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ABSTRACT

COVID-19 related crimes like counterfeit Personal Protective Equipment (PPE) involve complex supply
chains with partly unobservable behavior and sparse data, making it challenging to construct a reliable
simulation model. Model calibration can help with this, as it is the process of tuning and estimating the
model parameters with observed data of the system. A subset of model calibration techniques seems to
be able to deal with sparse data in other fields: Genetic Algorithms and Bayesian Inference. However,
it is unknown how these techniques perform when accurately calibrating simulation models with sparse
data. This research analyzes the quality-of-fit of these two model calibration techniques for a counterfeit
PPE simulation model given an increasing degree of data sparseness. The results demonstrate that these
techniques are suitable for calibrating a linear supply chain model with randomly missing values. Further
research should focus on other techniques, larger set of models, and structural uncertainty.

1 INTRODUCTION

During COVID-19, a rise in counterfeit Personal Protective Equipment (PPE) and related criminal activities
was detected. Suddenly, there was a high worldwide demand for PPE such as face masks, particulate
filter respirators, gloves, goggles, and glasses (Omar et al. 2022). Medical PPE for hospitals have stricter
requirements, such as certification, than non-medical PPE. Certified PPE are more valuable than non-
certified PPE, making it attractive for criminals to try and sell non-certified PPE as certified PPE. Detecting
counterfeit PPE has been challenging since (1) COVID-19 is a new and unexpected phenomenon so there is
little historical data, and (2) criminals generally try to share as little data as possible. Together, this makes
it hard to get insight into criminal activities pertaining counterfeit PPE, making it a complex system.

Simulation is a way to get insight into complex systems, recognizing relations, and exploring future
scenarios (Shannon 1998). In particular, the focus of this paper is on discrete event simulation for representing
complex socio-technical systems (Schmitt and Singh 2009). A model can be conceptualized as consisting
of variables and relations, and many variables need an initial value in the model to capture an initial state
and behavior that is consistent with the state and behavior of the system. These initial values are called
parameters; more specifically parameters of components of the model. Some of the parameter values might
be observed directly, while others are unobservable and thus have to be tuned to match the behavior of the
simulation model with its real world counterpart.

Model calibration can help with constructing a model close to the real world. It is the process of tuning
and estimating the model parameters with observed data of the system to improve the similarity between
the model and the system. The goal of model calibration is to find those parameter values for which the
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behavior of the simulation model is as close as possible to the observed behavior of the real system by
using real data.

In case of criminal activities in general, and in particular for counterfeit PPE, data is sparse. Criminals
want to stay off the grid and generally do not voluntarily share information about their criminal activities.
In case of COVID-19 related crimes, data sparseness is even more pronounced due to its novelty. This
makes it even more challenging to calibrate models. In cases like this, model calibration should be able to
handle sparse observed data. Data sparseness can be classified in three dimensions: (1) noise, (2) bias, and
(3) missing values (Huang 2013; Hazen et al. 2014). This research focuses on one of the three dimensions
of data sparseness, missing values. The goal of model calibration with sparse data is to find the most likely
model configuration that matches the underlying system.

A subset of model calibration techniques seems to be able to handle sparse data in other fields. For
example, Evolutionary Algorithms are widely applied for high-dimensional optimization problems where
data often becomes sparse (Ren and Wu 2013). Bayesian Inference is often used for uncertainty analysis,
and is one of the few techniques in machine learning that is able to handle sparse data sets (Vrugt and
Beven 2018; Jalali et al. 2017). Data Assimilation is a promising technique for predicting simulation
models in real-time with sparse data (Xie 2018; Kuipers 2021). However, it it yet unknown how these
techniques perform for the calibration of simulation models given sparse data.

Therefore, this paper analyzes two model calibration techniques that are likely suitable for calibration
in the case of sparse data. To test these techniques, a case study of a counterfeit PPE supply chain is used.
We use a stylized discrete event simulation model of a counterfeit PPE supply chain as ground truth. We
extract data from this model, systematically increase the degree of sparseness of the data, and assess the
extent to which the selected model calibration techniques can still identify the underlying supply chain. We
also test a commonly used model calibration technique as reference. This paper is the first step towards
analyzing and comparing various model calibration techniques on simulation models of complex systems
in the case of sparse data.

