
Proceedings of the 2022 Winter Simulation Conference 
B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew, T. Roeder, and 
P. Lendermann, eds 

   
 

DISCRETE- EVENT SUPERVISORY CONTROL FOR THE LANDING PHASE OF A 
HELICOPTER FLIGHT  

 

James Horner                                                                                         
Tanner Trautrim 

Cristina Ruiz Martin 
Gabriel Wainer   

                      Iryna Borshchova                
 
  

   
Department of Systems and Computer Engineering  Flight Research Lab  

Carleton University  National Research Council Canada  
1125 Colonel By Drive  1920 Research Road, Building U61  

Ottawa, ON K1S 5B6, CANADA  Ottawa, ON K1V 2B1, CANADA  
    
   

ABSTRACT 

We introduce a new method for supervisory control used in the landing phase of an autonomy system 
for the Bell-412 Advanced Systems Research Aircraft, which includes fly-by-wire capabilities. The 
complexity of the autonomy system makes it necessary to include a high-level supervisory controller 
that monitors mission’s progress and allocates resources on board accordingly. Supervisory controllers 
are commonly embedded within a monolithic program and lack explicit state flows, requiring 
significant effort to modify and test the system’s behavior. This research uses the DEVS formalism and 
the Cadmium simulation engine to model, implement, verify, validate, test, and deploy a state-based 
and event-driven supervisory controller for helicopters. We use the NRC’s Bell-412 helicopter 
autonomy system as a case study to present the whole development cycle. The methodology is 
illustrated with simulated models that were tested using graphical specifications and domain experts 
and verified using Cadmium in both simulated and real-time testing suites. 

1 INTRODUCTION 

The Canadian Vertical Lift Autonomy Demonstration (CVLAD) is a project to build an autonomy 
system for Canada’s National Research Council’s (NRC) Bell-412 Advanced Systems Research 
Aircraft (ASRA). ASRA includes fly-by-wire capabilities, an advanced Flight Control Computer 
(FCC), LiDAR-based perception, a ground control station, a mission manager, a path planner, a detect-
and-avoid module, and pilot displays (Colucci 2022). One of the major tests for the autonomy system 
will be to conduct an arctic resupply mission where the helicopter will take off with supplies, fly while 
avoiding any potential obstacles, then land at the destination all with minimal pilot input. The mission 
can be broken down into three distinct phases: takeoff, on-route, and landing.  
 The onboard autonomy system is complex and it includes many subsystems; therefore, we need a 
high-level supervisory controller to monitor the state of the components. The autonomy system 
components react to external stimuli, and send information to the Supervisor to keep an internal state 
that reflects the state of the autonomy system. This state information can be used to manage resources 
on the helicopter, as multiple subsystems might compete over shared resources (for example, the FCC 
and pilot might both try to control the aircraft when only one can do so at a time; or the path-planner 
and detect-and-avoid components might both try to alter a planned trajectory). The Supervisor must 
monitor the mission’s progress and allocate resources on board accordingly. 

There are numerous methods for the design and synthesis of supervisory controllers in industrial 
control systems. Such traditional techniques suffer from several drawbacks. Supervisory controllers are 
often monolithic programs with little separation of concerns applied, resulting in tight coupling between 
elements within the controller. Tight coupling between components of any system can lead to difficulty 
in performing modifications as well as extensive re-testing of the whole system when one small aspect 
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of the program is changed. While supervisory controllers often aim to have state-based behavior, the 
lack of explicit states and transitions between states obscure the implemented behavior of the controller. 
The lack of explicit state flows impacts the modifiability of the behavior, as implicit states are hard to 
identify and change. In general, the development of supervisory controllers may not consider future 
development: what starts as small procedural programs intended to fulfill a single purpose, may grow 
into complex and unmanageable systems where legacy code is intertwined with new features, such that 
any change, e.g., adding an extra state, might have far-reaching effects. 
 This work aims to show an alternate approach where modifiability and transparency are built into 
the code using Discrete Event System Specifications (DEVS) (Zeigler et al. 2000) along with the 
Cadmium simulator (Belloli et al. 2019). A model of the supervisory controller was developed for the 
landing phase of the mission whose implementation can be deployed onto the Bell-412 as part of the 
autonomy system. The models and simulation are verified and validated against the CVLAD team’s 
requirements. Once validated, the model developed becomes the actual software integrated into the 
helicopter. This same approach can be used to develop or redesign other components of the controller 
system such as adding on-route detect-and-avoid and path planning modules. 

