both D-CPQ and D-SA are introduced and discussed by Aringhieri et al. (2016), while D-CPQ is also 

analyzed by Yoon and Albert (2017). The D-SA involves dispatching not only ambulances at a base but 

even those who are under redeployment, i.e., moving from an ED to an ambulance base.  

 When D-SA is active, D-LSCB can be slightly modified accordingly. First, one can consider an 

additional list of destination bases, denoted by 𝐿𝑅
𝐴𝐷, of the redeploying ambulances that are capable to reach 

the request within the time threshold. Then the D-LSCB policy selects a base from which to dispatch an 

ambulance as argmax𝑏∈𝐿𝐵∪𝐿𝑅
𝐴𝐷:𝐴𝑏

𝑎>0{𝐴𝑏
𝑎 − 𝐴𝑏

𝑒 } . That is, if the selected base 𝑏 ∈ 𝐿𝐵 , an ambulance is 

dispatched from the base; on the contrary, if 𝑏 ∈ 𝐿𝑅, an ambulance during redeployment is dispatched. 

Further, if the selected ambulance 𝑏 ∈ 𝐿𝑅  also belongs to 𝐿𝐵 , the closest ambulance either under 

redeployment or available on base is dispatched. In real settings, this means to have some sort of tracking 

system on real-time ambulance locations. Note that in recent years, this sort of tracking system can be 

implemented on citizen responders in communities. This has given a vast additional dimension to real-time 

ambulance management and EMS delivery systems engineering in general. 
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2.2.2 ED Facility Selection 

The H-closest policy selects the closest ED facility to the request. This is again a common choice in real 
settings. H stands for “Hospital” and it applies in this subsection. However, with this policy, ED managers 

in certain areas usually complain about their heavy workload and often occurred overcrowding incidence 
for uneven distributions of emergency demand in the catchment area of an EMS agency. They desire a more 
equitable distribution of the workload. Simulation-based analyses in the literature (e.g., Aringhieri et al. 
2018b) has verified this for improvement on the overall efficiency of the ED facility network.  
 Two simple policies that are intended to address the problem of alleviating overcrowding at ED 
facilities are remarked in Nafarrate et al. (2010). The first policy, termed H-SAQ, aims to select the ED 

facility with the shortest admission queue counting only those that have same or higher urgency levels. The 
second policy, termed H-BWL, aims to balance the current workload of the ED facility and that needed to 
treat patients in the admission queue. To estimate the workload of an ED, one can use the multiplication of 
the average patient release time at ED and the number of patients inside the ED (both waiting for admission 
and under treatment). This estimate can be a weighted sum taking the urgency level into account. Note that 
H-SAQ takes the viewpoint of patients whereas H-BWL takes the viewpoint of the ED.  

 To counterbalance the effect of long travel times in cases with ED facilities being less crowded but far 
from most emergency requests, the H-SAQ and H-BWL polices can be modified slightly by comparing 
those facilities that are no farther than some radius threshold, which is often set to be half of the longest 
travel time between the emergency request and any ED facility.        

2.2.3 Ambulance Redeployment/Relocation 

A simple policy is to redeploy an ambulance to its original base once its current service is complete. We 

refer to this policy as R-Base. R stands for “Redeployment” and it applies in this subsection. Alternatively, 

EMS managers aim to make any ambulance ready upon its service completion. Thus, an alternative policy, 

termed R-Closest, is to redeploy the ambulance to the closest base. This alternative policy is used more 

often in real practice.  A third policy is termed the R-LCBT policy, i.e., it redeploys the ambulance to the 

less covered base b within a given time threshold 𝑇𝑅 as argmax𝑏∈𝐿𝑅
𝐴𝑅{𝐴𝑏

𝑎 − 𝐴𝑏
𝑒 }, where 𝐿𝑅

𝐴𝑅 is the list of 

bases that can be reached from the current ED facility within 𝑇𝑅. Note that the parameter 𝑇𝑅 is introduced 

to counterbalance the effect of longer travel times, as remarked in van Barneveld et al. (2018).           

