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ABSTRACT 

The emergence of the SARS-CoV-2 Omicron variant raises concerns for school operations worldwide. The 
Omicron variant spread faster than other variants that cause COVID-19, and breakthrough infections are 
reported in vaccinated people. Schools are hotbeds for the transmission of the highly contagious virus. 

Therefore it is crucial to understand the risks of Omicron transmission and the effectiveness of different 
measures to prevent the surge of infection cases. This study estimates the risks of airborne transmission and 
fomite transmission of Omicron variants using simulations and the data of 11,485 public and private schools 
in the U.S. It also analyzes the impact of different mitigation measures on limiting airborne transmission 
and fomite transmission risks in schools. It was found that the Omicron variant caused relatively high 
infection risks in schools. The risk of airborne transmission is nine times higher than fomite transmission. 

The effective mitigation measures can significantly decrease the transmission risk.  

1 INTRODUCTION 

The original severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain was first identified as 
the virus that causes the outbreak of the coronavirus disease 2019 (COVID-19). The outbreak of COVID-
19 spread rapidly around the world, and the coronavirus is continuously evolving during the pandemic. The 
Omicron variant is an emerging variant of SARS-CoV-2 and has become the dominant variant that accounts 

for the spread of COVID-19 against all other variants. The variant was first detected in South Africa in 
2021(WHO 2021), and resulted in an unprecedented outbreak in SARS-CoV-2 cases around the world. 
Compared with the Delta variant, the other rapidly spread coronavirus variant, Omicron multiplied around 
70 times faster in the bronchi (Hui et al. 2022), and is found to be 2 to 3 times more contagious (Klompas 
and Karan 2022). Although generally, Omicron infection causes less severe cases than other variants, the 
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hyper-transmissibility in the crowd could overwhelm the healthcare system since some of the cases may 
develop severe symptoms and need hospitalization. Particularly, schools are identified at high risk of 
Omicron transmission due to the crowded and poorly-ventilated environment, and the inevitable contact 

and communication activities among students and teachers. The potential outbreak of COVID-19 during 
the Omicron surge triggers concerns about student health and school environment, and proper actions are 
needed to control the Omicron transmission in schools. It is reported that the current vaccines are effective 
at preventing severe symptoms such as hospitalizations and deaths due to infection with the Omicron 
variant, CDC indicates that breakthrough infections can occur and develop symptoms even for fully 
vaccinated people (CDC 2022a). Besides, the immunity through vaccination remains unclear since some 

variants reduce the efficacy of vaccines and lead to reinfection (Jimenez et al. 2022). Thus, despite getting 
vaccinated, other mitigation measures are required to curb the transmission of SARS-CoV-2 variants in K-
12 schools.  

Several studies have demonstrated that the Omicron variant, like other SARS-CoV-2 variants, can be 
transmitted via air (Cheng et al. 2022) and fomite touching (Pitol and Julian 2021; Sobolik et al. 2022). For 
airborne transmission, the infectious aerosols travel over long distances through the air, and susceptible 

hosts may get infected by inhaling the infectious aerosols (WHO 2020). The mitigation measures to reduce 
airborne transmission include increasing air ventilation to dilute the aerosols, implementing filters in HVAC 
systems, and adopting social distance measures such as partial online learning. For the fomite-mediated 
transmission, an infected person’s shedding or touching contaminated a surface. Susceptible hosts may get 
infected by touching the contaminated surface and pass the pathogens to the susceptible sites such as 
mucous membranes. The mitigation measures to curb fomite-based transmission include surface cleaning, 

hand cleaning, and dedensification measures to reduce the number of index cases, such as partial online 
learning. However, as an emerging variant, there are lack of data and relevant studies regarding Omicron 
transmission in nationwide schools. 

To close the gap, this study estimated the airborne infection and fomite-based transmission risk of 
Omicron variant for 111,485 public and private U.S. schools, and evaluated the impact of different 
mitigation measures to control the transmission of Omicron variant. Simulation methods were used to 

model the two pathways, including airborne transmission route and fomite transmission route to 
comprehensively demonstrate the transmission of the new variant in school environment. For each 
transmission route, several commonly-used mitigation measures are selected to illustrate the effectiveness 
of different school operation strategies. The results of this study provide insights for school and government 
policymakers regarding the effective mitigation measures based on current local epidemic situation and 
school characteristics, and provide recommendations to control the airborne and fomite transmission of the 

SARS-CoV-2 Omicron variant in school environment. 

