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ABSTRACT

For safe operations at the airport apron, controllers are supported by an appropriate sensor environment.
Deep learning models could improve the classification of observed objects, but these models require a large
amount of data to be trained. Therefore, we developed a virtual airport environment to generate the required
training and validation data for any operational scenario. A synthetic LiDAR sensor is implemented in this
environment and applied at Singapore Changi Airport. Using different data sources, the airport infrastructure
and objects are modeled and a multitude of 3D scenes are generated. From these scenes, a point cloud is
extracted from the LiDAR sensor feedback. This point cloud is already labeled by the underlying models
(ground truth) and serves as input for PointNet++ to be trained for efficient segmentation and classification.
We show that the training with synthetic input data is a promising approach even assuming degradation of
the sensor feedback.

1 INTRODUCTION

The improvement of operational performance is a key driver of the implementation of artificial intelligence
(AI) solutions in air traffic management (ATM). In this context, digital twins of airports are developed
to extend testing and validation capabilities for operations, which demands procedures and tools to check
algorithms and especially train implemented AI solutions on-premise or in the cloud. Apron operations
have to ensure both high utilization of given capacity and safe aircraft operations even under degraded
environmental conditions, such as low visibility. Not only could our approach be used to provide additional
information about apron operations to enhance situational awareness, but it can also be used to improve
safety by automatically detecting unexpected or unknown objects.

This paper deals with the analysis of light detection and ranging (LiDAR) technology within the airport
environment, whose evaluation by deep learning can provide great added value to identify elements on
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the apron. LiDAR is a distance measurement technique that involves pointing a laser at an object. The
distance is then determined by the time it takes for the reflected light to return to the receiver.

The basic problem of deep learning models is the amount of data needed to train and learn the knowledge.
This would require a large number of real measurements covering a wide range of scenarios. Especially for
special operational cases, which have to be analyzed with LiDAR, this is hardly possible. For this reason,
we propose a prototype for a synthetic data generator in the airport environment using Singapore Changi
Airport (WSSS) as a reference. With the help of different data sources and our own models, a multitude
of 3D scenes can be generated which correspond to the real operational environment. Point clouds are
extracted from these scenes according to the specifications of a LiDAR sensor (cf. Reitmann et al. (2021)).
In this context, a point cloud is a set of data points in space that represent a 3D shape or object. These
point clouds are already labeled by the underlying model and serve as input to PointNet++ (Qi et al. 2017;
Qi et al. 2017) for further segmentation and classification.

We show that the training of a classifier based on artificial input data is a promising approach, which
covers relevant aspects of the real system and can therefore be easily applied at any airport. In particular, we
expect to significantly support apron controllers in (remote) tower environment (integrated tower working
position (Eurocontrol 2020a)). With the implementation of remote towers (external visual and also location-
independent aerodrome control), the working environment of apron controllers was also extended by the use
of technologies to augment the standard ’out of the window’ view. Information from different sensors (e.g.,
surface movement radar) and sensor networks (Eurocontrol 2020b) could be represented on the monitors
used at the upgraded workstations. Furthermore, current developments clearly aim at a more automated
environment, which will step-wise shift the current controller tasks to supervision. In the future apron
control, LiDAR sensors will provide additional features for safe and reliable operations. They combine
certain characteristics that stand out from the established sensors, such as non-cooperative detection, large
detection angles, high pulse emission frequencies, pulse emission at extremely high frequencies, and high
precision and accuracy in the millimeter range. We assume that the continuous enhancement of both sensor
hardware and algorithms, implementation of remote towers, and upgrade of current controller workstations
will result in more efficient handling of complex traffic situations.

1.1 Literature Overview

With our contribution, we are entering a new field of application of data analytics and machine learning in
aviation. Research in this context is primarily addressing aircraft trajectory management. Here, clustering
represents a fundamental concept for recognizing and providing a better insight into patterns in traffic
flows (Basora et al. 2017; Basora et al. 2018; Gariel et al. 2011; Olive and Morio 2019). These approaches
enable the prediction of trajectories (Lv et al. 2015; Di Ciccio et al. 2016; Liu et al. 2018) and the detection
of non-nominal operations (Das et al. 2010; Olive et al. 2018; Olive and Bieber 2018; Basora et al. 2019).