2.2.4 Quantitative Analysis 

To evaluate a DRRP, we present the following list of performance indices as reference, which concerns 
both system-wide ambulance utilization and patient health/safety outcomes. Note that for the latter, time 
and/or distance-based proxies are currently used in the OR literature mostly. The indices include: Average 
time to reach the emergency scene (min); Average time to reach ED (min); Ambulance utilization 
considering only rescue mission time (%); Ambulance utilization considering also redeployment (%); ED 
utilization (%); Average waiting times of high- and low-level urgency at ED (min); and Fraction of patients 

of high- and low-level urgency reached within x mins. For the evaluation, one shall consider different policy 
combinations, as well as different scenarios, e.g., different ambulance workloads, different total ED 
capacities. After fixing a policy combination and a scenario, one must execute a sufficient number of runs 
over a time horizon with a sufficient warm-up period.  

2.3 Various Models and Analyses in the Literature  

Early simulation models were used to test different system configuration alternatives or to evaluate the 

performance of operational decision support tools. For example, Savas (1969) evaluated the impact of 
opening an additional ambulance station by simulation. From that point on, different decisions about EMS 
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design and operations have been studied using simulation. These studies include selection of station location 
(e.g., Berlin and Liebman 1989; Harewood et al. 2002), ambulance dispatch decision (e.g., Andersson et 
al. 2007; Carpentier 2006), and ambulance relocation strategies (e.g., Andersson et al. 2007; Rajagopalan 

et al. 2008). Later, simulation models have been embedded in decision support tools, e.g., Zhen et al. (2014) 
proposed a simulation–optimization framework for ambulance deployment. 
 More recently, generic EMS simulation models have been proposed. Henderson and Mason (2005) 
developed a simulation-GIS integrated model for Saint John, New Zealand. Kergosien et al. (2015) 
proposed a highly flexible DES model. Their conceptual framework can be replicated and extended to many 
different applications in EMS. Ridler et al. (2022) developed and published a generic open-source library 

for EMS simulation. Table 1 summarizes the characteristics of a review on simulation models that was 
initially presented by Kergosien et al. (2015), and extended in more recent simulation studies. 

 
Table 1. Summary of simulation models (references not listed at the end, but attainable upon request). 
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Type of decisions or analysis 

Location decisions                                               

Relocation 

strategies                                               

Dispatch rules                                               

Transfer decisions                                               

Cruising decisions                                               

Hospital selection                                               

System characteristics 

Districting                                               

Priority calls                                               

Dispatching rules 

Nearest ambulance                                               

Other                                               

Input data 

Demand arrival (inter-arrival times) 

Historical data                                               

Deterministic                                               

Empirical dist.                                               

Poisson process 

(exp. dist.)                                               

Gaussian mixture 

model (spatial dist.)                                               

Unspecified                                               

Travel times 

Fixed matrix                                               

Historical data                                               

Weibull dist.                                               

Gamma dist.                                               

Linear regression                                               

Distance and speed*                                               

Complex 

computation                                               

227



Kong, Paz, and Gao 
 

 

Modified Euclidean                                               

Unspecified                                               

Intervention times 

Deterministic                                               

Empirical dist.                                               

Exponential dist.                                               

Normal dist.                                               

Gamma dist.                                               

Triangular dist.                                               

Historical data                                               

Unspecified                                               

*Speed can vary by time and zone 

3 REAL-TIME MANAGEMENT POLICY OPTIMIZATION 

Recently, an increasing number of studies have focused on taking an optimization-based approach for real-
time management policy optimization, ranging from optimal selection among static policies and further 
optimal parameter selection for some chosen policy, to offline dynamic optimization of state-dependent 
policies. In this section, we will review these two directions. Simulation has been used for either evaluating 

input policy configurations or (approximately) computing value functions in stochastic dynamic 
programming frameworks. With recent advancements on computing device and simulation techniques, the 
general research trend is to employ high-fidelity simulation for computing nonlinear outcome functions.   

3.1 Static Policy Optimization  

Work in this area includes ambulance relocation/redeployment optimization via integer programming (IP) 
and development of threshold policies and those hybrid ones with IP models, via simulation-optimization.  