2 METHODOLOGY 

2.1 Data Retrieval 

More than 110,000 K-12 schools across the U.S. were analyzed in this study. The characteristics of each 
school was retrieved from the statistical data acquired from National Center for Education Statistics (NCES 
2021). Public schools were categorized into five school levels and private schools were categorized into 

three school levels. The school buildings’ occupant density was manually collected and estimated from 
typical schools, and the detailed process was introduced in our previous paper (Xu et al. 2021). The current 
pandemic situation was identified by the latest data of COVID-19 cases reported by the CDC (2022b). CDC 
indicated that Omicron is the current dominant variant among all SARS-CoV-2 variants and accounts for 
almost all the COVID-19 cases (CDC 2022c). 

2.2 Airborne Transmission Modeling 
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2.2.1 Airborne Infection Risks Assessment 

The infection risk of airborne transmission was defined as the probability of a susceptible student being 
infected by inhaling infectious aerosols in the air after one school day. The airborne infection risk was 

modeled using Gammaitoni–Nucci (G-N) equation (Gammaitoni and Nucci 1997). The G-N equation 
computes the airborne infection risk (𝑃𝐴) using equation (1), where 𝐼 is the number of index cases, 𝑉 is the 
school volume (𝑚3), 𝑁 is the virus removal rate (ℎ𝑟−1), 𝑡 is the school operation hour (ℎ𝑟), 𝑝 is the student 
breathing rate (𝑚3/ℎ𝑟), and 𝜑 is the quanta generation rate (𝑞𝑢𝑎𝑛𝑡𝑎/ℎ𝑟). 
 

 𝑃𝐴 = 1 − 𝑒
−
𝑝𝐼𝜑

𝑉
(
𝑁𝑡+𝑒−𝑁𝑡−1

𝑁2
)
 (1) 

 
In this study, 𝐼 was estimated based on current COVID-19 cases, and was computed as the product of 

school population and the current county infection rate. 𝑉 was retrieved from school data. 𝑡 was the school 
operation hour retrieved from the state data (NCES 2008). 𝑁 is the virus removal rate, including the virus 
removal due to air ventilation (𝜆𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛) and air filtration (𝑘𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛) if filters are implemented in the 

HVAC system. The baseline 𝜆𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛 was set as 2 ℎ𝑟−1 (Batterman et al. 2017). 𝑝 was estimated based 
on the age group in a school. 𝜑 was computed using equation (2) (Buonanno et al. 2020), where 𝛼 is the 
conversion factor of the transmissibility between new variants and the original SARS-CoV-2 strain. 𝑐𝑣 is 
the viral load in sputum, 𝑐𝑖 is a unit conversion factor, indicating the ratio between the quantum and dose, 
𝑉𝑑,𝑖  is the volume of a droplet calculated based on droplet diameter distribution, and 𝑁𝑑,𝑖,𝑗  is the 
concentration of the droplet size 𝑖 regarding the expiratory activity 𝑗. 
 

 𝜑 = 𝛽𝑐𝑣𝑐𝑖𝑝(∑ 𝑉𝑑,𝑖𝑁𝑑,𝑖,𝑗
4
𝑖=1 ) (2) 

 
 To describe the hyper-transmissibility of the Omicron variant, a new parameter 𝛽 was introduced in the 
model. 𝛽 was set to be 3.3 to reflect the increased transmissibility of the Omicron variant compared with 
the original SARS-CoV-2 strain (Lyngse et al. 2022); 𝑐𝑣 was set as 109 RNA virus copies 𝑚𝐿−1, and 𝑐𝑖 
was set as 0.02 (Buonanno et al. 2020); 𝑝 is the student breathing rate estimated based on school level 

(𝑚3/ℎ). Generally, 𝑝  increases as the student age increases; 𝑁𝑑,𝑖,𝑗  was estimated as the droplet viral 
concentration of for speaking activity. The speaking activity was considered as the activity between voiced 
counting and unmodulated vocalization. 

