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ABSTRACT 

Predicting the evolution of Covid19 pandemic has been a challenge as it is significantly influenced by the 
characteristics of people, places and localities, dominant virus strains, extent of vaccination, and adherence 
to pandemic control interventions. Traditional SEIR based analyses help to arrive at a coarse-grained 
‘lumped up’ understanding of pandemic evolution which is found wanting to determine locality-specific 
measures of controlling the pandemic. We comprehend the problem space from system theory perspective 
to develop a fine-grained simulatable city digital-twin for “in-silico” experimentations to systematically 
explore - Which indicators influence infection spread to what extent? Which intervention to introduce, and 
when, to control the pandemic with some a-priori assurance? How best to return to a new normal without 
compromising individual health safety? This paper presents a digital twin centric simulation-based 
approach, illustrates it in a real-world context of an Indian City, and summarizes the learning and insights 
based on this experience. 

1 INTRODUCTION 

The Covid19 pandemic has affected more than 500 million people globally over the past two years and the 
number is still going up in many parts of the world as we write this paper. More than 6 million people died, 
economy is severely impacted, and social wellbeing is heavily compromised. Over the last two years, we 
have witnessed multiple waves of varying amplitude as the virus mutated giving rise to new strains. WHO 
has reported tens of variants as variants of concern and variants of interest (WHO 2022). Some of them, 
such as Alpha and Delta, have stayed on for a prolonged period resulting in a large number of severe 
infections and deaths. Variants like Omicron and its descendent lineage have been quite infectious but 
significantly milder in comparison to Alpha and Delta variants. Some variants like Gamma and Eta have 
disappeared without much visible impact. For instance, India has witnessed three major waves caused by 
Alpha, Delta and Omicron variants respectively. The mutation of Covid19 will continue and may turn into 
more or less infectious and severe with other characteristics, such as higher reinfection propensity, in the 
future. Going forward, extended lockdown cannot be a preferred option from a socio-economic standpoint. 
But then the questions are: do we understand the dynamics of the infection spread for (existing/new) 
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variants? How can we effectively deal with future situations? When do we focus on what aspect for effective 
control of unwanted situations?    
 Several data points across the world indicate that the impact of a wave has strong correlation with the 
virus characteristics, such as infectivity, severity and mortality rates along with the reinfection possibilities, 
of the dominant variant. However, the Key Indicators (KI) of the pandemic, such as  infection spread, 
critical cases and mortality, are not solely dependent on virus characteristics. They also have deep 
correlations with other influencing factors (IFs) along multiple dimensions, such as citizen characteristics 
(i.e., age, gender, comorbidity, vaccination status, profession of the individual), contextual characteristics 
of the locality (i.e., places where people mingle and spend time – households, offices, schools, etc.) and 
people behavior in terms of movements and contacts. Moreover, these IFs interfere among themselves thus 
leading to non-linearities in pandemic evolution (e.g., during the upward trend, during the plateau or 
downward trend of different waves). These stages are typically associated with the variables of the locality, 
which are often hidden and difficult to measure. Seroprevalence level, actual active infection (including 
undetected cases), distribution of dominant variant(s) in a locality are few more examples of such variables 
that exhibit uncertainty and volatility. Therefore, understanding the trajectory of the KIs in a locality unique 
demographic and socio-economic strata is equivalent to analyzing a large and complex system with 
significant volatility, uncertainty, complexity and ambiguity (VUCA). Understanding the influence of IFs 
on KIs is an advanced form of sensitivity analysis for a VUCA system. Keeping KIs along the desired 
trajectory by selecting the right intervention for IFs is essentially a multivariate optimization problem where 
the system is characterized by significant fuzziness and the objective function involves a tradeoff between 
economic situation of the locality and health of its inhabitants. Moreover, interventions may come with a 
large time constant. For instance, vaccinating a large population takes time and the vaccine is effective after 
a delay from the administration and has a waning effect over a time.  
 In last two years, many models for pandemic management have emerged – majority have attempted to 
predict the time, amplitude of the peak, and expected burden on public health infrastructure for the next 
waves with varying degree of success (Agrawal et al. 2021; Xu and Li 2020; Cacciapaglia et al. 2020; 
Mohan et al. 2022). In comparison, the literature on sensitivity analysis related issue (Zhang et al. 2021) 
and optimum control (Hussain et al. 2021) is relatively sparse. Moreover, as most of the reported 
experiments use coarse-grained statistical model and SEIR model (He et al. 2020), the analysis is not fine-
grained enough for desired tradeoffs. While literature finds mention of use of fine-grained models, there is 
significant scope for improvement as regards quality and level of granularity of analysis. Moreover, their 
focus is also to predict the timeline and amplitude of the surge as opposed to understand evolution dynamics.    