The paper is structured as follows. In Section 2, we discuss the current state-of-the-art literature on
model calibration with sparse data, and select the model calibration techniques for this study. In Section
3, we explain the design of experiments used to test the selected model calibration techniques. In Section
4, we outline the simulation model of the case study, and present the results of the quality-of-fit of the
selected model calibration techniques on the case study given an increasing degree of data sparseness. In
Section 5, we discuss our results. In Section 6, we conclude our study, and provide some directions of
further research.

2 MODEL CALIBRATION TECHNIQUES

Calibration of simulation models is defined as finding values for parameters of the model by using real
data until there is a “good” agreement, i.e., as close as possible, between the model data and the observed
data over a given time interval (Wigan 1972; Ören 1981; Hofmann 2005). Optimization techniques are
commonly used for model calibration as the objective is to minimize the difference between the model
data and the observed data (Liu et al. 2017).

2.1 Related Work

Malleson (2014) discusses the calibration of simulation models in the field of criminology. The author
focuses on the goodness-of-fit in spatial structures. He presents three computer algorithms that help with
exploring the parameter space: (1) Hill Climbing, (2) Simulated Annealing, and (3) Genetic Algorithms.
Malleson (2014) emphasizes the need for gathering reliable observed data from the criminal system as this
is not present yet. He notes that the calibrated model would not represent the real system when data is
sparse. In our study, we do not focus on gathering this data but we focus on how to present the real system
using model calibration given sparse observed data.
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Liu et al. (2017) are one of the first to explicitly addresses calibration of a simulation model under
data sparseness. They propose a simulation-optimization approach to automatically calibrate a simulation
model with sparse data. They formulate the problem as a series of local minimum search problems. An
agent-based model of an emergency department is used as case study. Following from this, De Santis
et al. (2022) focus on calibration of a discrete event simulation model under data sparseness. They use
the observable values from the target system for finding values of the simulation model on the level of
model parameters, e.g., the time difference between known time stamps. de Groot and Hübl (2021) use
calibration as a form of validation. In their case, validation of the simulation model is difficult due to the
sparseness of data. They manually adjust parameters and behavior of the model to increase validity.

The main differences between the related work and our research are that (a) we compare various
optimization techniques in the case of data sparseness instead of selecting one, and (b) we do not assume
that one calibration technique works best for all types of sparse data.

2.2 Selected Techniques for Model Calibration with Sparse Data

We select a commonly used model calibration technique as reference technique: an exact solver using
Powell’s Method. As a first attempt to analyze the performance of techniques that seem to be able to deal
with sparse data for calibrating simulation models, we select two model calibration techniques: Genetic
Algorithms and a Markov Chain Monte Carlo sampling approximate Bayesian computation. The following
sections describe these model calibration techniques in more detail.

2.2.1 Powell’s Method

Exact solvers calibrate a model through exact mathematical optimization that guarantees to find (local
or global) optimal solutions during model calibration (Puchinger and Raidl 2005). A commonly used
exact algorithm for calibrating simulation models is Powell’s Method (Liu et al. 2017). In a rugged
high-dimensional fitness landscape typical for discrete event simulations, Powell’s Method might be one of
the best techniques for calibrating due to its fast search speed (Zhong and Cai 2015). Powell’s Method is
a gradient-free minimization algorithm using a repeated line search introduced by Powell (1964). In more
detail, the algorithm selects a starting point and draws two different lines as search directions. On one of
these lines, the algorithm performs an one-dimensional optimization to find a new optimal point. From this
point on, an one-dimensional optimization is performed on the other line representing the different search
direction. With these optimal points, a conjugate search direction is drawn where also an one-dimensional
optimization is performed. These steps are repeated until the algorithm finds the optimal solution or when
stopping criteria are reached (Vassiliadis and Conejeros 2009). In this research, the number of iterations
and functions evaluations are used as stopping criteria.

2.2.2 Genetic Algorithm

Evolutionary algorithms calibrate a model through population-based, i.e., “survival-of-the-fittest”, tech-
niques. One of the oldest and well-known evolutionary algorithms are Genetic Algorithms (GA) (Slowik
and Kwasnicka 2020). GA are widely applied as optimization algorithm in the field of model calibration
(Park and Qi 2005; Malleson 2014). Classic GA are based on Darwin’s theory of natural selection. The
idea is that fittest individuals have a higher change to survive, and thus their genes contribute more to the
reproduction of the next generation (Whitley 1994). Each parameter of the optimization represents a gene.
Each solution of the optimization corresponds to a combination of genes, also known as a chromosome of
an individual.