The paper is organized as follows: Section 2 presents the background on supervisory controllers, 
the DEVS formalism, and the Cadmium simulator. Section 3 explains the supervisor development 
process using DEVS. Section 4 describes the implementation of the supervisor along with the 
verification and validation process. Section 5 presents the conclusions and future work of this research. 

2 BACKGROUND 

Advancement in sensing, actuation, and control system computing technologies has increased the 
complexity of intelligent systems such as smartphones, autonomous vehicles, smart grids, automated 
buildings or automated flight systems (Chaterji et al. 2019). As the number of functionalities of these 
systems increases, the complexity of their software also increases. Therefore, supervisory controllers 
that manage and coordinate the interactions of the different components are needed. 
 Since 1980, the development of supervisory control of discrete-event systems (SCDES) has evolved 
from a centralized perspective to more structured architectures (Wonham et al. 2017). Over the last 20 
years, SCDES has been established on the basis of the five fundamental concepts: feedback, stability, 
controllability, observability, and quantitative optimality (Athans and Falb 1966). 

Although there have been many advances in the field of SCDES, control engineers lack of 
experience with modeling and specification frameworks and software expertise in engineering design 
(Wonham et al. 2017), resulting in monolithic programs with little separation of concerns and tightly 
coupled components. Additionally, industrial applications are case-specific. James et al. (2019) 
presented a formal design and implementation of a supervisory controller for a didactic manufacturing 
cell. They use a modular approach where they design a supervisor for each plant. Although they use 
automata to model the system, there is no formal specification. They rely on PLC Ladder Logic 
Programming to model and simulate the system and there is no explanation on how to translate this 
model into the actual supervisory controller. Van Beek et al. (2014) developed the Compositional 
Interchange Format for modeling, synthesis, simulation-based validation, verification, and 
visualization, real-time testing of model-based supervisory controllers. This approach could become 
unnecessarily complex, given that the supervisor is based on a hybrid observer.  

Bhatti (2021) discussed the design and validation of a hybrid supervisory controller for a retrofitted 
P4 parallel Chevrolet Blazer. The controller, component models, and input/output interaction layers 
were developed MathWorks Simulink, which makes it challenging for the actual deployment. 
Borshchova (2017) developed a discrete-event supervisor that works in parallel with the inner-loop 
controller and is designed to assist the automatic landing of a multi-rotor unmanned aircraft on a moving 
target. It used discrete-event specifications and was tested in real-time to assist the pilot and crew when 
exceptions occur during the landing phase of the flight. The challenge with this approach is the 
explosion of states, which makes it difficult to implement and monitor in real life.  

To fulfill these gaps and address the challenges discussed, we use the DEVS formalism as an 
alternate approach to building supervisors, focusing on modifiability and transparency. 
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2.1 The DEVS Formalism 

Discrete Event System Specification (DEVS) (Zeigler et al. 2000) was chosen as the methodology to 
model the CVLAD Supervisory Controller because it addresses the current challenges with supervisory 
controllers described earlier. DEVS is a hierarchical and modular modeling formalism that separates 
the target system into atomic and coupled model components. Atomic and coupled models can be linked 
to each other’s inputs and outputs allowing complex models to be built from simpler building blocks. 
The communication between models is performed through instantaneous occurrences where values are 
transmitted to and or received by a DEVS model. Modularity allows the behavior of large systems to 
be divided and modeled independently, increasing cohesion within components. The hierarchical nature 
of DEVS means that small components can be assembled to model much larger systems (such as 
CVLAD’s autonomy system). Modeling systems hierarchically and in a modular fashion allows 
sections of the model to change without affecting the whole model as well as partitioning behavior into 
logical blocks which can more easily be understood. This allows the models used in the simulation 
engine to be deployed on the helicopter without modification. A full description of DEVS can be found 
in (Zeigler et al. 2000). 

2.1.1  Graphical Specification of DEVS Models 

A graphical specification (DEVS-graphs) can be used as described in specifying DEVS models 
(Praehofer and Pree 1993). The main benefit of the DEVS-graphs notation is that it allows for greater 
interaction and clearer communication with stakeholders who may have limited knowledge of the 
formalisms, mathematical notation, and programming skills. Additionally, it assists the modeler with 
visualizing the system. These benefits result in a developed system that accurately represents the 
stakeholders’ needs. 