 While IP-based approaches first appeared for static ambulance location decisions, such optimization 
engine can be called upon repeatedly to generate periodic relocation decisions efficiently. Ambulance 
location models are essentially extensions of the classic problems in location analysis. One prominent 
approach, originated by Church and ReVelle (1974), is to solve the so-called maximal covering location 
problem (MCLP). This model seeks to maximize the total demand attended, given a set of service facilities 
(corresponding to ambulances). Hogan and ReVelle (1986) proposed two extensions of the MCLP which 

consider a backup facility/ambulance. That is, the model seeks to assign two ambulances to each demand 
node. The first model, BACOP1, tries to maximize the fraction of demand that is covered by the two 
ambulances assigned. In the second model, BACOP2, the objective presents a balance between two 
fractions, one of which is the fraction covered by one ambulance assigned and the other of which is that 
covered by both ambulances. Yin and Mu (2012) also proposed two extensions of the MCLP, which takes 
into consideration the location of ambulance bases and the number of ambulances assigned to each base. 

Both model extensions aim to maximize the number of demand nodes covered while minimizing the 
average distance from the bases to the demand points not being covered. The above models heavily rely on 
point estimation of spatial-temporal demand, which may be challenging in the ambulance 
relocation/redeployment settings. In response, optimization-based approaches have been developed to 
better tradeoff the future demand uncertainty and the real-time nature of redeployment. Some 
stochastic/probabilistic optimization model is solved every time a decision needs to be made, either 

triggered by an event that changes the EMS system state or once every small time-interval.  
 One of the first models is known as the maximum expected coverage location problem (MEXCLP) in 
which the probability of no available ambulances is modeled explicitly by considering a busy fraction 
parameter derived from a queuing-theoretic model (Daskin 1983). Recently, McLay proposed the 
MEXCLP2 to efficiently deploy a mix of vehicles of different types to serve patients requiring different 
responses and/or of different urgency levels. Other important models include double standard model 

(Gendreau 1997) and maximum availability location problem (ReVelle and Hogan 1989). Alsalloum and 
Rand (2006) developed an extension of the MEXCLP that models the probability of covering the demand 
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required in a certain period. Sorensen and Church (2010) integrated the objective function of the MEXCLP 
into the maximum availability location problem to minimize the number of ambulances required to cover 
all demand zones. Several of these models have been extended to balance quality of service (QoS) indices, 

e.g., response time provided, and cost required to deliver such quality in the probabilistic sense, see, e.g., 
Lightner (2006) and Ingolfsson et al. (2008). To solve the above stochastic optimization models, simulation 
(e.g., the example model presented in Section 2) is employed to compute QoS indices, which have been 
pushed to measure differentiated patient survival and thus are highly nonlinear functions with respect to the 
ambulance location, in addition to common economic measures. The concern on embedding the simulation 
is not to present additional burden to the already verified efficient IP algorithms for the resultant less 

tractable optimization problems. More recent work includes Haghani and Yang (2007), Jagtenberg et al. 
(2015), Bélanger et al. (2016), van Barneveld et al. (2016), and van Barneveld et al. (2018).  
 Alternative, threshold-based policies are widely used for not only ambulance redeployment/relocation 
but also intended to help make decisions on ambulance dispatching and maybe ED facility selection as well 
(please referring back to Section 2 for a list of selected DRRPs). The attention is thus given to updating the 
threshold values whenever needed, which often relies on optimization of simulated outcomes with respect 

to the threshold variables. Among threshold-based policies, one prominent idea is to consider ambulance 
resource preparedness for probabilistically arriving requests in the near future. These indices can help more 
systematically assess the potential of an EMS system in response to satisfy future emergency requests based 
on forecasting. For example, Andersson and Värbrand (2007) proposed one decision procedure that 
involves a threshold value on some preparedness index. The authors employed an EMS simulation and 
performed simulation optimization. Enayati et al. (2018) proposed a hybrid procedure that involves solving 

two optimization models in sequence and considers workload restrictions for the ambulance crew. The first 
model maximizes coverage and the second one minimizes relocation. Redeployment is activated only when 
a percentage of improvement is greater than a minimum threshold, which is also to be optimized. Optimally 
designing these threshold-based policies requires careful threshold parameter tuning, which can be quite 
time-consuming and highly depend on characteristics of the focal catchment area.  