We adopt a method that combines ex post digital twin-based simulation experiment and the core 
concept of operational validity from simulation research (Robinson 1999; Sargent 2010) to understand 
complex infection spread dynamics of Covid19 and amplitude of IFs on KIs. At the heart of our solution is 
a purposive fine-grained hi-fidelity simulatable model i.e., digital twin of a city. In a bottom up modelling 
approach, we capture the demography details (i.e., age, gender, comorbidities, adherence to Covid 
Appropriate Behavior), business-as-usual behavior (i.e., who does what, where, and when), the place 
characteristics (i.e., who all congregate where and for how long), and the virus characteristics (i.e., 
infectivity, severity, affinity for a specific comorbidity, vaccine escape) in the form of fine-grained agents 
(Hewitt 2010). The pandemic control interventions are modelled as constraints to be adhered to by these 
agents. Moreover, we implement the agents as a configurable component so as to easily repurpose our city 
digital twin to evolving situations (e.g., effective medical intervention) and/or a different context. We rely 
on probability modelling to capture known uncertainties, e.g., vaccine efficacy, immunity loss over time, 
and compliance with Covid Appropriate Behaviors (CAB), as parameterized behaviors. These 
parameterized agents and their behaviors help in theory building through experimenting with various 
hypothetical IFs. We rely on simulation-led experimentation of sufficiently large set of hypotheses/anti-
hypotheses. Simulation output is compared with real world observations, as suggested in operational 
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validity, to prove/disprove the hypotheses. Systematic exploration focusing on combination of IFs helps 
get an understanding of influence of IFs on KIs at various phases of pandemic. 
 The rest of the paper is structured as follows: Section 2 discusses the modelling and analysis challenges 
that make the problem complex. Section 3 presents a brief overview of the state-of-the-art techniques to 
predict evolution of Covid19 pandemic. Section 4 describes our city digital twin and simulation led 
experimentation approach. Section 5 presents a summary of our experiments and outcome therefrom. 
Section 6 concludes the paper by highlighting the learnings from 300+ simulation led experimentations. 

2 MODELLING AND ANALYSIS CHALLENGES 

Modelling the dynamics of the Covid19 pandemic and predicting emerging trajectories of KIs are becoming 
exceedingly complex as illustrated in Figure 1. The first wave dynamics of pandemic was limited to few 
factors – it was chiefly dominated by one variant (i.e., Alpha variant) across the world, people’s movements 
were negligible with enforcement of strict lockdown and other Nonpharmaceutical interventions (NPIs), 
international and interstate movement was restricted, and compliance with Covid Appropriate Behaviors 
(CAB) was significantly high. The difference in KIs trends across the world was primarily due to the 
heterogeneity of demographic characteristics (e.g., age, gender and comorbidity) & easy access to 
healthcare system, and minor variation in adopted NPIs. Several IFs have emerged and uncertainties around 
the IFs have also started becoming prominent after the first wave. People started violating administrative 
interventions and social norms, such as the use of face masks and social distancing. Testing uptake varied 
significantly with time and places across cities. Strict home quarantine and institutional quarantine norms 
faded away – city administrators had to close several institutional quarantine facilities due to low utilization. 
Waning of immunity/reinfection became a possibility and more significantly a new variant (i.e., Delta) with 
different characteristics emerged. Seroprevalence level and distribution of Alpha and Delta in a particular 
place became a topic for debate along with speculating the characteristics of Delta variant.        
  Subsequently adoption of vaccines with doses and efficacies, emergence of multiple new variants and 
their lineages with varying characteristics, different form of nonpharmaceutical interventions (e.g., 
weekend lockdown, night curfew, restricted air travel, etc.), wide-ranging noncompliance of CAB started 
playing critical role in pandemic dynamics. More interestingly, these factors influenced each other in a non-
linear way over time horizon. For example, an effective vaccine and a less severe variant (e.g., as for the 
case of Omicron variant) led to less critical cases – an experience of such trend makes people reluctant to 
comply with administrative and social norms. People also started taking quarantine norms and testing less 
seriously over time. Therefore, available data about infections started becoming less relevant, uncertainty 