2.2.2 Airborne Transmission Control Measures 

The impact of three mitigation measures and the impact of the combination of the mitigation measures was 
evaluated in this study. The mitigation measures including: 1. Implementing MERV 13 filters to HVAC 

systems (AM1); 2. Increasing air ventilation rate (𝜆𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛 ) by 100% (AM2); 3. Adopting hybrid 
learning and ask 50% of the students learning online (AM3); 4. Combination of mitigation measures, 
including AM1 + AM2, AM1 + AM3, AM2 + AM3, and AM1 + AM2 + AM3.  

The impact of AM1 was modeled by modifying the particle filtering rate caused by filtration 
(𝑘𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛) in equation (1). 𝑘𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 can be computed using equation (3) (Buonanno et al. 2020), where 
𝜆𝑟𝑒𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑒𝑑 indicates the flow rate of the air recirculated through HVAC filters , set as 6.4 ℎ𝑟−1 (Azimi 

and Stephens 2013), and 𝜂𝑓𝑖𝑙𝑡𝑒𝑟 is the filtration efficiency of the filters. 𝜂𝑓𝑖𝑙𝑡𝑒𝑟 can be estimated according 
to the minimum efficiency reporting value (MERV) of the filter and the particle size based on ASHRAE 
standard (Standard 52.2-2017). 

 

 𝑘𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝜆𝑟𝑒𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝜂𝑓𝑖𝑙𝑡𝑒𝑟 (3) 
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The MERV 13 filter’s filtration efficiency was set to be 67.5%, assuming that half the particle 
distribution is 50% from 0.3 to 1 𝜇𝑚 in size and 50% are 1 to 3 𝜇𝑚. The assumption is based on an 
experimental result that more than 50% of the aerosols of SARS-CoV-2 are smaller than 2.5 𝜇𝑚 (Morawska 

and Cao 2020). The impact of M3 was modeled by reducing half of the number of infectors while increasing 
occupancy density by 100%. 

2.3 Fomite-Mediated Transmission Modeling 

2.3.1 Fomite-Mediated Transmission Risk Assessment 

The risk of fomite-based transmission in this study indicated the probability of susceptible students getting 
infected by fomite-mediated pathways. For the fomite-mediated transmission, a surface is contaminated 

when infected people shed or touch on the surface of objects in the school, such as desks and doorknobs. 
Susceptible hosts may get infected by touching the contaminated surface and inoculate the pathogens 
through mucous membranes via actions such as mouth touching. Susceptible hosts with contaminated hands 
can also spread the pathogens via hand-surface contacts. In this study, an Environmental Infection 
Transmission System (EITS) modeling framework (Kraay et al. 2018) was employed to analyze the spread 
of Omicron via fomite transmission. The EITS model divided individuals to be susceptible (𝑆), infectious 

(𝐼), and removed (𝑅) hosts. The pathogens surviving in the environment are either contaminate a fomite 
(𝐹) or hands (𝐻). Pathogen exchange occurs through hand touching behavior. Pathogens are shed to Hands 
of I (𝐻𝐼) via excretion (e.g., cough, sneeze). The pathogens excreted on 𝐻𝐼 can be further transferred to 
object surfaces by fomite touching behavior. The hands of 𝑆 and 𝑅 (𝐻𝑆 , 𝐻𝑅) become contaminated by 
touching the contaminated surface. Pathogens are transmitted dynamically between 𝐹 and 𝐻. 𝑆 may get 
infected by self-inoculation via contaminated 𝐻𝑆 . The epidemic dynamics can be modeled by ordinary 

differential equations, and the risk of fomite-mediated transmission in a typical school day (𝑃𝐹) can be 
expressed using equation (4)  (modified based on Kraay et al. 2018). 
 

 

{
 
 
 
 

 
 
 
 𝑃𝐹 =

𝐾𝐹  +𝐾𝐻

𝑁−𝐼

𝐾𝐹  = 𝑡𝐼𝑎𝐹𝑃𝑖𝑛𝑜𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑃𝑝𝑖𝑐𝑘𝑢𝑝𝑃
′(0)

𝐾𝐻  = 𝑡𝐼𝑎𝐻𝑃𝑖𝑛𝑜𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑃𝑝𝑖𝑐𝑘𝑢𝑝𝑃𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑃’(0)