3.2 Policy Optimization via Markov Decision Processes 

In the recent decade, the focus has also been shifted towards offline dynamic dispatching and redeployment 
optimization, for which simulation has been heavily used to approximate value functions and assessing the 
learning efficacy in an approximate dynamic programming (ADP) or reinforcement learning (RL) based 
optimization framework. In an EMS system, patient demand is often highly uncertain, pre-planned 
scheduling or operational solutions may not optimally respond to fluctuating situations. Hence, real-time 
decision-making is required, which must consider system dynamics such as time-varying demands, time-

varying traffic, and the different response times required by patients.  With assumptions such as exponential 
service time and no-buffer request queue, McLay and Mayorga (2013a, 2013b), Jagtenber et al. (2017) built 
Markov Decision Processes (MDP) on real-time ambulance dispatching decision and solved them to 
optimality on small-scale instances. These exactly solved MDPs shed light on the value of the closest idle 
dispatching policy and how various equity formulations affect the underlying dispatching policies. Recent 
advances in ADP have increased our ability to solve large-scale problems efficiently. For example, Schmid 

(2012) and Jenkins et al. (2020) used a lookup table to approximate value functions. Maxwell et al. (2010) 
and Nasrollahzadeh et al. (2018) proposed novel basis functions based on the underlying problem structure 
to approximate value functions. Moreover, Chong et al. (2016), and Yoon and Albert (2020, 2021) 
constructed MDP models to optimize dispatch operations of multiple types of vehicles to patients of 
differentiated emergency response priorities. Note that the task of value function approximation needs to 
be performed repeatedly and intelligently to balance the learning efficacy for suboptimal policies and the 

searching efficiency of the overall optimal policy. In addition, the learning via simulation is also dependent 
up the existing knowledge on the influential factors/features to the value function.   
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4 REDEPLOYMENT DECISION PROCEDURE OPTIMIZATION WITH CRS 

Various community-based programs are formed to recruit, train, and manage citizen responders. With 
training, citizen responders (CRs) are capable of recognizing common medical and non-medical 

emergencies and providing basic responses, such as hands-only cardiopulmonary resuscitation or 
automated external defibrillator operation for out-of-hospital cardiac arrests, naloxone spray administration 
for opioid overdoses, bleeding control for severe traumatic injuries, and epinephrine injection for allergic 
emergencies. As a result, patients in emergency situations could have a better chance to survive. Recently, 
increasing use of connected technology has made it possible to better engage community members into 
EMS practice in their communities. Example mobile applications include PulsePoint in the U.S. (Brooks et 

al., 2016), FirstAED in Denmark and Canada (FirstAED, 2021), and Heartrunner in Sweden (Heartrunner 
Sweden AB, 2021). CRs, if available to answer the response request of an emergency soon after its 
occurrence, are contacted by the dispatcher through a mobile application and tele-coached in real-time to 
provide the response. This has brought a new dimension to real-time EMS operations management. 
 From the above introduction, engaging citizen responders into EMS operations under the 
implementation of a community-based CR program, has emerged as a viable option to further improve 

patient survival in the emergency medicine literature (Scquizzato et al., 2020). In this section, we study a 
real-time ambulance redeployment procedure (Figure 2) to maximize patient survivals with consideration 
of CR geographic location and response availability.  

Figure 2. CR-augmented EMS vs. conventional EMS. 

4.1 A Decision Procedure 

The proposed real-time ambulance redeployment procedure (see Table 2) is evoked every time an 
ambulance becomes idle. This procedure mainly involves solving a MILP model, termed Idle Ambulances 

Redeployment with CRs (IAR-CR). This model assigns idle ambulances to locations when any event takes 
place at some discrete time 𝑡 that makes some ambulance idle in the EMS system. For notation, see Table 
3. Then this ambulance redeployment decision procedure is evaluated via a discrete-event simulation.  