Figure 1: Known evolutions of situation and modelling complexity. 
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increased significantly in all aspects over the time, and heterogeneity which was limited to demographic 
aspect during the first wave, became prominent for interventions, compliance of CAB, testing and so on as 
shown in Figure 1. All these factors have collectively contributed to increase the degree of heterogeneity 
and uncertainty manyfold and existing data inadequate as shown in Figure 2.    

3 STATE OF THE PRACTICE AND OUR PRIOR WORK 

A vast majority of predictive models for pandemics are coarse-grained. They adopt one of the two 
techniques to predict the future: (a) statistical modelling supported by historical data (Agrawal et al. 2021; 
Mohan et al. 2022; Zhu and Chen 2021), including those based on AI (Fayyoumi et al. 2020); or (b) 
compartmental models (e.g., SEIR model (He et al. 2020)) that capture epidemiological progression in the 
form of differential equations. While coarse-grained models are usually computationally efficient and 
explainable (being based on mathematical techniques), they have several shortcomings that are particularly 
relevant in the context of predicting the evolution of a pandemic. These coarse-grained models ignore the 
heterogeneity of the population in terms of age, comorbidity and socio-economic factors that manifest in 
wide variance of individual behaviors of the population (Barat et al. 2021; Kerr et al. 2021), as they focus 
on aggregated movement of population from one cohort to other. Moreover, they fail to comprehend micro-
causality and emergent behavior in a cohort, e.g., super-spreader events from social gatherings.  
 In addition to these generic limitations, purely historical data centric coarse-grained models are 
vulnerable to both internal and external threats to validity (Winter 2000). External validity becomes 
prominent during the early phase of a new variant as one needs to rely on data collected from, for instance, 
an altogether different geographical region. For example, the Omicron related data collected from South 
Africa was used for predicting possible infection trends of other counties that differ in terms of vaccines 
administered, coverage of population vaccinated, demographic details of population and so on. Internal 
validity is a concern for infection prediction as the observed cases in a given area are not an accurate 
representation of the reality as observations depend not only on actual infection but also on the ratio of 
asymptomatic cases and the scale of random testing. For example, analysis of infection spread of Omicron 
based on the observed data might lead to inaccurate interpretation as asymptomatic cases are considerably 
high for Omicron, testing uptake is considerably low, and case reporting is a universal concern due to lower 
severity and wide (and largely undocumented) use of home-testing facilities. Overall, coarse-grained SEIR 
models and data centric AI/statistical models are becoming inadequate with increasing demand for 
heterogeneity and uncertainty in presence of inadequate relevant data as shown in Figure 1.        
 To overcome the limitations of coarse-grained models, fine-grained agent-based models have been 
employed as a competing approach. The key objective of these models is to capture the behaviour of micro-
elements such as people, households and places (e.g., office, school and shops) to predict KIs. However, 
these fine-grained models need to make a trade-off between richness and scale. Richness includes the ability 
to represent the heterogeneity of the people, households and places at a fine-grained level to take the model 
closer to reality, i.e., city, state or country. Many of the agent-based models (Cuevas 2020; Silva et al. 2020) 