𝑃𝑖𝑛𝑜𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =
𝜌𝜒

𝜇𝐻+𝜌𝐻𝐹+𝜌𝜒+𝜃𝐻

𝑃𝑝𝑖𝑐𝑘𝑢𝑝  =

𝑁𝜌𝐹𝐻
𝑁𝜌𝐹𝐻+𝜇𝐹+𝜃𝐹

1−
𝑁𝜌𝐹𝐻

(𝑁𝜌𝐹𝐻+𝜇𝐹+𝜃𝐹)
 

𝜌𝐻𝐹
(𝜇𝐻+𝜌𝐻𝐹+𝜌𝜒+𝜃𝐻)

𝑃𝑑𝑒𝑝𝑜𝑠𝑖𝑡 =
𝜌𝐻𝐹

𝜇𝐻+𝜌𝐻𝐹+𝜌𝜒+𝜃𝐻

 (4) 

  
 In this model, 𝑆 may get infected via two fomite transmission routes, the direct fomite contamination 
route (𝐶𝑅𝐹) and the hand-fomite contamination route (𝐶𝑅𝐻). 𝐾𝐹 indicates the number of 𝑆 getting infected 

via 𝐶𝑅𝐹, 𝐾𝐻 is the number of 𝑆 getting infected via 𝐶𝑅𝐻. 𝑃𝐹 is defined as the proportion of 𝑆 being infected 
via fomite-mediated transmission (𝐶𝑅𝐹 and 𝐶𝑅𝐻) after 𝑡 hours of exposure. 𝑃𝑖𝑛𝑜𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is the proportion 
of chance that the susceptible people get self-inoculation; 𝑃𝑝𝑖𝑐𝑘𝑢𝑝 is the pathogens picked up by hands from 
the contaminate surface in percentage; 𝑃𝑑𝑒𝑝𝑜𝑠𝑖𝑡 is the proportion of pathogens excreted to hands that are 
transmitted to the fomites via touching behavior. 𝑃′(0) indicates the infectivity of the pathogens.  

To simulate the fomite transmission of the Omicron variant, the parameters of SARS-CoV-2 original 

strain were used for most of the pathogen-specific parameters, while the increased transmissibility of the 
Omicron variant was considered as 10-fold viral shedding concentrations (Sobolik et al. 2022). The 
increased shedding concentrations are employed to estimate the viral shedding rate of the Omicron variant. 
In this study, the main way of virus shedding was coughing. The number of viruses shed via coughing from 
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the respiratory tract per hour per infectious individual is defined as the shedding rate. Equation (5) (Li et 
al. 2021) shows how the shedding rate was calculated, where 𝑉𝑑𝑟𝑜𝑝𝑙𝑒𝑡 is the volume of an infectious droplet, 
𝐹𝑐𝑜𝑢𝑔ℎ is the frequency of coughing, 𝑁𝑑𝑟𝑜𝑝𝑙𝑒𝑡 is the amount of shed drops per cough, and 𝐿 is the viral load 

in saliva. 
 

 𝛼 = 𝑉𝑑𝑟𝑜𝑝𝑙𝑒𝑡 × 𝐹𝑐𝑜𝑢𝑔ℎ × 𝑁𝑑𝑟𝑜𝑝𝑙𝑒𝑡 × 𝐿 (5) 

 
The viral load of SARS-CoV-2 Omicron variant is set to be 7.8 𝑙𝑜𝑔10 𝑅𝑁𝐴 𝑐𝑜𝑝𝑖𝑒𝑠/𝑚𝐿 (Sobolik et al. 

2022), and the diameter of the infectious droplet was assumed to be 100 µ𝑚, 12 times per hour was set for 
𝐹𝑐𝑜𝑢𝑔ℎ, and 𝑁𝑑𝑟𝑜𝑝𝑙𝑒𝑡 was set to be 2000 per cough. The viral shedding rate of Omicron was computed as 
7.93E5. The information on other pathogen-specific parameters could be found in Table 1. 

Table 1: Input parameters to the airborne transmission model. 

Parameter Units Description Values References 

𝑡 hr Exposure time School day (NCES 2008) 

𝛼 

Pathogens/ 

(hr × people) 

Infectious individuals excrete 

pathogens at rate 𝛼 7.93E05 Calculation 

𝜌 /min Inoculation 0.8 

(Sobolik et al. 