GA follow four steps: (1) initialization, (2) selection, (3) recombination, and (4) mutation (Mirjalili
2019). At the initialization, a random population to ensure diversity in the solution space is spawned. Next,
a selection of the best solutions based on their fitness value is created. The fitness value is calculated by the
user defined fitness function, i.e., the objective function of the optimization. After this, the chromosomes
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are combined to produce new chromosomes, also called recombination. This means that two solutions
(parents solutions) are selected to produce new solutions (children solutions). Cross-over operators are used
to combine and swap the genes of the parent solutions to produce children solutions. In the last step, the
genes of some children solutions are altered, also called mutation. In this way, the algorithm maintains the
diversity of the population since a certain level of randomness is included in the population. This avoids
the probability that GA stay in the local optimum (Mirjalili 2019).

GA are an iterative process, meaning that it keeps on creating new populations using selection,
recombination, and mutation until some user defined stopping criterion is reached. In this research, we use
the number of function evaluations as a stopping criterion.

2.2.3 Approximate Bayesian Computation

Model calibration is a core application of Bayesian data analysis using Bayes’ theorem (Csilléry et al.
2010). In the case of sparse data and uncertainties, approximate Bayesian computing (ABC) is one of most
suitable techniques for calibrating as it is likelihood-free (Vrugt and Beven 2018). ABC is a technique for
estimating the posterior distribution of model parameters using Bayesian statistics.

One of the most efficient sampling algorithms for ABC is Differential Evolution Adaptive Metropolis
(DREAM), a multi-chain Markov Chain Monte Carlo Sampling algorithm (Sadegh and Vrugt 2014).
DREAM combines a multi-chain Markov Chain with differential evolution, as also found in some GA,
for population evolution with a Metropolis selection rule. More specifically in the case of calibration,
DREAM draws samples using the Markov Chain Monte Carlo Sampling method. These samples are used
to run the simulation model, and to collect data. The distance between the simulated data and the observed
data is used to either accept or reject a sample using an adaptive selection rule. DREAM uses multiple
parallel chains to explore the solutions space adequately, and cross-over of solutions between the chains
exists (Vrugt 2016).

The above steps in each chain are repeated until a stopping criterion, i.e., the number of draws, is reached.
When this happens, the accepted samples are used to approximate the posterior parameter distribution.

2.3 Distance Metric

In order to minimize the difference between the simulation model data and the observed data, a so-called
distance metric needs to be defined. The distance metric represent the distance between the simulation
model data and the observed data given a certain function. Generally, standard statistical functions such
as the mean square error, Kolmogorov-Smirnov metrics, or Euclidean (L2) distance are used as distance
metric. However, most of these standard statistical functions do not properly adapt to the data of a specific
problem (Suárez et al. 2021). In our case, the metric has to incorporate data of stochastic models in
combination with sparse observed data of the system. Moreover, in simulating complex and large systems
we typically deal with a high-dimensional space as a result of the many components with their parameters,
which makes it challenging to find an appropriate and meaningful distance metric (Aggarwal et al. 2001).

Mirkes et al. (2020) note that the classic distance metric, such as L1 and L2, are highly efficient for
complex and high-dimensional data applications. Thus, for the purpose of this study, we use a classic
distance metric: the Manhattan (L1) distance. The Manhattan distance is the distance between data points
as the sum of the absolute differences normalized for all dimensions.

3 DESIGN OF EXPERIMENTS USING GROUND TRUTH

We perform experiments to analyze the quality-of-fit of the selected model calibration techniques for
different degrees of data sparseness. First, we explain the set-up for evaluating the quality-of-fit for the
three selected model calibration techniques by using the ground truth. Next, we discuss the configuration
of each technique.
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3.1 Ground Truth Set-up for Evaluating the Quality-of-Fit

This research uses a ground truth set-up to evaluate the quality-of-fit of the model calibration techniques
over various degrees of data sparseness. For replicating the observed data of the system, we use a simulation
model that serves as a ground truth and extract data from this model. By using this set-up, we can assess
how close the estimation of the calibration is to the true values as these are known. This is nearly impossible
with real data (Khondoker et al. 2016).