This does not only result in new innovative approaches for future air traffic concepts, such as a
dynamic airspace management (Gerdes et al. 2018; Gerdes et al. 2020), but also a data-driven provision
of open-data aircraft performance models (Sun et al. 2018; Sun 2019; Rosenow et al. 2022). The latter
in particular opens up non-limiting, restriction-free, non-discriminatory, and comparative implementation
and evaluation of flight performance and flight management concepts from a variety of flying platforms
to all researchers. OpenAP (Sun et al. 2020) has been developed as an open-source aircraft performance
model, and BlueSky (Hoekstra and Ellerbroek 2016) is a simulation environment for research into air traffic
management and air traffic flow. In addition to addressing airspace and air traffic management challenges,
research focuses on determining airport performance by analyzing the impact of local weather events on the
flow of arriving and departing aircraft (Reitmann and Schultz 2018; Schultz et al. 2021). In this context,
runway and apron operations also have significant implications for the airport’s capacity (Olive and Bieber
2018; Herrema et al. 2019; Schultz et al. 2019; Schultz et al. 2022) as do aircraft ground and turnaround
processes (Schultz and Reitmann 2019).

419



Schultz, Reitmann, Jung, and Alam

Recognizing the position, orientation, and direction of movement of aircraft is critical for ground
movements. The LiDAR concept offers a suitable technology for this purpose, which is already being
successfully applied in the automotive sector and could also open up new applications in aviation. One of
the main interests in the aviation domain is the detection of known and unknown objects on the airport
apron (Koppanyi and Toth 2015; Börcs et al. 2017; Kusenbach et al. 2016). The significant influence of
weather on sensor feedback plays as much a role (Radecki et al. 2016; Goodin et al. 2019; Bijelic et al.
2018) as the determination of detection accuracies and development of benchmark scenarios in realistic
deployment scenarios (Brassel et al. 2019; Mund et al. 2014). The use of deep learning methods requires a
large amount of data, which can currently only be provided by artificially generated sample data. However,
this area is still relatively unexplored.

1.2 Focus and Structure of the Document

The main focus of our research is the consideration of possible sensor errors already in a synthetic sensor
environment, providing a large amount of training data. We assume that a learned error correction in the
virtual test environment will facilitate the transfer to a real working environment. Also, sensor weaknesses
detected later in the field can be specifically introduced into the sensor simulation to further increase the
accuracy of sensor feedback. We develop a synthetic 3D experimental airport environment of Singapore
Changi Airport (WSSS) in which we can implement synthetic sensor technologies and operational processes
on the apron, such as moving aircraft or ground handling vehicles. This environment provides a large set of
point clouds as sensor feedback focusing on both different operational scenes and the mode of operation of
the LiDAR sensor. To anticipate the weather dependency of LiDAR sensors we add an error function, which
affects the sensor feedback by data dropouts and erroneous data points. All point clouds are segmented
and classified using a deep learning approach.

The paper is structured as follows. After the introduction and the brief literature overview (Section 1),
Section 2 addresses the synthetic data generation. We describe the setup of the airport environment
(infrastructure and vehicles) and the general approach to implementing synthetic LiDAR sensors using
BLAINDER (Reitmann et al. 2021). In Section 3, information about our machine learning approach is
provided, the experimental setup is introduced (three scenarios) and the results are presented. Finally, the
paper ends with a conclusion and an outlook on future research (Section 4).

2 SYNTHETIC DATA GENERATION

Point clouds are the raw output of many different sensors, such as LiDAR and RGB-D (depth cameras).
Thus, those are the main sources from which point clouds are generated. But one can also generate a point
cloud from a triangular mesh using mesh sampling (Zhou et al. 2018). To transform our synthetic 3D
scenes of meshes into a LiDAR-like point cloud, we use LiDAR-like operations of BLAINDER (Reitmann
et al. 2021) within a virtual airport environment (3D model of WSSS). Figure 1 exhibits our approach for
the synthetic data integration.

BlAInder

Synthetic Labelled Poind Clouds

Classification / Segmentation

AI

Virtual Sensing      

Sensor Specs

Weather Parameter

Virtual Environment      

Singapore Changi
Airport (WSSS)

3D Model

AC 3D Models

Figure 1: Basic approach for synthetic data integration into an AI pipeline.