2022) 

µ𝐹 /day Viral decay rate on 𝐹 

0.18 

(0.14, 0.22) (Kwon et al. 2021)  

𝜇𝐻 /min Viral decay rate on 𝐻 

1.195 

(0.92, 1.47) 

(Nicas and Best 

2008)  

𝜏𝐹𝐻  proportion Viral transfer fraction from 𝐹 to 𝐻 
0.217 

(0.067,0.367) (Lopez et al. 2013) 

𝜏𝐻𝐹 proportion Viral transfer fraction from 𝐻 to 𝐹 0.025 

(Nicas and Jones 

2009) 

𝜑𝐻 proportion Pathogen excreted to 𝐻 0.15 (Kraay et al. 2018) 

𝜑𝐹 proportion Pathogen excreted to 𝐹 1 − 𝜑𝐻  
𝜋 unitless Dose-response parameter 6.58E-06  
𝜃𝐹 /hr Frequency of fomite cleaning 0 (0, 1) Estimation 

𝜃𝐻 /hr Frequency of hand cleaning 0 (0, 1) Estimation 

𝑆𝐹𝑖𝑛𝑔𝑒𝑟  m2 

Surface area of three finger 

tips touching a surface 0.00042 

(Bouwknegt et al. 

2015)  

𝑎𝐻 

Pathogens/ (hr 

× people) rate pathogens added to 𝐻 𝛼𝜑𝐻  (Kraay et al. 2018) 

𝑎𝐹 
Pathogens/ (hr 

× people) rate pathogens added to 𝐹 𝛼𝜑𝐹 (Kraay et al. 2018) 

𝜆 proportion accessible surface 0.3  

𝜌𝑇 /day rate of fomite touching 60 

  (Kraay et al. 

2018)  

2.3.2 Fomite-Mediated Transmission Control Measures 

The impact of three mitigation measures and the impact of the combination of the mitigation measures on 
fomite transmission control was evaluated in this study. The mitigation measures including: 1. Building 
hygiene once per day (FM1); 2. Hand washing once per hour (FM2); 3. 50% of students learning online; 4. 
Combination of mitigation measures, including FM1 + FM2, FM1 + FM3, FM2 + FM3, and FM1 + FM2 
+ FM3. 
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3 RESULTS 

3.1 Assessment of School Airborne Infection Risk 

Figure 2 presents the Omicron airborne infection risk of each state under different control measures. The 

average airborne infection risks of counties within a state were used to calculate the mean airborne infection 
risk of the state. The range of the state airborne infection risk represents the difference between the 
maximum and minimum airborne infection risks of that state. Outliers exceeding four times the standard 
deviation of the counties in a state were removed before generating the range. The county level airborne 
infection risk was computed based on the current Omicron epidemic situation and the school characteristics. 
For all states, schools using baseline ventilation rate have higher average airborne infection risk, and the 

overall average airborne infection risk under this scenario was 4.51%. A wider range of airborne infection 
risks was revealed in the baseline situation as well. More than 90% of the states had a greater than 2% of 
average airborne infection risk, which is higher than the infection risks in previous epidemic situations (e.g., 
the prevalence for original SARS-CoV-2 strain). This result indicates the necessity of implementing 
interventions to reduce the airborne infection risk of Omicron. 
 Kruskal–Wallis one-way analysis of variance (ANOVA) test was conducted to figure out if the impact 

of modeled mitigation measures was statistically significant (Kruskal and Wallis 1952). The One-way 
Kruskal–Wallis test is a nonparametric method for analyzing if there is a difference of the population 
medians among all the groups under one categorical variable. In this study, the groups were identified as 
different mitigation measures, and the categorical variable was the airborne infection risks. A Kruskal–
Wallis test was conducted to demonstrate the significance of different mitigation strategies. The p-value of 
the test was nearly 0, indicating that the null-hypothesis of same median among all groups can be rejected. 