Notations exist for modeling both atomic and coupled DEVS models. For atomic models (Figure 
1), this notation is similar to a finite state machine: there are nodes (representing the states) connected 
by directed edges (representing the transitions), though several key extensions have been made. 

 
Figure 1: DEVS atomic models using DEVS-Graphs (Wainer 2009). 

 
 As shown in Figure 1, the edges connecting nodes can be of two types: a dashed line to represent 
an internal transition or a solid line to represent an external transition. Some additional annotations are 
required to fully define the model: (1) each state must be labeled with an ID and a time advance value 
(LT) associated with the state; (2) each internal transition must be labeled with any outputs to ports and 
the associate output values that are generated when the internal transition fires; and (3) each external 
transition must be labeled with the input port and value pair that must be received in order for the 
transition to occur. 
 Coupled models can then be built up by connecting the inputs and outputs from atomic models to 
each other. It is useful in this circumstance to hide the structure of the atomic model inside a black box 
(Figure 2), and focus on the interfaces of the model when constructing coupled models. Atomic and 
coupled models are then connected together using arrows, the ends of which specify the sending or 
receiving port. 

 
Figure 2: DEVS coupled models using DEVS-Graphs (Wainer 2009). 
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2.1.2  Cadmium and Real-Time Cadmium 

Although there are many DEVS simulators (Tendeloo and Vangheluwe 2016), we used Cadmium, a 
DEVS modeling and simulation engine that allows us to complete the whole development cycle 
(including embedded real-time execution) without modifying the original models. In Cadmium each 
atomic and coupled model are represented by a class, each of which can be instantiated into an object 
and then incorporated into larger coupled models. The implementation is in C++, and it can use external 
libraries execute on a hardware target platform. Cadmium implements the abstract hierarchical 
simulation algorithm (Zeigler et al. 1994) for DEVS models. 

Atomic models in Cadmium must contain: (1) a structure containing the input and output definitions 
for the ports, (2) a tuple with the input port types, (3) a tuple with the output port types, (4) a default 
constructor, (5) a function to handle internal transitions, (6) a function to handle external transitions, 
(7) a function to handle an internal and external transition occurring at the same time (confluence 
function), (8) a function to send outputs and (9) a function to manage the timing of each state. Coupled 
models in Cadmium must contain: (1) a structure containing the input and output definitions for the 
ports, (2) a Ports object with the input port types, (3) a Ports object with the output port types, (4) a 
Models object with the atomic/coupled models in the current coupled model, (5) an EICs object to define 
the external to internal couplings, (6) an EOCs object to define the internal to external couplings, and (7) 
a ICs object to define the internal couplings. Note that the classes for all objects are defined within the 
Cadmium simulator. 
 RT-Cadmium (Niyonkuru and Wainer 2021) allows executing Cadmium models in real time. The 
models are defined in the same way as in Cadmium, and the models execute based on the real-time 
clock instead of using virtual time. To connect with external devices, the I/O ports used for the DEVS 
models use an interface and drivers. The user models, the drivers and RT-Cadmium libraries are 
compiled to produce an executable that runs on different hardware platforms. A Modelling subsystem 
is connected to a RunTime and Messaging subsystems. The Main Runtime Subystem manages the 
overall aspects of the real-time execution and provides timing functions with microsecond precision. It 
controls atomic components, the Top coupled component ports that are connected to the external 
environment, and uses the models to build a hierarchy. Finally, it spawns the main real-time task. The 
Runtime subsystem includes Simulators (that execute the atomic component functions in real-time), a 
Root Coordinator (that handles real-time event scheduling, and spawns Drivers), and Coordinators, in 
charge of message passing and scheduling of the subcomponents. The Messaging subsystem is in charge 
of transmitting messages between the different components in the Runtime Subsystem, which makes 
the model execution advance (in virtual or real-time).  
 Other DEVS environments, both for simulation and real-time execution include Hu and Zeigler 
(2005), as well as Song and Kim (2005), who defined RT models using the DEVS framework. Moallemi 
et al. (2011) showed how to reuse models developed in different simulation engines by interfacing E-
CD++ (Wainer and Glinsky 2004) and PowerDEVS (Bergero and Kofman 2011). PowerDEVS 
provides a method to model hybrid systems and execute RT models. Action-Level Real-Time DEVS 
(Gholami and Sarjoughian 2017) is used to model Network-on-Chip systems. One of the advantages of 
RT-Cadmium is that the models can run on bare hardware, without the need of an operating system or 
other middleware, making modular classes simple to be reused. 