Figure 1 presents the method used for evaluating the model calibration techniques. First, we define a
ground truth simulation model with as input decision variable X with ground truth X = x. The output of
the ground truth simulation model is the ground truth data, which does not include any sparseness. Next,
we add data sparseness to the ground truth data. For example, 10% of the ground truth data elements are
transformed into missing values. This leads to sparse observed data. The simulation model is calibrated to
the sparse observed data. For the calibration, each iterative model calibration technique in essence selects
a candidate value for the decision variable, X = v (Frank et al. 2013). Five replications of the simulation
model are ran based on the candidate values, leading to the simulation model data as output. Then, the
distance between the simulated model data and the sparse observed data is calculated using the distance
metric. This distance is minimized by the model calibration technique. Based on the distance, the model
calibration technique selects new candidate values for the decision variable. This process stops when a
stopping criterion is reached. The result is a value for the decision variable, X = v∗, that best describes the
ground truth model, according to the model calibration technique.

Although the model calibration techniques minimizes the distance between the simulated and observed
output data, the decision variable of the calibrated simulation model is not necessarily close to the decision
variable of the ground truth model. So, we introduce the quality-of-fit of the decision variables which
is defined as the normalized distance between the ground truth decision variable, X = x, and the optimal
decision variable resulting from the simulation model calibration, X = v∗. This quality-of-fit is calculated
by normalizing the difference between the ground truth input, X = x, and the solution, X = v∗, given the
upper and lower bounds of the decision variable X . A quality-of-fit of 0 means that the optimal solution
resulting from the calibration is not close to the ground truth; a quality-of-fit of 1 means that the optimal
solution resulting from the calibration is the same as the ground truth.

Figure 1: Method for evaluating calibration of a simulation model with sparse data.

The above steps represent one experiment for evaluating the quality-of-fit of a model calibration technique,
given a certain degree of data sparseness. We systematically increase the degree of data sparseness added
to the ground truth data. We evaluate for 10%, 25%, 50%, 75%, and 90% data sparseness. A degree of x%
means that x% of the original data elements are missing values. It is randomly determined which x% of data
elements are missing over the entire data set. Additionally, the model calibration techniques are examined
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for 0% of data sparseness, i.e., ground truth data, as a base case. Each experiment is performed with 8
seeds to account for the effect of stochasticity on the quality-of-fit. For each seed, we first transform x%
of the data set to missing values, and then we use this as input for all three model calibration techniques.
This means that the exact same observations were left out of the data set that is presented to the different
techniques for simulation model calibration.

3.2 Configuration of Model Calibration Techniques

To calculate the quality-of-fit for the selected model calibration techniques, the ground truth decision
variable, X = x, is compared to the optimal solution, X = v∗, for each of the model calibration techniques.
The result of Powell’s Method and GA is a single optimal solution of the decision variable, so X = v∗.
However, the result of ABC is an approximate posterior distribution of the decision variable. To extract
one optimal value of decision variable X from this resulting posterior distribution, we select the value with
the highest frequency, i.e., the mode, for that specific distribution. In this way, the most often accepted
value of the decision variable represents the optimal solution for ABC as X = v∗.

For pragmatic reasons, we define a stopping criterion for finding the optimal solution for each technique.
The stopping criteria for these experiments are based on an empirical analysis on the convergence of the
model calibration techniques over 5 seeds. For the reference technique, Powell’s Method, we limit the
number of function evaluations to 1500 and the number of iterations to 100. For GA, we use 15.000
function evaluations as a stopping criterion. The analysis shows that with 15.000 function evaluations, the
number of improvements stays constant for every seed. For ABC, we use 20.000 draws as the stopping
criterion. The analysis shows that there is convergence of ABC determined by the Gelman-Rubin statistics
at 20.000 draws for 3 of the 5 seeds (Gelman and Rubin 1992).

4 CASE STUDY: COUNTERFEIT PPE SUPPLY CHAIN

To evaluate the model calibration techniques, we use a case study of a counterfeit PPE supply chain. First,
we introduce the stylized simulation model based on this case study. Next, we discuss the analysis and
comparison of the various model calibration techniques given the simulation model of this case study.