The result demonstrated that there were significant differences among the mitigation strategies within 99% 
confidence interval (CI). A Conover squared ranks test was conducted as the post-hoc comparison to 
identify significant differences between pairs of groups (Conover and Iman 1981). The result indicated that 
among all the pairs of strategies, the difference between two combined control measures were insignificant 
with a p-value of 0.2809. The two combined measures are: implementing MERV 13 filtration and half of 
students studying remotely (AM1+AM3), and doubling the ventilation rate and half of students study 

remotely (AM2+AM3). All other pairs of strategies were found to be significantly different within 99% CI. 
 The impact of implementing MERV 13 filtration (AM1) indicated a significant improvement in 
reducing the airborne infection risk. The overall average airborne infection risk was reduced to 1.55% and 
the variation range of all states was reduced, which was illustrated by the smaller ranges. Airborne infection 
risk in more than 90% of states decreased to less than 2% under this control intervention. This control 
measure outperformed all three interventions as well. Double the ventilation rate (AM2) displayed a similar 

result as half of students study remotely (AM3). The overall average airborne infection risks under these 
two control measures were 2.40% and 2.30%, respectively. About 70% of states had the airborne infection 
risk lessen to 2%. The variation in airborne infection risk was reduced for all states as well. 
 Several states exhibited high average airborne infection risk. The result was mainly caused by the high 
county prevalence of the counties in the states. Specifically, states such as Alaska, Idaho, Kentucky, Maine, 
Rhode Island, and Vermont had more than twice the overall average airborne infection. Vermont exposed 

the highest average airborne infection risk among all states, which was 17.19% under baseline ventilation 
situations. The control measures reduced the airborne infection risk for all states, but the states with higher 
airborne infection risk still exceed the others under all three interventions. 
 School characteristics are another important aspect of influencing the county's airborne infection risk 
of Omicron, especially for the school levels. For instance, the infection risks vary among different school 
levels due to the difference of student beathing rate and school occupant density. Figure 1 shows the 

airborne infection risks of different school levels under various airborne transmission control measures. 
The risk was computed based on the nationwide school data and the range indicates the maximum and 
minimum risk for each school level. Data of more than two times the standard deviation from the mean 
were treated as outliers and removed before generating the result. The figure indicates that high school had 
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the highest median airborne infection risk of 4.29% and the highest interquartile range (IQR) among all six 
levels of schools that were considered in this study. Elementary school showed the lowest median airborne 
infection risk and the lowest IQR among all school levels. Distinct control measures indicated a diverse 

impact on airborne infection risk. For individual controls, similar results are shown in Figure 2. MERV 13 
(AM1) had the best solo control performance among all school levels. The median risk was reduced to 
1.46% using AM1 in high school. The combination of AM1, AM2, and AM3 revealed the best performance 
among all control measures at all school levels. The median airborne infection risk in high school decreased 
to 0.56% under this combined control measure. 

Figure 1: Airborne infection risks of different school levels under various airborne transmission control 
measures. 

Figure 2: State airborne infection risk with distinct control measures: (a) the baseline situation; (b) applying 
MERV 13 filtration; (c) increasing the baseline air ventilation rate by 100%; (d) half students learning 
remotely. 
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3.2 Assessment of School Fomite Infection Risk 

A similar analysis was performed on the fomite transmission data of Omicron. Figure 4 demonstrates the 
average fomite infection risk of all states in the U.S. Compared with the results in Figure 2, the overall 

average risk was less than the average airborne infection risk in all states. Under the baseline scenario of 
no surface cleaning and hand cleaning, more than 90% of states have less than 1% of average fomite 
infection risk. About 60% of the states had less than 0.5% of average fomite infection risk. The average 
fomite infection risk of all counties under the baseline scenario was 0.48%. This result indicates that for 
Omicron, people are more likely to get infected via airborne transmission than via fomite transmission. 
Similar with the statistical analysis for the airborne transmission control strategies, a one-way Kruskal–

Wallis test and a post-hoc comparison were conducted. The p-value of the test was nearly 0, indicating that 
the mitigation strategies for the control of fomite transmission were statistically significant within 99% CI. 
The result of the pairwise comparison indicated that all the pairs of strategies were significantly different 
from others. 
 For different control measures, hand cleaning once per hour (FM2) and 50% of student learning online 
(FM3) showed similar results. The average fomite infection risks among all counties under FM2 and FM3 

were 0.44% and 0.47%, respectively. There was no significant change in average fomite infection risk after 
applying FM2 and FM3. However, surface cleaning once per day (FM1) exhibited an evident impact on 
reducing the average fomite infection risk. The overall average fomite infection risk decreased to 0.22% 
when applying FM1. About 95% of states had less than 0.5% average infection risk and 100% of counties 
had less than 1% average fomite infection risk under this control measure. States with high average airborne 
infection risk also resulted in high average fomite infection risk. Vermont, Maine, Alaska, Idaho, Rhode 