Figure 2: Complexities and state of the art modelling and analysis techniques. 
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consider high-level classifications of these entities as cohorts, where each cohort is internally represented 
using aggregated equations, and represent the whole system as a connected network of a limited number of 
cohorts. These models address scalability by aggregation and can estimate the impacts of fine-grained 
interventions, such as the impact of infection spread when all shops and/or offices are closed. However, 
they exhibit similar limitations as coarse-grained models for comprehending emergent behavior and micro-
causalities of pandemic dynamics. Covasim (Kerr et al. 2021), on the other hand, uses an agent-based model 
to capture the individualistic behaviors of a wide range of micro-elements and their interactions. They 
linearly scale down the population (in the order of 103) to make the simulation manageable. From a richness 
perspective, they capture demographic variations in the population, a wide range of places and 
interventions. However, they encode the combined effect of a specific variant and vaccine on the individual 
as predefined equations within person agents. This limits the ability to understand the interplay of the effect 
of a vaccine and the characteristics of variant on the demographic factor of an individual. 
 Our earlier digital twin-based experimentation to understand the impact of nonpharmaceutical 
intervention (Barat et al. 2021) is similar to Covasim approach. Our trend analyses using earlier digital 
twin, starting from July 2020, closely resemble how the first wave unfolded in terms of KIs and the timeline 
of the peak in Pune. In our study published in January 2021, we also predicted that second wave may hit 
Pune city between March to April 2021 (ref. Figure 19 of Barat et al. 2021). While our predictions about 
second wave and its timeline matched closely with the reality, we were wrong in predicting the magnitude 
of the second wave peak – primarily our prediction was much milder than reality (around 70% of first wave 
peak versus around 130% of the first wave peak in reality). 
 Critical analyses of our earlier work along with other state-of-the-art agent based models for Covid19 
pandemic indicate that they are vulnerable along two dimensions: a) they are not capable of addressing the 
increasing heterogeneity and uncertainties along various variants and their lineages, overlapping impacts 
of variants and vaccines over individuals, and wide range of noncompliance possibilities, and b) they are 
not designed to comprehend the implication and amplitude of various IFs on KI with growing complexities 
– in contrast they are made to predict future situation under known set of variants, vaccines and populations.    

4 APPROACH 

We visualize a city as a complex dynamic system and adopt a concept of digital twin to mimic the key 
elements of the system as an “in silico” experimentation environment as shown in Figure 3. In reality, the 
macro-behavior of the system (i.e., evolution of a pandemic in a city) emerges from stochastic and 
spatiotemporal micro behaviors of the constituent elements, such as people, virus and vaccines. We 
faithfully capture relevant constituent elements and their individualistic behaviors in a bottom-up manner 
using parameterized agent where the fully known behavior of agents is encoded as rules, and the uncertain 
behavior (i.e., known unknown) is specified as a probability distribution over a set of actions where the 
probability distribution is a configurable parameter. These agents are realized using the Enterprise 
Simulation Language (ESL) (Clark et al. 2017)  
 We populate the city digital twin with relevant information available with the municipal authority. We 
validate the city digital twin by simulating past situations and comparing the simulated results (i.e., KIs) 

Figure 3: Simulation led experimentation environment. 
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with real data. We simulate a candidate configuration (i.e., same set of parameter values) multiple times 
(typically 5 or more times) till the stochastic behaviors converge thus improving the confidence level of 
observed simulation results as suggested by (Robinson 1999).  A contextualized and validated digital twin 
is then used for ex post facto analysis and future predictions. We set up the initial state of digital twin to 
validate a specific hypothesis (or anti-hypothesis) by assigning suitable values to the relevant configurable 
parameters. We then simulate for a specific what-if scenario multiple times till the stochastic behaviors 
converge. Human experts interpret the simulation results to prove (or disprove) the hypothesis. Examples 
of typical IFs are: relaxation of NPI, noncompliance of NPI, and introduction of a new variant with specific 
characteristics. Simulating the digital twin with this configuration produces results that can be interpreted 
to compute the desired KIs.      