420



Schultz, Reitmann, Jung, and Alam

A point cloud is an important type of geometric data structure. In the basic setting, each point is
represented by three coordinates (x,y,z). Additional dimensions may be added by computing normals and
other local or global features (like RGB value, or feature ID). Thus, a point cloud P consists of n ∈ Z+

0
tuples of (x,y,z) coordinates, extended by further information. This unordered, but mathematically clear
formulated structure makes it possible to apply different methods to find related groups representing objects
within a scene.

The point clouds in this work are derived from feedback from synthetic LiDAR sensors. LiDAR is a
laser-based method to determine distances between the sensor and any object holding a reflective surface
by measuring the travel time of the laser trace. As a consequence, objects or parts of them that cannot
be touched from the sensor position (e.g., obscured by other objects) cannot be part of the resulting point
cloud. Thus, point clouds of the LiDAR sensor often do not fully represent observed objects in realistic
environments. In addition, the circular propagation of the LiDAR laser beam from a certain point reduces
the point density with increasing distance of the objects. Therefore it is necessary to find out if and in
which quality object recognition based on these point clouds is applicable for different object distances
and poses (position and orientation). Classification and segmentation are two main applications for point
clouds (Qi et al. 2017). We use both techniques deep learning techniques as a combined approach for
understanding point cloud data. While segmentation is a partition of an image into several coherent parts,
without any attempt at understanding what these parts represent, classification is used to assign fixed labels
to a group of points identified as belonging together. Semantic segmentation achieves fine-grained inference
by making dense predictions inferring labels for every pixel so that each pixel is labeled with the class of
its enclosing object core region. This approach helps to classify objects within a scene.

2.1 Scene Setup

We use the open-source software Blender to create and model a custom scene of triangular meshes
representing WSSS infrastructure. The model is shown in Figure 2, where Blender is used to model the
basic objects of the scene (except aircraft). The scene objects are divided into static and dynamic in terms
of the model and pose. The dynamic of poses includes translation and rotation. Scaling was normalized
in Blender and brought to a scale with the aircraft. This includes the information on whether an object is
changeable in its form (different aircraft types, but constant class/label), static in its format but pose-dynamic
(ground vehicles, fingers), or completely static (buildings).

Free data is available to further enhance the airport model. For example, data from OpenStreetMap
(e.g., parking positions, runways, taxiways) can already be accessed pre-filtered via defined interfaces.

Simple filter using https://overpass-turbo.eu/.

// fetch area \airport" to search in
area[icao˜"WSSS"]->.searchArea;
// gather results
(
nwr(area.searchArea)
["aeroway"˜"parking_position|taxiway|runway"];

);
out body;
>;
out skel qt;

Representing aircraft operations at the airport apron requires a variety of aircraft types in many different
poses. For this purpose, we used the research data set ShapeNetCore.v2 (Chang et al. 2015) and included
the necessary aircraft models from the category ’aircraft, aeroplane, plane/transport airplane’ and further
3D objects related to the operational airport environment, such as ground vehicles, towbars, or passenger
bridges as elements of the terminal infrastructure (see Figure 3).
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Figure 2: Singapore Changi Airport - 3D Model with a polygon count of 29.412.

In terms of safety cases, for example, the tow bar (see Figure 3(b)) could be considered an unexpected
or unknown object in test scenarios. Tow bars are used to push aircraft back from their positions or to tug
them from one position to another (e.g., for maintenance). These bars sometimes are occasionally left at
inappropriate apron positions and hold the potential to be overlooked by operators. Due to their size and
weight, they are difficult to detect by surveillance systems but are potential sources of danger. Although
the virtual environment allows the object database to be constantly expanded, on the other hand, all objects
must first be modeled and positioned in a scene in order to be able to detect them with synthetic sensors.

(a) Ground vehicle. (b) Towbar. (c) Passenger bridge.

Figure 3: 3D scene objects for the airport environment.