Table 2. Decision procedure of redeploying idle ambulances considering CRs. 
Input: System state derived from an event with idle ambulances at discrete time t 
Output: System state with all ambulances assigned to locations 

set 𝐴𝑖 of idle ambulances is identified  
if 𝐴𝑖 = {} then end procedure 1 
solve IAR-CR model 
if the IAR-CR model has a feasible solution: 

assign optimal location of each 𝑎 ∈ 𝐴𝑖, 𝑙𝑎
∗ , according to the IAR-CR optimal solution 

else: 
assign each 𝑎 to the nearest location site 𝑙 

end procedure 1 
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 In Procedure 1, a set of idle ambulances 𝐴𝑖  is considered. The optimization model is intended to 
maximize the expected survival probability with CR support. Note that a maximally allowed displacement 
time is considered in the model, denoted by 𝑑𝑚, thus it is possible that no feasible solution can be found.  

4.2 Survival Function 

A survival function defines a patient’s probability of survival with respect to the EMS response time. The 
OHCA survival function in De Maio et al., (2003) is used to model the survival of patients with the EMS 

without CR support (i.e., under conventional practice), 𝑆𝐴(𝑡) =
1

1+exp (0.679+0.262𝑡)
. A modified version of 

this function is used when patients can be attended by CRs. This new survival model includes a survival 
probability increase over the whole curve, which was obtained by adjusting the original scale parameter as 
follows. According to McNally et al., (2011), which was a study related to bystander CPR, it is obtained a 
4.2% survival increase at the point of 8 minutes for the U.S. average response time (Mell et al., 2017), thus 

it is derived 𝑆𝐶𝑅(𝑡) =
1

1+exp (−0.073+0.262𝑡)
. 

4.3 Optimization Model 

The real-time availability of CRs represented by their individual probabilities of assistance to an emergency 
𝜏𝑐 is introduced in the model by computing the probability of being assisted by CRs in each district 𝑑 as 
𝛼𝑑 = 1 − ∏ (1 − 𝜏𝑐)𝑐∈𝐶𝑑

 ∀𝑑, where 𝐶𝑑 is the set of CRs that can reach district 𝑑 in time, which is defined 

using the CRs’ real-time geographical locations. At each distribution d, CR assistance probability 𝛼𝑑 can 
be calculated this way assuming that a reasonable estimation of 𝜏𝑐  can be made through smartphone-
enabled access to the GPS locations of CRs together with their historic response rates. Then the survival of 
an emergency in district 𝑑 if an ambulance is dispatched from station 𝑙, denoted by  𝑠𝑙𝑑, is calculated as the 
weighted average by 𝛼𝑑 between the two survival functions defined early, and further multiplied by the 
time from stations to districts 𝑚𝑙𝑑 , 𝑠𝑙𝑑 = 𝛼𝑑 ∙ 𝑆𝐶𝑅(𝑚𝑙𝑑) + (1 − 𝛼𝑑) ∙ 𝑆𝐴(𝑚𝑙𝑑). With the arrival rate of 
emergencies to each district 𝜆𝑑, the system-wide total arrival rate is 𝜆 =  ∑ 𝜆𝑑𝑑 , and thus the probability of 
having an emergency at certain district d is 𝜋𝑑 = 𝜆𝑑/𝜆. Additionally, decision variables in the model can 
be defined as: i) 𝑅𝑎𝑙

1 , 1 if idle ambulance 𝑎 ∈ 𝐴𝑖  is assigned to location 𝑙, 0 otherwise, and ii) 𝑦𝑙𝑑
1 , 1 if 

district 𝑑 is assigned to ambulances in 𝑙. We will present the model formulation in the tutorial session.  