4.1 City Digital Twin 

We extended our earlier agent based digital twin (Barat et al. 2021) along multiple dimensions to support  
evolving situations and complexities as highlighted in Figure 1. Extended agent topology of our new digital 
twin captures inherent heterogeneity, stochasticity and interactions of five key elements, namely citizen, 
places of interest, virus characteristics, vaccine and interventions as shown in Figure 4. 
 Citizen agent: It captures individualistic characteristics and behavior patterns including age, gender, 
comorbidity, profession, household structure, vaccination status, and infection status. Citizens agent is 
specialized into 25 citizen architypes, including Kid, College Student, Senior Citizen, and Office Goers, to 
represent professions with different behavioral patterns. Each architype has unique movements and contact 
patterns. For example, an office goer in back-end role interacts only with colleagues, a bank staff interacts 
with colleagues as well as with bank customers, a cab driver interacts with a large number of passengers 
each belonging to a different architype throughout the day; a housemaid interacts with a fixed set of house 
members for a fixed amount of time but visits multiple households in a day, a small shop keeper interacts 
with customers for short intervals but in a congested place. We also model behavioral patterns, such as 
propensity of compliance with CAB and NPIs.  
 Places of interest: We visualize a city as set of prototypical wards, where each word is a combination 
of well-to-do and slum localities with representative set of households (with different structure and area), 
citizens (with different age, gender, comorbidities and architype), places and commuting means.  To 
precisely represent slums and well-to-do localities, 13 types of households and 20 place architypes 
including various commuting means (i.e., own car, bus or shared cab) are modelled. The household 
structures range from two-member family (1 Male and 1 Female) to twelve-member family (i.e., 3 Male, 3 
Female, 4 Children and 2 Senior Citizens). Place architypes represent relevant places of a city where people 
frequently visit, spend time and make contacts, such as office, school, restaurants & pub, clinics, mall, 

Figure 4: Schematic representation of City Digital Twin. 

562



Barat, Kulkarni, Paranjape, Parchure, Darak, and Kulkarni 
 

 

market place, worship place and so on. For an illustration, a locality can be formed using ten offices, three 
schools, hundreds of local shops, tens of barber shops, hundreds of clinics and thousands of households 
with varying number of family members. Citizens from well-to-do localities may stay in relatively bigger 
houses with few family members as compared to slum area. Predominantly, the citizens from well-to-do 
area are office goers, bank employees, heath worker and from other white-collar professions. On the other 
hand, slum areas are densely populated and have smaller houses with bigger families. 
 Virus characteristics: We represent variants as configurable passive agents, which have their own 
(stochastic) characteristics but cannot act independently without a citizen agent. Essentially, they contribute 
to the citizen state/behavior when a citizen is exposed to a variant. Each variant agent defines (actual or 
hypothetical) virus characteristics including infectivity, severity, mortality, and probability of immune 
escape as parameters. One can introduce a new variant to a population of a city by specifying a start date 
and possible rate of introduction through in and out movement from and to other cities understand the 
impact of a new variant. 
 Interventions: We specify four types of interventions, namely administrative intervention, health care 
related intervention, social intervention, and vaccination as spatiotemporal stochastic agents. 
Administrative interventions are related to citizen movements, (partial) closure of places, allowed 
passengers in Cabs and Buses. Interventions from health care standpoint include testing of mildly infected 
citizens (in addition to severely infected citizen), contact tracing and isolation of detected mildly infected 
citizens. Social interventions include mask usage and social distancing. These intervention agents can be 
active or inactive for specific locality/citizen architype in a time bound manner – they influence the behavior 
of the place and citizen one when they are active. These spatiotemporal characteristics help to represent the 
emerging complexities along intervention dimension.        
 Vaccines: Similar to the variant agent, vaccines are visualized as configurable passive agent, which 
can influence citizens. As characteristics, they capture two aspects a) vaccine adoption, and b) vaccine 
efficacies in terms of reducing infection, severity and fatality probability. Vaccine adoption in a city is 
modelled via a parameterized administration rate. A specific vaccine (e.g., Covishield (Rather et al. 2021) 
can be set to be introduced from a specific day of a month to the population with a set of criteria on age 
(e.g., 60+ and or 45+), comorbidity (e.g., diabetes and hypertension) and profession (e.g., medical 
professionals). The dose intervals can also be configured based on the prevailing vaccination policies, such 
as a 90-day hiatus for the second dose of Covishield or 270 days for a third dose. 