3 SUPERVISOR DEVS MODEL DEVELOPMENT 

As discussed earlier, we developed a supervisor for the landing phase of missions. Before a mission 
starts, the mission planner designates the general area in which it is intended that the aircraft will land. 
This is called the Planned Landing Point (PLP). Once the aircraft approaches the PLP, the perception 
system will identify Landing Points (LPs) within the PLP. LPs are regions large enough for the 
helicopter to land in and are clear of obstacles. Multiple LPs might be found by the perception system, 
so for how long LPs are sought after and which LPs are accepted will be the responsibility of the 
Supervisor. On approach to the PLP, the autonomy system will start to receive inputs from the 
perception system regarding safe places to land. The perception system uses LiDAR to identify safe 
LPs where there is enough clearance for the helicopter to safely reach the ground. It is the job of the 
Supervisor to receive LPs from the perception system alongside other inputs from the FCC, mission 
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manager, pilot, and aircraft, to determine whether the FCC should be ordered to land the helicopter or 
to hover then hand control over to the pilot, if no suitable landing point is found. 

The behavior of the supervisor in the landing phase was separated from the rest of the system to 
take advantage of the hierarchical reinnature of DEVS: the overall behavior, as explained above, was 
partitioned into atomic models, then those atomic models were assembled to form the Supervisor. The 
following sections describe the models for the CVLAD Supervisory Controller and its sub-models. 

3.1 Supervisor Coupled Model 

The purpose of the Supervisor coupled model (Figure 3) is to manage the landing phase of the mission 
by receiving signals from external systems (such as the FCC, ground station, mission manager, path 
planner, and pilot display), processing those signals to advance the state of the system and notifying 
those systems back with the actions to be taken. 

 

 
Figure 3: Supervisor coupled model. 

 
To fully encapsulate all the behavior of the CVLAD Supervisory Controller, the Supervisor coupled 

model was decomposed into 4 sub-components - LP Manager, LP Reposition, Stabilize, and Handover 
Control. Each subcomponent encapsulates a specific behavior of the system. 

The LP Manager model facilitates the receipt, validation, and acceptance of landing points as well 
as the scanning behavior when the planned landing point has been reached.  

The LP Reposition model coordinates the final stage of the landing phase, from receipt of a valid 
landing point to declaring the mission complete after landing. 

The Stabilize model defines the procedure of transitioning the helicopter to a given hover criteria 
(i.e., a stable position).  

The Handover Control model is used to transfer control of the aircraft away from the autonomy 
system to the evaluation pilot. 

The Supervisor coupled model (Figure 3) uses 5 input ports and 8 output ports. The input ports 
along with a description are presented in Table 1 and the output ports in Table 2. 
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Table 1: Inputs to the Supervisor coupled model. 
Input Port Description of the inputs received 
aircraft_state Current position, heading, and velocity of the helicopter 
landing_achieved Acknowledgment: the helicopter has landed 
lp_recv Landing points 
pilot_takeover Acknowledgment: the pilot has forcibly taken control of the helicopter 
plp_ach Acknowledgment: the helicopter has achieved the planned landing point 

 
Table 2: Outputs from the Supervisor coupled model. 

Output port Description of the outputs sent 
control_yielded Notification: the Supervisor has relinquished control of the helicopter 
fcc_command_hover Command to hover at a given location 
fcc_command_velocity Command to change the velocity of the helicopter 
land_requested Request to start landing the helicopter at a given location 
lp_expired The LP accept timer has expired, so no more LPs will be accepted 
mission_complete Declaration that the mission is complete after landing 
notify_pilot Request to ask the pilot to take control of the helicopter 
start_lze_scan Command to start the scan of the landing zone 

 
In the following section, we discuss the definition of the Handover Control atomic model. All the 

atomic models in the system are defined in a similar way. The Landing Point Reposition coupled model 
is defined in a similar way to the Supervisor coupled model. All models and the implementation 
presented in Section 4 can be found in our GitHub repository (Horner and Trautrim 2022). 