4.1 Introduction of the Simulation Model

A discrete event simulation model of a stylized configuration of a counterfeit PPE supply chain from
Vietnam to stores in the Netherlands is used. We assume that the counterfeit PPE are produced in Vietnam;
one of the countries where most PPE come from, next to China and India. Most of these products are
transported over sea to Europe following the legitimate transport flows. After arrival in Europe, they are
distributed over various stores.

Figure 2 visualizes the stylized counterfeit PPE supply chain in more detail. The symbols represent
the main actors in the supply chain, and the arrows represent the transportation flows. Starting from the
supplier, supplies for PPE such as fabrics are delivered to the manufacturer over land in the production
country, Vietnam. The manufacturer produces the counterfeit PPE in the factory and packs them in batches
for transport. Each batch has a certain quantity of counterfeit PPE. For example, a batch consists of 1000
boxes of 100 PPE that equals a quantity of 100,000 PPE in total. Next, a truck transports a batch of
finished counterfeit PPE to the export port in Hai Phong, Vietnam. The batch is loaded into a container
and transported by a feeder to the transit port, Tanjung Pelepas, Malaysia. Once the batch is loaded on the
feeder, it becomes part of the legitimate transport flow. At the transit port, the feeder unloads the container
with counterfeit PPE. At the same port, the container is loaded onto a vessel, i.e., a larger container ship,
for international transport. After a certain amount of days on international waters, the vessel arrives at the
import port in Rotterdam, The Netherlands. The container is unloaded here, and waits for inland transport
to the wholesales distributor in Eindhoven, The Netherlands. The wholesales distributor can also be seen
as the stash location for the counterfeit PPE. At the wholesales distributor, the batch of counterfeit PPE
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in the container is equally divided into three smaller batches for the retailers. These smaller batches are
transported by small trucks to the retailer. When the counterfeit PPE arrive at the retailer, customers (either
businesses or individual customers) can purchase the products with or without being informed that they
are counterfeit.

Figure 2: Visualization of the stylized counterfeit PPE supply chain.

The structure of the supply chain is linear. Due to the many uncertainties in the supply chain (e.g., delay
in transport modalities, loading and unloading times), the supply chain becomes complex. For example, the
retailer’s inventory can fluctuate very much, depending on whether a vessel has a 1-day delay or a 7-day
delay. In the simulation model, most uncertainties such as delays of transport modalities and speed of
transport modalities follow triangular distributions inspired by real world data of a fashion retailer (Kuipers
2021).

In this research, the manufacturing duration, also referred to as manufacturing time, is the system
parameter to be calibrated. More specifically, we use the manufacturing time as the decision variable in
the simulation model calibration, meaning that we seek for the most likely value for the system parameter
of manufacturing time. Table 1 shows the configuration of the manufacturing time as a decision variable.
Manufacturing time has been chosen as an uncertain system parameter in this study for three reasons: (1)
manufacturing time in another country is typically unobservable from the client’s location, (2) there were
many orders due to COVID-19 that could lead to extreme delays, and (3) delays at the beginning of the
supply chain often have an unpredictably high impact on the rest of the supply chain due to the snowball
effect.

Table 1: Configuration of manufacturing time.
Decision Variable Ground Truth Lower Bound Upper Bound Unit
Manufacturing Time (X) 2.5 1 10 Days

Given the value of the decision variable, in this case the manufacturing time, the simulation model
is evaluated using a time series of the inventory levels of PPE for each actor in the supply chain (e.g.,
manufacturer, export port, import port) per day. The time series over multiple replications are combined
using the mean values per day. Aggregated statistics of these combined time series are created, serving as
the simulation model data. The statistics to represent the time series of each actor are the mean, standard
deviation, 5th percentile, 95th percentile, and the average interval time (i.e., interval between the arrival of
batches at actors). The data used for calibration includes the aggregated statistics of all actors.

The discrete event simulation model is developed with the library pydsol in Python. This library is a
Python implementation of the Distributed Simulation Object Library (DSOL), originally implemented in
Java (Jacobs 2005).

4.2 Analysis of Powell’s Method, GA & ABC

We analyze the quality-of-fit for the reference technique, Powell’s Method, and the selected techniques,
GA and ABC, given certain degrees of data sparseness and using 8 replications with unique seeds. For
each technique, we show a graph of the average quality-of-fit with a 95% confidence interval to visualize
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the spread of the solutions over various replications. Besides, we show a boxplot of the calculated optimal
values of the decision variable manufacturing time resulting from the various replications. In addition, a
table is presented to compare the reference technique and the selected model calibration techniques by the
average quality-of-fit and the standard deviation.