4.4 Simulation Model 

In our simulation model, every time an event of ambulances becoming idle happens, procedure 1 (Table 2) 
or one of the benchmarks is run using the real-time system state as an input. The service area is represented 
in a 15*15 square grid with 225 nodes, each one with a one-mile squared area, these nodes serve as districts 

and also as ambulance stations (𝑞𝑙: 15 ambulances). There are two hospitals evenly positioned. A fleet of 
25 ambulances is randomly deployed at the beginning of the simulation, and they move in the 
aforementioned service area following deterministic movement times, which are calculated assuming an 
average speed of 30 mph (𝑑𝑚: 12.5 min). Additionally, 225 CRs are randomly positioned in the districts, 
they move at an average speed of 5 mph and their response probability 𝜏𝑐 is assumed identical (ℎ𝑚: 5 min), 
but different values are tested later. To model the spatial-temporal behavior of CRs, it is configured a “CR 

movement event” every 360 minutes in which they randomly change their geographic locations. 
Emergencies arrived at the system with a rate of nine patients per hour. They are assigned to districts 
following a uniform distribution and the on-site time is simulated according to an exponential distribution 
with a mean of 65 min. The nearest ambulance to emergencies is dispatched (including those in the middle 
of redeployments). If no ambulance is available, emergencies are put in queue, though the parameters used 
led to an uncongested system. An uncongested system was configured because it can get the most of 

relocations, in a congested system every time an ambulance became idle, it is immediately dispatched to 
the next patient, so there is little room for redeployments. It was assumed that the emergencies are critical, 
so all patients are required to transport to hospitals and no hospital diversion was allowed due to their 
criticality. Most of the parameter values are adapted from Enayati et al. (2018).  
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5 REAL-TIME UAV DISPATCHING AND RELOCATION TO AUGMENT EMS DELIVERY 

The US is in the midst of an unprecedented opioid crisis resulting in 130 opioid overdose deaths daily (CDC 

2021). Opioid overdose may result in respiratory depression and subsequent cardiac arrest without rapid 

intervention. Once this occurs, the chances of survival decline as much as 10% per minute (Stoesser et al. 

2021). The acute treatment of overdose is the administration of naloxone. Despite the fact that naloxone 

has saved tens of thousands of lives, overdoses typically happen when no one else is present to administer 

it in time. Limited access to doctors and programs, on the other hand, might be a barrier to treatment 

(Volkow and Collins 2017). Narcan nasal spray, an intranasal naloxone formulation, is proven efficacious 

and easy to use (Volkow and Blanco 2021). Its availability now allows laypersons to administer naloxone 

on their own to revert overdoses. Nevertheless, reaching those who really need it on short notice remains a 

challenge, as there is considerable variability in the availability of naloxone by locality. In general, naloxone 

cannot be made publicly available at high-traffic or high-risk locations (Bennet and Elliot 2021). Hence, it 

is often impossible for trained first-responders to reach the victim in need to administer naloxone. 

Bystander-enabled Narcan UAVs are an emerging option to mitigate the challenge on access to naloxone 

(Figure 3). In such an augmented EMS system, 9-1-1 dispatchers trained as drone pilots could fly the drone 

and tele-coach the bystander to administer the Narcan to the patient while EMS personnel are on their way.  

Figure 3. UAV-augmented EMS vs. conventional EMS. 

 From the above introduction, staffing drones to emergency care resource together with ambulances, has 

become a viable option to improve care access and patient survival in the emergency medicine literature 
(Cheskes et al., 2020; Rosamond et al. 2020). In this section, we study the real-time UAV dispatching and 
relocation policy optimization problem and derive a state-dependent policy to manage UAVs upon the 
completion of some rescue mission either by an ambulance or a UAV-bystander combo. 

5.1 MDP Model 

This section presents an infinite-horizon Markov decision process (MDP) formulation. At each decision 

epoch, it is possible that all the dispatching, relocation, and recharge actions are feasible in some states. 
This time-driven MDP modeling approach expands the decision space and increases the EMS system 
performance compared to the event-driven modeling used in the ambulance dispatching and relocation 
operations research (Maxwell et al. 2010; Nasrollahzadeh et al. 2018). By using this approach, we improve 
the decision quality by pooling requests and allowing dispatching, relocation and recharge decisions at 
discrete time points. In our implementation, we set a short decision epoch, which enables us to check the 