3.2 Handover Control Atomic Model 

The Handover Control atomic model in Figure 4 hands over control of the aircraft to the pilot.  
 

 
Figure 4: Handover Control atomic model. 

 
The atomic model uses seven states to represent this activity: (1) IDLE, (2) HOVER, (3) 

STABILIZING, (4) WAIT_FOR_PILOT, (5) YIELD_CONTROL, (6) PILOT_CONTROL, (7) 
NOTIFY_PILOT. The model is initialized in the IDLE state. It remains IDLE state until an input is 
received. The inputs will arrive at the model when the aircraft reaches an impermissible state such as 
when an LP cannot be found. If the model receives an input from the pilot_handover input port, it 
transitions into the HOVER state and it immediately transitions to the STABILIZING state after sending 
a hover request through the corresponding output port (i.e., stabilize). The model stays in the 
STABILIZING state until it receives an input through hover_criteria_met (which means that the aircraft 
is now hovering). Then, the model transitions to the NOTIFY_PILOT state, then immediately transition 
to the WAIT_FOR_PILOT state after sending a notify_pilot output (which notifies the pilot that their 
intervention is required). Once the model receives the pilot_takeover signal (i.e., the pilot notifies the 
system that they have taken control of the aircraft) the model transitions to the YIELD_CONTROL 
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state. The model transitions to the PILOT_CONTROL state after sending a control_yielded output 
(which signals to the aircraft that is has relinquished control). The pilot can manually take control of 
the aircraft using a switch in the cockpit. Once activated, the model will receive a pilot_takeover input 
and transition from any state (except YIELD_CONTROL and WAIT_FOR_PILOT) to the 
PILOT_CONTROL state. This disengages the model leaving full control of the aircraft to the pilot. 

4 IMPLEMENTING THE SUPERVISOR 

After developing the DEVS models, a simulation of the Supervisor DEVS models was implemented 
using the Cadmium library as well as the real-time version of Cadmium. Using the DEVS models 
developed earlier, test drivers were created to simulate the models for verification and validation of the 
behavior by the NRC experts. An evolutionary prototype life-cycle was used to iterate upon the 
implementation, adding more functionality and implementing stubbed components with each cycle. 
First, a simulation of the Supervisor was created using Cadmium for verification and validation of the 
DEVS atomic and coupled models. The same models were then used, without modification, using a 
real-time version of Cadmium removing the need of perform verification and validation again. Each 
C++ model implementation was simulated using a test driver, then simulation results were inspected 
for verification and validation, as is shown in Sections 4.3.1 and 4.3.2. 

4.1 Handover Control Atomic Model 

The Handover Control atomic model was implemented by translating the specification in DEVS Graphs 
into a C++ class that could be used by the Cadmium simulation library as shown in Figure 5. 
 
template<typename TIME> class Hdov_Ctl { 

public: 
DEFINE_ENUM_WITH_STRING_CONVERSIONS(States: (IDLE),(HOVER),(STABILIZING),(NOTIFY_PILOT),

      (WAIT_FOR_PILOT),(YIELD_CONTROL),(PILOT_CONTROL) ); 
  
using input_ports = tuple<typename Hdov_Ctl_defs::i_hover_criteria_met,   

       typename Hdov_Ctl_defs::i_pilot_handover, typename Hdov_Ctl_defs::i_pilot_takeover>; 
using output_ports = tuple<typename Hdov_Ctl_defs::o_notify_pilot, 

   typename Hdov_Ctl_defs::o_control_yielded, typename Hdov_Ctl_defs::o_stabilize>; 
 
struct state_type { States current_state; }; state_type state; 
  
Hdov_Ctl() { state.current_state = States::IDLE; } 
  
void internal_transition() {  

switch(state.current_state) { 
    case States::HOVER:  

   state.current_state = States::STABILIZING; break; 
…  } 

} 
void external_transition(TIME e, typename make_message_bags<input_ports>::type mbs) { 

switch (state.current_state) { 
  case States::HOVER: 
   received_pilot_takeover = get_messages<i_pilot_takeover>(mbs).size()>=1; 
    if (received_pilot_takeover) { 
    state.current_state = States::PILOT_CONTROL; } 
  break; 
   … } 
} 
typename make_message_bags<output_ports>::type output() const { 

switch(state.current_state) { 
 case States::NOTIFY_PILOT: 

bag_port_out.push_back(true); 
  get_messages<typename Hdov_Ctl_defs::o_notify_pilot>(bags) = bag_port_out; 
  break; 
…  } 