(a) Average quality-of-fit with the 95% confidence
interval.

(b) Boxplot of the optimal values of manufacturing time. The
dashed gray line is the ground truth value of manufacturing
time: 2.5 days.

Figure 3: Results for Powell’s Method for 8 seeds for various degrees of data sparseness.

Figure 3a shows that Powell’s Method has an average quality-of-fit between 0.70 to 0.96. When data
sparseness is more than 10%, the average quality-of-fit decreases and the 95% confidence interval becomes
wider. Figure 3b shows that from 10% data sparseness onward, the algorithm finds optimal values of more
than 6 days for the manufacturing time. Interestingly, there are no optimal values found between 3 and 6
days. Surprisingly, Powell’s method has a high quality-of-fit with a small confidence interval with 90%
data sparseness.

(a) Average quality-of-fit with the 95% confidence
interval.

(b) Boxplot of the optimal values of manufacturing time. The
dashed gray line is the ground truth value of manufacturing
time: 2.5 days.

Figure 4: Results for Genetic Algorithm for 8 seeds for various degrees of data sparseness.

Figure 4a shows that GA has an average quality-of-fit between 0.92 and 0.99. The quality-of-fit and
the correlated spread stays constant for most of the chosen values for data sparseness. The 95% confidence
interval is narrow for the different degrees of data sparseness. Only with 75% data sparseness, there are
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more solutions that have a lower quality-of-fit and the 95% confidence interval is wider. In Figure 4b, we
see that for 75% data sparseness, most optimal solutions for the decision variable are slightly above the
ground truth value. There is one outlier where the optimal manufacturing time is calculated to be more
than 6 days.

(a) Average quality-of-fit with the 95% confidence
interval.

(b) Boxplot of the optimal values of manufacturing time. The
dashed gray line is the ground truth value of manufacturing
time: 2.5 days.

Figure 5: Results for approximate Bayesian computation for 8 seeds for various degrees of data sparseness.

Figure 5a shows that ABC has an average quality-of-fit between 0.78 and 0.98. For most of the degrees
of data sparseness, the average quality-of-fit is around 0.95 and the 95% confidence interval is narrow.
Only at 50% data sparseness, the average quality-of-fit is the lowest, i.e., around 0.78, and the confidence
interval is relatively wide. Figure 5b shows that at 50% data sparseness, the algorithm has a wide spread
of optimal solutions for the value of manufacturing time. Some solutions are close to the lower bound and
the upper bound of this decision variable. Other solutions are closer to the ground truth value, i.e., between
3 and 4 days, but are still relatively far from the ground truth compared to experiments with other degrees
of data sparseness. The resulting posterior distribution of the algorithm for 50% data sparseness follows a
bimodal distribution.

Table 2: Quality-of-fit in mean and standard deviation for each model calibration techniques for various
degrees of data sparseness.

Powell’s
Method

Genetic
Algorithm

Approximate
Bayesian
Computation

Percentage of
Data Sparseness Mean Std Mean Std Mean Std

0% 0.93 0.00 0.98 0.01 0.93 0.05
10% 0.96 0.02 0.98 0.01 0.94 0.04
25% 0.90 0.13 0.98 0.00 0.95 0.04
50% 0.70 0.22 0.99 0.02 0.73 0.32
75% 0.79 0.18 0.92 0.15 0.94 0.05
90% 0.94 0.03 0.98 0.02 0.91 0.04
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Table 2 presents the results of the average quality-of-fit and the corresponding standard deviation of
the reference technique and the two selected model calibration techniques for various degrees of data
sparseness. It shows that GA outperforms Powell’s Method and ABC for all percentages of data sparseness
in terms of a higher average quality-of-fit and a lower standard deviation. ABC performs slightly better on
the average quality-of-fit than Powell’s Method. However, Powell’s Method and ABC both have a relatively
high standard deviation compared to GA, meaning that there is more variation in the distance of the optimal
solution to the ground truth value. Over the various degrees of data sparseness, Powell’s Method has the
highest standard deviation. It is quite remarkable that Powell’s Method and ABC have the lowest average
quality-of-fit and the highest standard deviation for 50% data sparseness. For both techniques, the average
quality-of-fit increases again for 75% and 90% data sparseness.