However, unknown objects could be generated as a random union of geometric primitives and placed
in scenes in an arbitrary/targeted manner. In such an analysis, we propose an exclusion procedure that
assumes that all detected objects are known and thus operationally belong to the expected factors on the
apron. Unknown point cloud clusters are thus automatically considered a source of danger.

We used a total of 338 aircraft models for separate scenes that follow fixed motion patterns implemented
by keyframes in Blender. This resulted in a total of 1.690 point clouds, of which we used 1.115 for learning,
and 575 again as reference values for accuracy (see Section 3). All the mentioned elements of an airport
are combined in Figure 4, exhibiting an exemplary rendering of the experimental airport environment of
Singapore Changi Airport. This part of the apron of WSSS served as a reference environment. The different
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object positions were determined depending on the systematic variation of the distances between the sensor
and the target objects.

(a) Airport environment (picture from Google Maps).

(b) Synthetic 3D scene including a synthetic LiDAR sensor (orange)

Figure 4: Singapore Changi airport environment.

2.2 LiDAR Sensor Simulation

The provided virtual environment enables the generation of synthetic point clouds. Here, the particular
characteristics of LiDAR sensor technology have to be considered. In BLAINDER, which is an Blender
add-on, LiDAR signals are created with raytracing via intersection points of lines and objects, where
OBBTress are used to improve computational performance (Zhou et al. 2018). The 3D models from
Section 2.1 are integrated in Stanford format (*.stl) or in wavefront format (*.obj, ShapeNetCore).

The implementation in Blender fulfills all requirements for our synthetic sensor approach, i.e. specific
materials could be assigned to the models. Further, we added a stochastic noise module to BLAINDER to
incorporate inaccuracies and errors, which normally occur in operational environments. This has the task
of adding parameterizable measurement inaccuracies and thus, for example, including significant weather
situations in the virtual airport environment. We use classical Gaussian noise distribution, which can be
individualized by mean value and standard deviation (µ , σ ). The following elements are the adjustable
parameters of our generic LiDAR sensor or mesh sampling: (a) scan resolution, (b) scan distance, (c) sensor
rotation speed, (d) noise µ and noise σ , and (e) reflection. Figure 5 shows an exemplary implementation
of a LiDAR scan to detect an aircraft with decreasing density at higher distances and shadowing behind
the irradiated object.
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(a) Aircraft in the airport scene. (b) Detail of the sensor feedback.

Figure 5: Synthetic LiDAR sensor feedback in the WSSS airport environment. With growing distance, the
density of the emitted rays decreases.

3 MACHINE LEARNING APPROACH

In the application area of machine learning, we use the programming language Python 3.7.3. Tensor-
Flow (Abadi et al. 2016) serves as the machine learning backend, whereby we are aiming for a comparison
with other libraries (PyTorch) in future developments. We implemented the given neural networks using
the open-source deep-learning library Keras 2.3.1 (frontend), scikit-learn and Scipy 1.0.0 (routines for
numerical integration and optimization). The routines in Section 2.2 are, due to their size not easily
accessible, saved via the file format HDF (h5py). Training and testing were performed on GPU using
CUDA as a parallel computing platform and application programming interface on a NVIDIA DGX-2 AI
cluster with 16 NVIDIA Tesla V100 GPUs (performance 2 petaFLOPS), GPU Memory 512GB total, and
1.5TB RAM in a docker container.

3.1 Experimental Setup

As a deep-learning method for classification and semantic segmentation, we chose PointNet++ because it
provides better results than comparable approaches and offers advantages, especially for point clouds dealing
with non-uniform density through its density adaptive strategy. This corresponds to the challenges of a LiDAR
system at an airport with non-uniformly sampled point sets. Our implementation in Keras/TensorFlow
has 819.624 trainable parameters and 4.224 non-trainable parameters. Table 1 summarises three different
scenarios, which are implemented as test cases for our approach.