4.2 Simulation  

We observe possible situations by simulating a contextualized digital twin with city-specific configuration 
and known facts about vaccines, variants, interventions and their compliances as shown in Figure 3. In a 
simulation, situations emerge through agent interactions and overlapping aspects as illustrated in Figure 4. 
For example, an individual moves within a place (e.g., within office, school, and mall) and between places 
(e.g., home to car, car to office, office to shop, and shop to home) for business-as-usual activities. The 
movements between the places are largely derived from the profession with certain random movements for 
living, socializing and entertainment. Movements within a place are inherently random, however, we adopt 
a rationalistic view to define movement patterns and movement frequency of an individual based on 
<citizen archetype, place archetype>. For example, a doctor stays in a specific location during the clinic 
hours whereas the patients must wait in a waiting area for a specific time before consultation in doctor’s 
room. In addition to the intra city movements, we also consider movements into and out of city. A person 
with specific demographic characteristics, comorbidity, vaccine doses and infection history can move 
around across different places within and across cities. As a result, she may get exposed to a specific variant 
with a certain probability. The susceptible-to-exposed transition of a person (target) depends on the duration 
and frequency of proximal contact with an infectious person (source), infection history of the target person 
and variant characteristics. Essentially, susceptibility-to-exposed transmission dynamics is an interplay 
between two person agents (duration and proximity of source and target agents), place agent (characteristics 
of the place, i.e., open vs close) and infectivity of variant agent. Further, the progression of the infection in 
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an exposed person (i.e., exposed to infectious, infectious to asymptomatic, mildly symptomatic or severe, 
respective state to recovered or dead) and the possible degree of criticality of that person depend on the 
characteristics of the person, infection and vaccine histories (i.e., passive vaccine agent), as well as the 
infecting variant (i.e., passive variant agent). Thus, the progression dynamics is the interplay among person 
agent, vaccine agent and a variant agent and the dynamics depend on – (a) age and comorbidity of an 
individual; (b) vaccine effectiveness for that person; (c) immunity developed due to earlier infection, and 
(d) characteristics of the variant. Other interventions and their compliance also influence the overall 
dynamics. Movement-related restrictions of a person limit mixing. Testing helps in isolating infected people 
from the susceptible population. However, non-compliance of quarantine norm increases mixing 
possibilities within household members and close contacts. Multiple simulations with varying parameters 
help to comprehend the complexities.  

5 SIMULATION-BASED EXPERIMENTATION 

We contextualized the city digital twin for Pune (an Indian city with 4 million population) by configuring 
the demographic details and comorbidity distribution among Pune’s citizens, household structures and 
prototypical areas that reflect socio-economic characteristics of the city, various professions and their 
movements, and prototypical places, such as offices, factories, schools, markets, worship places with 
official data collected from Pune city administrator. Our trend analyses, starting from March 2020, using 
extended digital twin (as discussed in section 4) closely resemble how the first wave unfolded in terms of 
KIs and the timeline as illustrated using white line and dark line in Figure 5. Moreover, simulation of a 
configuration represented as “Without Delta Variant” matches with the prediction from our earlier digital 
twin published in January 2021 (Barat et al. 2021) and observed trends. We considered this as an operational 
validity of our new extended digital twin.  
 We predicted a surge/wave in Pune during the month of March and April due to relaxation of NPIs, 
reduced testing uptake and noncompliance of CAB. However, we estimated the peak much milder than the 
first wave (around 70%) as shown using red line in Figure 5. Precisely our predictions started deviating 
from mid-March 2021 (as shown using red and white lines). To understand possible cause for unanticipated 
surge, we started exploring wide range of scenarios considering popular speculations at that point of time 
(important to note here that Alpha variant was the only variant of concern and dominance of Delta variant 
was not an accepted fact at that time). We simulated scenarios with - a) greater noncompliance of CAB and 
movement related restrictions, and b) reinfection & loss of immunity. The combination of all speculated 
factors with extreme possibilities could not explain the observed situation  as shown using configuration 
“Without Delta Variant, 30% Reinfection and Extreme Noncompliance” (yellow line) City administrators 
imposed a strict lockdown in Pune from April 4, 2021 but surge of infections and critical cases continued 
to grow for a month as shown in Figure 5. The existence of Delta variant in Pune got detected in early April 
2021 – we introduced it in the city digital twin and simulated results are as in “With Delta variant but no 
noncompliance” (i.e., orange line). The simulation matched the trend but details were still quite removed 