} 
TIME time_advance() const {  

switch(state.current_state)  
   case States::IDLE: return numeric_limits<TIME>::infinity(); break; 
 ...} 

} 
}; 

Figure 5: Code snippet of the implementation of the Handover Control atomic model. 
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 The input and output ports of the model are defined by the input_ports and output_ports 
namespaces. The model structure includes a set of states (an enumeration) used to define the state 
variable state_type. The initial state of the model is IDLE. The internal_transition method uses a 
case statement based on the current state, as seen in Figure 4. The external transition method checks the 
inputs of the model and then deciding the transition based on the input received and the current state 
(also defined in Figure 4). The outputs from the model were defined based on the current state: message 
bags were constructed and sent to the output ports with information to be sent to other models within 
the Supervisor as well as the pilot. Finally, the time advance function for the model was defined by 
returning a TIME given the current state of the model using a switch-case statement. The remaining 
atomic models as well as the interface atomic models were defined in a similar manner based on the 
DEVS Graphs specification. 

4.2 Supervisor Coupled Model 

The Supervisor coupled model was implemented using the sub-models previously defined in C++ as 
well as the structure conveyed by the graphical specification as shown in Figure 6. 

  
class Supervisor { 

public: 
shared_ptr<model> lp_manager = translate::make_dynamic_atomic_model< … >("lp_manager", … ); 
shared_ptr<model> stabilize = translate::make_dynamic_atomic_model< … >("stabilize"); 
shared_ptr<model> Hdov_Ctl  = translate::make_dynamic_atomic_model< … >("Hdov_Ctl"); 
 
shared_ptr<coupled<TIME>> lp_reposition = make_shared<coupled<TIME>>("lp_reposition", … ); 
 
Ports iports = { 
 typeid(Supervisor_defs::i_landing_achieved),typeid(Supervisor_defs::i_aircraft_state), 
 …  }; 
  
Ports oports = { 
 typeid(Supervisor_defs::o_LP_expired), typeid(Supervisor_defs::o_start_LZE_scan),…  
}; 
  
Models submodels = { lp_manager, stabilize, Hdov_Ctl, lp_reposition }; 
EICs eics = { ... }; 
EOCs eocs = { ... }; 
ICs ics = { ... }; 

}; 

Figure 6: Code snippet of the implementation of the Supervisor coupled model. 
 

 The sub-models of the Supervisor are built using the make_dynamic_atomic_model and make_shared 
functions provided by Cadmium; then, references to each model are given in the submodels structure. 
Once each sub-model is initialized, the couplings are defined: the connections between inputs to the 
Supervisor and the inputs of sub-models were defined in the eics structure, the connections between 
outputs of sub-models and Supervisor outputs were defined in the eocs structure, and the connections 
between outputs of sub-models and the inputs of other sub-models were defined in the ics structure. 
Other coupled models inside the Supervisor are defined in a similar manner. 

4.3 Model Testing 

Verification of the Supervisor was conducted throughout the project: the graphical specification of the 
DEVS models were visually tested with the help of the CVLAD team, then the simulated models were 
verified using simulation and interactive real-time test drivers. 

Atomic models were tested to confirm that correct transitions were made given certain inputs and 
time advance functions, and that outputs were generated at the correct transition. We used white box 
testing to evaluate the control flow of atomic models. The tests were written to evaluate the whole 
behavior of the system and cover all possible evolution paths. Black box testing was used to verify the 
coupled models. Additionally, coupled models are built by linking together atomic models already 
verified through white box testing. 
 The graphical specifications and description of DEVS atomic and coupled models (including its 
purpose and behavior) were provided to the stakeholders for feedback to meet the requirements. 
Interactive test drivers were also used for validation of the Supervisor by stakeholders. A command line 
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Supervisor test driver (Section 5.2) allowed researchers at the FRL to test if all required behavior was 
present as well as validate that the outputs were generated at the right time. 

4.4 Simulation Testing 

Test drivers were created to test the behavior of each simulated atomic and coupled DEVS model. Each 
test driver consisted of an input reader (provided by the Cadmium library) coupled to each input of the 
model under test to read input events. The state changes and events were then recorded using loggers 
provided by Cadmium. The logs of each simulation run could then be analyzed to determine whether 
the model under test was exhibiting the required behavior. 