Table 1: Scenario definition for investigations on clean and noisy point clouds created from synthetic
LiDAR sensor feedback.

scenario state / noise description
A clean baseline LiDAR sensor feedback
B Gaussian noise Degradation of sensor performance (e.g., in bad weather conditions)
C clean violation of safety clearances

These three scenarios are used as proof of concept. Scenario A serves as a reference case to evaluate
a baseline to be achieved by optimal feedback derived from a LiDAR sensor (ray tracing). In the second
scenario (B), we have implemented a Gaussian noise that affects the sensor feedback. Here, the feedback
is incomplete and also shows erroneous feedback. These can occur in operational environments, e.g.,
due to high humidity (rain). From our perspective, this specific case represents a very good application
opportunity for the use of AI methods. In the virtual environment, ground truth information is available
at any time and a wrong assignment can be detected. This point, in particular, cannot be guaranteed in
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the real environment and requires manual intervention, which in turn significantly reduces the amount of
input data compared to an automated training process. Scenario C is the first investigation of whether a
violation of safety clearances can be detected (incidents, potential conflicts) within a fully classified scene
with a reasonable effort.

3.2 Results

As a result of the investigation a strong interaction between segmentation and classification is observed.
In the first step of the investigation, the raw point clouds were separated into distinct areas. This works
well for the airport apron scenes because the background (surface) is homogeneous. This allows individual
objects, such as aircraft or service vehicles, to be separated very well. The resulting geometric appearance
of these objects is easy to interpret and can be assigned well using the object database.

Table 2 contains the results of the accuracies (correctly assigned points to an object group). Whereas
large objects, such as aircraft or airport buildings, could be classified with a high level of accuracy, the
accuracy for mid-sized objects (finger, ground vehicles) decreases by approximately 10% and by another
10% for small objects. These results (scenario A) are comparable to the results provided by Qi et al.
(2017). The implementation of the Gaussian noise results in a degraded accuracy, which is particularly
problematic for the case of (mobile) ground vehicles (accuracy drops by 27%). The classification accuracy
for boarding bridges (finger) is also significantly affected, but these are infrastructure elements and will be
static in relation to the final sensor position.

Table 2: Mean accuracies of semantic segmentation of scene objects.

Scenario A B offset
Accuracy (%) 75.4 66.7 -12 %
1 - aircraft 81.2 76.8 -5 %
2 - airport buildings 84.7 81.0 -4 %
3 - finger (boarding bridge) 73.3 62.1 -15 %
4 - ground vehicles 75.0 54.8 -27 %
5 - apron misc 63.0 58.6 -7 %

Aircraft are classified at a high level of accuracy, even under the degraded performance of the LiDAR
sensor. We expect that additional data about aircraft position or type, as provided by ADS-B messages
(cf. Schultz et al. (2022)), will improve our results. We have modeled a realistic behavior of LiDAR
sensors by generating deviations of the sensor feedback due to dropout and noise. To further improve the
realistic sensor feedback and mitigate the effects of perturbations, the next step should be to investigate
suitable compensation strategies, such as an autoencoder with PointNet as encoder and a fully connected
decoder. This approach could counteract the expected high impact of severe weather situations by learning
to reconstruct the original signal. The implementation of alternative approaches such as FoldingNet (Yang
et al. 2018) should also be considered to analyze the capabilities and limitations of the different signal
reconstruction methods.

Figure 6 shows the dependencies of the model accuracy when the pose of an aircraft changes (rotation
around z-axis, 0 means objected is heading to the sensor). The curves exhibit a significant drop in accuracy
at particular observation angles, which must be considered when looking for an appropriate sensor location.

Scenario C includes the detection of safety distance violations. Here, bounding boxes are created
around segmented point clouds (see Figure 7) and checked if they have overlapping areas. These bounding
boxes are generated by the maximum extensions of the point cloud (maximum Euclidean distance of two
points within a segmented set).
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Figure 6: Model accuracy considering different pose rotations with aircraft as target object.

If these boxes overlap, an incident is detected, which needs the attention of the apron operator. This
simplified approach could already make a significant contribution to the airport safety net. It should be
noted, of course, that quality of conflict detection is closely related to the accuracy of semantic segmentation
and the quality of sensor feedback.

Figure 7: Detection of safety distance violations by identifying overlapping bounding boxes around
segmented point clouds.