Figure 5: Summary of simulation experimentations. 
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from the reality thus indicating that a combination of several factors (IFs) is probably the cause. We set up 
an ex post facto analysis by considering reported data from January 2021 to November 2021 to understand 
the cause with an aim comprehend the dynamics of the pandemic in presence of multiple variants, vaccines, 
noncompliance related uncertainties and their overlapping impacts over demographically heterogeneous 
population. An overview of our ex post factor analysis is presented in the next subsection. 

5.1 Post Ex Facto Analyses   

We systematically explored a wide range of possibilities (i.e., configurations/hypothesis) along six 
dimensions, as shown in Table 1. Configurations are constructed, a theory building activity, by 
meaningfully selecting parameter values from Table 1 and evaluated through an iterative simulation of the 
digital twin. To make the iterations manageable without compromising on precision of the analysis, we 
divided the time from January 2021 to November 2021 into three phases namely, pre vaccine phase, low 
adoption of vaccine, and high vaccine adoption so as to exclude vaccine related configurations during the 
early phase of vaccination drive in Pune. For example, the effect of vaccine was negligible in Mar-Apr 
2021 as less than 5% of people were vaccinated by then. Therefore, exploring vaccine efficacy during that 
time might not be a pragmatic consideration.   
 Multiple iterations focusing on a relevant set of parameters from Table 1 and the correlation of 
simulated values with actual reported values of the key indicators (KIs) helped to derive possible parameter 
values (i.e., hypothesis about a possible value of a parameter). Values derived from one simulation are 
further analysed in the context of subsequent simulations to prove or disprove the hypothesis under 
consideration. In addition, we also defined and simulated several anti-hypotheses to establish influences 
and to understand overall dynamics. Our hypotheses and anti-hypotheses are proved and disproved 
respectively through 345 scenario evaluations. To eliminate the threats to validity of simulation results and 
eliminate the possibility of extreme emergent situations of stochastic behaviours in a simulation run, we 
repeated each scenario 5 times. Normalized values of critical cases for best fitted parameter values and 
simulation results of selected anti-patterns are shown in Figure 5.                                    

Table 1: Parameters, their ranges (uncertainties) and derived parameter values. 
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5.2 Synthesis of Our Experimentation 

Synthesis of 1725 simulation runs with varying parameter values from Table 1 guided by established facts 
(such as vaccines) and critical comparison with the real data helped to derive likely values of the parameters 
along six dimensions as summarized in column “Derived Values from Ex Post Facto Analysis” of Table 1. 
Predicted trends of the key indicators (KIs) for derived parameter values in comparison with actual reported 
data are shown as “With Best Possible Parameter Values” (i.e., green line) in Figure 5. Derived KIs for best 
possible parameter values (from ex post facto analysis considering data till November 2021) and projected 
trajectories (from December 2021) along with reported cases are shown in Figure 6. Predicted critical cases 
(shown in Figure 5), detected cases and death count (shown in Figure 6) from December 2021 match closely 
with reported counts (possible distribution of different variants, shown in Figure 6, is also at per with city-
based healthcare experts). Synthesis of our experimentation’s outcome with respect to the official Covid19 
pandemic data reported by Pune city authorities until now helps to understand the influences and pandemic 
dynamics as summarized in Figure 7. Our precise analysis insights used effectively to explain situation 
during the third wave in Pune that started from December 20, 2021 and continued till January 2022. As 
shown in Figure 5 and 6, there are several perplexing situations that emerged in Pune during the third wave 
(e.g., significantly low critical cases in Pune as compared to general ratio that we observed in other Indian 
cities, sudden disappearance of cases, and low testing uptake). However, we were able to predict and justify 
them using derived insights from our experimentation. Our analyses and insights are used by Pune city 
administration as one of the input for arriving at pandemic control strategies.     