system state and make decisions frequently. This increases the potential to further improve the average 
response time of the EMS system. On the other hand, to alleviate the increased computational burden, we 
adopt an approximation dynamic programming solution approach, as shown in Section 5.2. 
 Let 𝒩 ≔ 1,2, … , 𝑁 be the set of demand nodes and ℳ ≔ {1,2, . . . , 𝑀} be the set of UAV-charging 
stations. Then 𝒩 ∪ ℳ is the set of candidate relocation destinations of UAVs. We consider a total of L 
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UAVs and assume that the arrival of requests follows a Poisson distribution with mean 𝜆. By Poisson 
splitting, arrival of requests at demand node 𝑖 is modeled as 𝑃𝑜𝑖𝑠𝑠(𝜆𝑖) with 𝜆𝑖 = 𝑃𝑖𝜆, where ∑ 𝑃𝑖𝑖∈𝒩 = 1. 
 State Space. There are 𝐿 UAVs in the EMS system. To simplify the presentation, we assume that we 

do not keep more than 𝐾waiting requests for the UAVs. This is not a restriction in the practical sense 
because 𝐾can be quite large. The state space is composed of three parts: vectors 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝐿), 𝐶 =
(𝑐1, 𝑐2, … , 𝑐𝐾) and 𝞬, where 𝑏𝑙 , 𝑙 = 1, … , 𝐿 contains information about the state of UAV 𝑙, 𝑐𝑗 , 𝑗 = 1, … , 𝐽, 
contains information about waiting request 𝑗 , and 𝞬  denotes the busyness of the ambulance system. 
Naturally, the state of the UAVs and the requests evolve over time, but we omit this dependence for brevity. 
 The state of UAV 𝑙 is given by 𝑏𝑙 = (𝑑𝑙 , 𝑟𝑙 , 𝑒𝑙), 𝑙 = 1, … , 𝐿, where 𝑑𝑙 ∈ 1,2, … , 𝑁 is the destination of 

each UAV, 𝑟𝑙 ∈ {0,1,2, . . . , 𝑅} is the remaining service time of each UAV, and 𝑒𝑙 ∈ 0,1,2, … , 𝑍  is the 
energy level of each UAV. The destination is determined when a dispatching/relocation/recharge decision 
is made. So is the remaining service time, which depends on the distance between the current UAV location 
and its destination. The remaining service time gradually decreases to zero as time evolves. Note that here 
we only consider dispatching, relocate and recharge decisions for idle UAVs, i.e., when the remaining 
service time is 0. Hence, we only need to know the destination and remaining service time of each UAV 

rather than the location, destination and start time of the movement as in previous work (Maxwell et al. 
2010; Nasrollahzadeh et al. 2018). An unserved request 𝑗  is represented by 𝑐𝑗 = (𝑔𝑗 , ℎ𝑗), 𝑗 = 1, … , 𝐾 , 
where 𝑔𝑗 ∈ 1,2, … , 𝑁, is the request location, and ℎ𝑗 ∈ 0,1,2, … , 𝐻 is the time that the request being kept 
for each UAV. Once a request is admitted into the UAV request queue, it can only be served by a UAV. If 
a dispatching decision is made, the request would be marked as ``served'' and immediately removed from 
the UAV request queue. In other words, we only keep track of unassigned requests. 

 Finally, we incorporate 𝛾 ∈ [0,1]  in the state space, 𝛾 = 0  indicates that all the ambulances are 
available and 𝛾 = 1 indicates that all the ambulances are busy. In our model, 𝛾 is viewed as exogenous 
information and hence we do not explicitly consider the ambulance staffing and its dispatching process in 
our model. Hence, we can use the tuple 𝑠 = (𝐵, 𝐶, 𝛾) to represent the state of the EMS system. 
 Action Space. We now describe the actions that we can take in a state. At each decision epoch 𝑡, for 
each unserved request in the UAV system, the administrator (i.e., decision-maker) first decides whether to 