Overall, GA and ABC outperform the reference technique for calibrating the counterfeit PPE supply
chain simulation model over various values for data sparseness. From this analysis, GA shows to be the
most promising for calibrating a simulation model with sparse data due to the high average quality-of-fit,
the narrow 95% confidence interval, and a small standard deviation over all degrees of data sparseness.

5 DISCUSSION

Overall, the results show that the selected model calibration techniques seem to have a high quality-of-fit
for calibrating the counterfeit PPE simulation model with sparse data. There are three limitations for
generalizing the results: (1) local vs. global optimum, (2) specific to supply chains, and (3) lack of
including structural uncertainty and of including other dimensions of data sparseness.

Regarding the local vs. global optimum, it is remarkable that Powell’s Method and ABC both have
the lowest quality-of-fit and the highest standard deviation at 50% data sparseness. A possible explanation
for this result for Powell’s Method is that the algorithm sometimes gets stuck in a local optimum, instead
of reaching the global optimum (Powell 1964), possibly caused by two input spaces of interest. A possible
explanation for ABC is that the algorithm results in a bimodal distribution, with more than one region
in the input space that results in optimal solutions. Calibration with these algorithms can yield multiple
counterfeit PPE supply chains that could represent the real world supply chain to a certain extent. We
should therefore be careful in choosing the configuration to gain insights from. Not doing so could lead to
a “wrong” view on criminal activities in the real world counterfeit PPE supply chain. In addition, a wider
set of optimization algorithms could be explored for their effectiveness in model calibration.

The second limitation is that the results could be specific to the linear counterfeit PPE supply chain
model. In general, a supply chain is often presented as a sequential network. This means, for example, that
there is an one-directional flow between the supplier and the manufacturer. On the one hand, this direct
and linear dependency between the actors could lead to more straightforward calibration of the simulation
model with sparse data. This challenges the generalizability of the results to other systems. The linear
supply chain also has a single parameter that needed to be calibrated, where in real situations, data of
multiple parameters might be sparse. On the other hand, the results of this paper give a proof of concept
on how data sparseness effects the ability to calibrate a linear supply chain using sparse data.

The third limitation is that the lack of including structural uncertainty and of including other dimensions
of data sparseness. Keeping the structure of the simulation model the same for the ground truth and the
calibrated model could be a crucial element for being able to find the optimal value for the parameter(s).
When structure is included as a parameter, this could mean that it is more difficult for the model calibration
techniques to converge to a solution with a high degree of data sparseness. In our example case, data
sparseness in the form of missing data values were random, where in reality there could be patterns, such
as missing data only during the night. Finally, data sparseness consists of more dimensions than missing
values: examples are noise and bias. The effect of these other types of data sparseness on calibration
quality is still unknown, making it difficult to generalize the results to all types of data sets. Nonetheless,
this study gives insight in the quality-of-fit for one parameter when increasing the percentage of missing
values, a type of uncertainty that often occurs in criminal cases, specifically during COVID-19.
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6 CONCLUSION AND FUTURE WORK

This research is a first attempt to analyze the quality-of-fit of model calibration techniques that are likely
to be suitable for calibrating simulation models in the case of sparse data. Due to the high data sparseness
in counterfeit PPE supply chains, we used a PPE supply chain as our case study. We selected a reference
technique that is often used for calibration of simulation models: Powell’s Method. We selected GA and
ABC as model calibration techniques that are likely to be suitable in case of sparse data. By using a
ground truth set-up for evaluating the quality-of-fit, we assessed how accurately the three model calibration
techniques find the optimal system parameter value for the simulation model with an increasing degree
of data sparseness. The results demonstrate that the selected model calibration techniques are suitable for
calibrating simulation models when faced with sparse data, at least for a linear supply chain with randomly
missing values. This shows that with sparse data due to COVID-19 and criminals masking their data, the
selected model calibration techniques can help to gain insight in underlying counterfeit PPE supply chains.

The main directions for future research are including more model calibration techniques, evaluating for
a larger set of simulation models, introducing structural uncertainty and other dimensions of data sparseness.
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