Figure 7: Qualitative analysis of possible influence. 

Figure 6: Predicted KIs and hidden factors for best possible parameter values. 
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6 CONCLUDING REMARKS  

We presented a systematic simulation-based experimentation study to understand factors that influence the 
key indicators of Covid19 pandemic as it evolved in a city. Our analysis helps to justify the possible causes 
that could have led to perplexing situations observed during second and third waves. Analysis also identifies 
parameters that should be critically evaluated to predict future waves and their impacts. Our experiments 
indicate that characteristics of dominant variants is the principal contributing factor for infection spread. 
Variants with higher infectivity can potentially lead to a wave - as seen in last three major waves. People’s 
movements along with the characteristics of variant play a major role to intensify/slowdown the pace at 
which a wave will unfold in a city during its initial phase. Interventions like lockdown that essentially 
restrict movements in open spaces can at best delay the onset of a wave and that too only to an extent. 
Instead, appropriate control measures that reduce mixing of people in closed places and limit household 
infections lead to better results. Therefore, isolation in the form of strict home / institutional quarantine 
backed by effective testing contribute the most toward reduced infection spread. Wearing face mask while 
in closed places helps to curb the infection spread to a large extent. Seroprevalence level, a hidden indicator, 
plays a role in deciding the peak value of active infection but only when the dominant variant is not capable 
of bypassing immunity - as we have seen for Omicron variant during the third wave. Infectivity and severity 
of a variant have a complex relationship with other factors that influence how quickly a variant can be the 
dominant variant and make impact to healthcare system in a city. A variant with low infectivity and low 
severity exponentially disappears from the community over time as we observed for Alpha vs Delta. Variant 
with low infectivity and high severity disappears much faster compared to a variant with low infectivity 
and low severity as severely infected person is likely to go for testing and subsequent isolation. Variant 
having high infectivity and low severity (e.g., Omicron variant) quickly becomes the dominant. Variant 
with high infectivity and high severity can potentially be the most dangerous, however, high severity leads 
to early detection thus limiting the impact significantly - such a situation can be controlled through early 
testing, contract tracing and strict isolation. Therefore, a variant with high infectivity and high severity is 
unlikely to survive for long. Variant’s ability to bypass immunity is another characteristic that needs to be 
considered carefully as it significantly contributes towards the magnitude of the peak of a wave.  
 Vaccine is the most critical factor towards controlling the severity of infection spread and subsequent 
fatality modulo the extent and quality of healthcare available. We have seen its impact during the later stage 
of the second wave and throughout the third wave. However, reduced severity typically leads to reduced 
testing and lax compliance to isolation norms - as witnessed during the third wave. These two factors lead 
to greater infection spread thus putting to risk those with comorbidities and/or without vaccine protection.  
 Rapid fading away of third wave is leading to quick return to normalcy. With sizeable population yet 
to receive full vaccination cover, there is a speculation about next wave. Based on simulation results, we 
think that a major surge in infections is possible only if a) a new variant characterized by moderate to high 
infectivity, moderate severity, and immunity bypassing capability emerges, and/or b) significant chunk of 
population becomes susceptible due to immunity waning over time. The latter factor can cause a wave even 
in absence of the former factor, as most of the variants are likely to be around for a while and can cause a 
serge if seroprevalence level drops significantly. As predicting the possibility of a new variant is out of the 
scope of our study, this paper urges administrators and policy-makers to be vigilant about new mutation 
with high severity and possibility of waning immunity while strategizing a safer return to new normal. 
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