admit the request into the UAV system or refer it to the ambulance system, i.e., define 𝑅𝑗 ∈ 0,1, 𝑗 =
1,2, … , 𝐽, where 𝑅𝑗 = 1 if request 𝑗 is referred to the ambulance system and then removed from the queue, 
𝑅𝑗 = 0 otherwise (i.e., admitted into the UAV system). Based on the status of the request queue and UAVs, 
the administrator makes dispatching, relocation and recharge decisions for each UAV in the system. Define 
𝑋𝑙,𝑗 = 1 if UAV 𝑙 is dispatched to request 𝑗, 𝑋𝑙,𝑗 = 0 otherwise, and 𝑌𝑙,𝑓 = 1 if UAV 𝑙 is redeployed to 
station 𝑓 , 𝑌𝑙,𝑓 = 0  otherwise. Finally, define 𝑍𝑙,𝑖 = 1  if UAV 𝑙  is relocated to demand node 𝑖 , 𝑍𝑙,𝑖 =
0 otherwise. We will provide the mathematical representation of the action space in the tutorial session. 
 Transitions. As stated early, we assume that request arrivals at location 𝑖  follow a homogeneous 
Poisson process with rate 𝜆𝑃𝑖 . We further assume that travel times are deterministic and only linearly 
depend on the travel distance. Given the simplicity of the emergency rescue task, we assume fixed service 
times at the scene. Three types of events drive the state transitions: (1) new requests arrive; (2) the decision-
maker makes an admission, dispatching, relocation or recharge decision; and (3) UAVs' remaining service 

time and their battery power naturally decrease as time evolves.  
 Cost Function. We consider minimizing the sum of the expected discounted cost associated with the 
response time of each request served by UAV and the number of requests referred to the ambulance.   

5.2 Approximate Dynamic Programming 

Standard discounted infinite-horizon MDP problems can be solved by value iteration, policy iteration, and 
linear programming (Puterman 2014). To solve a problem with any of the above algorithms, one needs to 

first parameterize the associated transition matrix (𝒮 × 𝒜 × 𝒮 → 𝑅) and reward matrix (𝒮 × 𝒜 → 𝑅). In 
our MDP model, the transition matrix has a dimension of |𝒮|2 × |𝒜| = (((𝑁 + 𝑀 + 1)(𝑅 + 1)(𝑍 + 1))

𝐿
⋅

(𝑁(𝐻 + 1)𝐾))
2

× (2𝐾(𝑁 + 𝑀 + 1)𝐿). For an instance with 64 demand nodes and 2 UAVs, the dimension 
of the state space is about 2.96 × 1027, which means that solving the Bellman equation to optimality is 
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impractical. We therefore employ an approximate policy iteration algorithmic approach to construct high-
quality policies based on value functions. We will present an approximation policy iteration algorithm, and 
the carefully selected basis functions for the construction of the neural network in the tutorial session.   

6 REFLECTION AND CONCLUDING REMARKS 

 In this tutorial, we review the OR/MS literature on EMS operations management with focus on real-
time ambulance resource management. By far, this is still a very exciting and fertile research area, especially 
for the sense that it provides opportunities to develop computational techniques to analyze complex service 
system dynamics and solve large-scale stochastic optimization problems. 
 Reflecting on our work, we offer the following observations and outline future research directions 

accordingly. One, there is a need on applying reinforcement learning to further improve our ability of 
solving large-scale instances under the changing environment. With advancement of information 
technology, EMS agencies will desire continuous information updates. As new information arrives, our 
understanding on the service system changes continuously, which motivates us to identify more balanced 
acts between exploration (of uncharted territory of state-action space) and exploitation (of current 
knowledge being used to identify better polices). Two, it is time to start benchmarking our data sources and 

simulation models in this area. This is crucial to evaluate the performance (viability, reliability, and 
superiority) of new management strategies and solution techniques. We have witnessed recent 
developments on generic flexible simulation-based analysis tool for a variety of distinct and realistic 
contexts. Emphasis should be given to modules for incorporating GIS information, field-triage human 
factors, and a holistic view of the care spectrum spanning from EMS to ED and from ED to ICU, and over 
the entire hospital network with differentiated specialty and service characteristics. Further, the notion of 

digital-twins should be incorporated to investigate the partnership of dispatchers and AI tools in emergency 
response management. Three, as advanced information and autonomy technologies revolutionizing 
healthcare delivery. It is not surprising to OR/MS researchers on the benefit of teaming up with technology 
researchers and developers. We are fortunate to work with drone researchers and mobile app developers.  
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