4 CONCLUSION AND OUTLOOK

In our prototypical example, we have focused on an implementation of a synthetic LiDAR sensor in a virtual
airport environment. We used Singapore Changi Airport since we are experienced with the operational
environment and environmental conditions. The aim of the paper, and also of our ongoing research, is the
semantic segmentation and classification of the raw point clouds captured by LiDAR sensors in a virtual
airport environment. These point clouds could provide an additional contribution to increasing safety by
supporting apron controllers. Although a performance comparison between actual controller performance
with and without a sensor-supported environment is not available, we strongly believe that our approach
will improve apron surveillance, especially under severe weather conditions.
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The availability of sufficient and high-quality data for the training of deep learning algorithms is still
problematic, but necessary for the automatic evaluation of the point clouds. In our example, we have decided
to use the proven PointNet++ and have generated and provided data synthetically using a sandbox-like
approach. We propose a first experimental investigation and aim to automate the whole process chain to
adaptively generate data for arbitrary airports and prepare deep learning methods for real-world applications.
While the airport infrastructure can be generated easily from free geodata (e.g., OpenStreetMap) and repeating
individual elements (ground vehicles, fingers, etc.) into three-dimensional models, the sensor technology
must correspond to the characteristics of the systems used at the respective airport. In our approach, we
are using parameterizable sensor modules (LiDAR) implemented in BLAINDER, which can be calibrated
according to actual system requirements. In further scientific investigations, the physical effects of the
objects’ materials (e.g., glass) must also be taken into account to a greater extent in order to avoid a
subsequent artificial deterioration of the point cloud quality through stochastic noise and to integrate this
directly into the sampling process.

For aircraft, ShapeNetCore provides a sufficient and high-quality data foundation. This includes 338
models and a wide range of shapes and differences. However, especially in the area of aircraft, we see further
potential in the analysis of point clouds. While in this paper we focused exclusively on the separation of
aircraft and other airport elements, Deep Learning can also be used for pose estimation and type recognition.
By correlating with position data (ADS-B), highly complex, automatic, and adaptive models for apron
control can be trained and directly transferred to real-life operations. While our previous approach focused
on static point clouds, we would like to gain knowledge about variable objects and their interaction on the
apron. The code will be made freely available after the completion of the investigations. We also strive for
visualization in a suitable virtual reality environment (Cave Automatic Virtual Environment) to combine
this approach with enhanced tower concepts to be developed in close cooperation between Bundeswehr
University Munich, TU Freiberg, and ATMRI at NTU Singapore.
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Prof. Jung’s research interests are in the fields of Virtual Reality, Large Data Visualization, Human-Computer Interaction, and
Advanced Robotics. His e-mail address is jung@informatik.tu-freiberg.de.

SAMEER ALAM received a Ph.D. degree in computer science with a specialization in artificial intelligence from the University
of New South Wales (UNSW), Australia, in 2008. He is currently an Associate Professor at the School of Mechanical and
Aerospace Engineering, Nanyang Technological University (NTU), Singapore, where he is also the Deputy Director of the Air
Traffic Management Research Institute (ATMRI). His research interests include machine learning, computer vision, multi-agent
systems, applied to air traffic, and airport operations. Prof. Alam is an Editorial Board Member of Transportation Research Part
C: Emerging Technologies. His e-mail address is sameeralam@ntu.edu.sg. His website is https://dr.ntu.edu.sg/cris/rp/rp00160.

429

https://doi.org/10.4233/uuid:af94d535-1853-4a6c-8b3f-77c98a52346a
https://arxiv.org/abs/1801.09847
https://www.journals.elsevier.com/transportation-research-part-c-emerging-technologies
https://www.journals.elsevier.com/transportation-research-part-c-emerging-technologies
https://www.mdpi.com/journal/aerospace
mailto://michael.schultz@unibw.de
https://www.unibw.de/lvk
mailto://stefan.reitmann@informatik.tu-freiberg.de
mailto://jung@informatik.tu-freiberg.de
https://www.journals.elsevier.com/transportation-research-part-c-emerging-technologies
https://www.journals.elsevier.com/transportation-research-part-c-emerging-technologies
mailto://sameeralam@ntu.edu.sg
https://dr.ntu.edu.sg/cris/rp/rp00160

	INTRODUCTION
	Literature Overview
	Focus and Structure of the Document

	Synthetic Data Generation
	Scene Setup
	LiDAR Sensor Simulation

	Machine Learning Approach
	Experimental Setup
	Results

	Conclusion and Outlook