Figure 7 shows an example test driver (for the Handover Control atomic model shown in Section 
3.2 and implemented in Section 4.1). The model consists of three input readers, named as the port the 
reader is coupled to. 

 

 
Figure 7: Example of a Test Driver for a DEVS model. 

 
The test cases for Figure 7 are derived from a transition tree presented in Figure 8. The transition 

tree is created starting at the initializing node in Figure 4 (i.e., IDLE). From the IDLE state, we define 
two leaves (one for each transition) for PILOT_CONTROL (PC in the figure) and HOVER (HOV in 
the figure). If a node is a final state or it is already in the tree mark, the leave is marked as terminating 
with an “X”. This is repeated from the newly created leaves until there are no transitions left in the 
atomic model. 

 
Figure 8: Handover Control transition tree. 

 
 Using the transition tree criteria, each path from the initialization node was tested to a terminating 
node denoted (defined by the “X” under the node). It is important to remark that to test transitions 
occurring from an input in a state that has a zero time advance it was required to start the model in that 
state to test it. For example, in Figure 6, to test the path from HOV to PC the test driver would initialize 
model in the HOV state and have an event at time equals zero to transition to PC. This method of testing 
only tested the defined transitions. To accomplish complete coverage of the models the sneak paths also 
needed to be tested. This means that each state in an atomic model needed to be tested for all the inputs 
that would not cause it to transition. This was done to confirm that no undefined behavior could occur. 

Once each test case was defined, the test driver is used to simulate the model. Table 3 shows test 
cases for the Handover Control atomic model. The first scenario shows the model receiving an input at 
a time 00:00:05:000 in the input port pilot_handover, indicating that the system must get ready to release 
control to the pilot. At time 00:00:10:000, a new input is received in hover_criteria_met indicating that 
the hover criterion has been met. At time 00:00:15:000, an input in pilot_takeover is received indicating 
that the pilot took control. After the simulation run, log files of events and state transitions are available. 
A snippet of the log tables for test cases 0 and 1 of the Handover Control are shown in Table 4, which 
includes the time of an event, the state of each atomic model at the time, the port on which the output 

449



Horner, Trautrim, Ruiz Martin, Borshchova, and Wainer 
 

 

generated (if any), and the value of the output. In Test 0, the model starts in the IDLE state. Once the 
model receives an input in pilot_handover at time 00:00:05:000 (Table 3), it transitions to the HOVER 
state. As the time advance of the state is zero, it immediately changes state to STABILIZING and 
generates an output in the o_stabilize with the value 0 0 0 15 16.4 5 3 15 3 0 0 0, stating a hover criterion 
for the aircraft. The rest of the log is interpreted in a similar way. 

 
Table 3: Simulation test inputs to the Handover Control atomic model. 

Hdov_Ctl - Test: 0   
Time Input Port Value 
00:00:05:000 pilot_handover 0 0 0 0 

00:00:10:000 hover_criteria_met 1 

00:00:15:000 pilot_takeover 1 

…   

 
Table 4: Simulation results for the tests of the Handover Control atomic model. 

Hdov_Ctl  Test: 0   
Time State Output Port Value 
00:00:00:000 IDLE   

00:00:05:000 HOVER   

00:00:05:000 STABILIZING o_stabilize 0 0 0 15 16.4 5 3 15 3 0 0 0 

…  …  …  …  

Test: 1    
Time State Output Port Value 
00:00:00:000 NOTIFY_PILOT   

00:00:00:001 PILOT_CONTROL   

4.5 Real-Time Testing 

A real-time test driver was developed to allow different trajectories through the Supervisor to be 
explored in an interactive manner by researchers at the FRL and by other stakeholders. A command line 
Supervisor test driver (Figure 9) was built as a Supervisor Command Line Input atomic model coupled 
to each of the Supervisor input ports. The simulation would run until all simulated DEVS models were 
passivated, then the log files would be parsed into more presentable tables for review by the user. In 
this way, the Supervisor could be tested in real-time and dynamically, giving free rein to the tester in 
exploring all aspects of the Supervisor’s behavior. The Supervisor Command Line Input atomic model 
was designed and implemented to query the user for input and direct the entered message to the 
appropriate port of the Supervisor. The user input is parsed to determine the destination port and to 
populate a message structure to send.  

 

 
Figure 9: Command Line Supervisor Test Driver DEVS model. 

 
Before the Supervisor could be deployed onto the NRC’s Bell-412 ASRA, thorough real-time 

integration testing must be conducted in a controlled environment. To prepare for deployment on the 
helicopter, the Supervisor and integration models would need to be tested on the NRC’s simulator: a 
version of the autonomy system leveraging high fidelity physics simulations to supply Bell-412 
helicopter dynamics including hardware-in-the-loop (HIL). 

450



Horner, Trautrim, Ruiz Martin, Borshchova, and Wainer 
 

 

Incremental testing is vital to ensure the safety on the aircraft as well as save valuable flight-testing 
hours. By testing in a simulated environment, it can be ensured that all components can communicate 
effectively, and no obvious faults exist in the production system. Testing with HIL allows for rapid 
iteration if faults are uncovered, so turn-around-time for bug fixes are smaller and the system can be 
tested again sooner. To integrate the Supervisor with the rest of the autonomy system, the simulated 
version, and then on board the aircraft, interfaces needed to be created to connect the Supervisor to the 
Local Area Network (LAN) of the aircraft. The aircraft’s autonomy system sends messages over the 
LAN using the User Datagram Protocol (UDP). To facilitate the communication between events 
generated by the Supervisor and the autonomy system components over the network, two DEVS atomic 
models were created: the UDP Input and UDP Output models (Figure 10). 

 

             
Figure 10: Input and output atomic models. (a) UDP Input (b) UDP Output. 

 
 The UDP Input model (Figure 10a) is used to receive UDP packets of a generic type and convert 
the packet into an event that can be understood by the Supervisor. The UDP output atomic model (Figure 
10b) is used to translate an event generated by the Supervisor and send it as a UDP packet to a specified 
address and port. The content is sent to a predetermined network address and port instead of an external 
output port. The UDP Input model was designed to connect to each input of the real-time Supervisor 
model so the Supervisor could receive UDP packets from any other autonomy system components the 
network, for example, the perception system or the FCC. The UDP Output model was designed to send 
a DEVS event from the Supervisor as a UDP packet to a singular autonomy system component. Multiple 
UDP Output models could then be combined to notify all the necessary components when a DEVS 
event occurs, for example, the pilot display and Mission Manager when the mission complete output is 
generated (Note: the architecture of the aircraft and its simulator cannot be detailed due to a non-
disclosure agreement). 

5 CONCLUSIONS AND FUTURE WORK 

In this work, the behavior of the supervisory controller in the landing phase of a mission for the NRC’s 
Bell-412 ASRA was modeled using DEVS formalism and DEVS-Graph notation. The graphical models 
were then used to implement the atomic and coupled models in C++ so Cadmium could be used to 
simulate the Supervisor. The simulated models were validated using the graphical specifications and 
verified using Cadmium in both simulation and real-time testing suites. Since the project life cycle 
followed the spiral model, the system was rapidly prototyped and tested after every update.  

The use of DEVS as a method to develop and design supervisory controllers is novel within the 
aerospace field. Supervisory controllers developed using common industry techniques often suffer from 
several issues leading to difficulty in maintenance, future development, and testing. DEVS offers the 
ability to effectively apply separation of concerns in the development of controllers, such that behavior 
is compartmentalized. Subsets of the supervisory controller behavior can then be expanded upon in 
future (e.g., adding detect-and-avoid, path planning, etc.) without impacting the entire system and unit 
tested separately before being integration tested.  

When analyzing the integration of the Supervisor with the rest of the autonomy system, the issue 
of cause-effect problems was encountered. On one hand, when transport time for messages is low, for 
example over a bus in a single computer, there is very little chance that messages might be received out 
of order. Also, if a system is purely reactionary, i.e., stateless and have the same behavior when supplied 
with an input, the order in which inputs are received does not matter, as the system cannot enter an 
incorrect state. On another hand, when one piece of software can change the state of another by sending 
messages, there is a risk that if the messages being passed between the processes arrive in a different 
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order to which they were sent, the system will exhibit incorrect and unexpected behavior. Proving a 
solution to the cause-effect problem on the actual helicopter will be the future steps of this research. 
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