Island, and Kentucky ranked top six on highest infection risk for both airborne and fomite transmission. 
 School characteristics were analyzed, and the result is illustrated in Figure 3. Unlike airborne 
transmission, there was no obvious difference displayed between school levels for fomite infection risk 
under the baseline scenario. The median fomite infection risks of all school levels were all-around 0.32%. 
The combined control measure of FM1 + FM2 + FM3 exhibited the best performance in reducing fomite 
infection risk for all school levels, which is similar to the airborne transmission result. A small distinction 

can be observed among different school levels after applying the combined intervention strategy. 
Prekindergarten reached the lowest median fomite infection risk of 0.039% and high school had the highest 
median fomite infection risk of 0.11%. 

Figure 3: Fomite infection risks of different school levels under various fomite transmission control 
measures. 
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Figure 4: State fomite infection risk with distinct control measures: (a) the baseline situation; (b) surface 
cleaning once per day; (c) hand cleaning once per hour; and (d) half of students learning remotely. 

4 DISCUSSION AND CONCLUSION 

Two transmission pathways of the Omicron variant were simulated in this study due to the characteristics 
of schools and students. Schools are identified as crowded and poorly ventilated environments, which 
increase the risk of airborne transmission of various respiratory viruses, including SARS-CoV-2. Therefore, 
the airborne transmission route of Omicron was estimated, and the widely used operation strategies 
regarding the decrease of airborne infection risks during pandemics were included in the simulation and 

evaluated in the study. The operation strategies include ventilation increase, social distancing, filtration, 
and the combination of different strategies. Results indicate that county prevalence and school 
characteristics are the main features that affect the airborne infection risk. Under baseline ventilation, all 
states are exposed to high airborne infection risks, with an average infection risk of 4.51% of all states. Six 
states have way higher average airborne infection risk than other states. Meanwhile, school levels have an 
obvious impact on airborne infection risk. High schools showed the highest while elementary schools 

displayed the lowest median airborne infection risk among the six considered school levels. All the 
operation strategies resulted in significant improvement in decreasing airborne infection risk. Ventilation 
increase and social distancing demonstrated similar performance in reducing the infection risk, while 
filtration shows the best performance. This result is valid for all states and all school levels. All combined 
operation strategies showed better results than any individual operation strategy, while the combination of 

637



Xu, Zhu, Li, Cai, and He 
 

 

all three strategies exhibit the best performance and successfully reduced the median airborne infection risk 
to less than 0.5%.  
 Despite airborne transmission, since students at a young age are more liable to interact with their 

surrounding environment, viruses on the object surface are likely to transfer between hands and 
contaminated surfaces and occur self-inoculation. Thus, the fomite transmission route of Omicron was 
considered, and the effectiveness of mitigation measures such as surface cleaning, hand cleaning, and 
hybrid learning was assessed using a dynamic environmental infection transmission system. Results 
demonstrated that fomite transmission of Omicron has less impact on the infection risk than airborne 
transmission. Under the baseline scenario of no surface cleaning and hand washing, the average fomite 

infection risk in all states is 0.48%. The states with high average airborne infection risk still ranked as the 
top states with the highest average fomite infection risk. Mitigation measures of hand cleaning and 50% 
remote study showed similar but poor results on reducing the fomite infection risk when being applied 
individually. Surface cleaning exhibit significant improvement in reducing fomite infection risk, which 
halved the average fomite infection risk solely. The combined control measures displayed small 
improvements in decreasing fomite infection risk when compared to the performance of surface cleaning. 

There was no obvious evidence to show that school level has an impact on the fomite infection risk under 
the baseline situation, but prekindergarten showed better improvement after applying the mitigation 
methods. 

It is concluded that the Omicron spreads fast in U.S. schools, especially via airborne transmission. For 
instance, the average airborne infection risk is 4.51% without any mitigation measures, emphasizing the 
significance of mitigation measures to reduce the infection risks at lower level.  Among the considered 

mitigation measures, the impact of implementing MERV 13 filtration indicated a significant improvement 
in reducing the airborne infection risk, and the overall average airborne infection risk was reduced to 1.55%. 
High schools are exposed to the highest airborne infection risk amongst all school levels. The impact of 
ventilation increase and partial online learning is similar, with the infection risk of 2.40% and 2.30%, 
respectively. The spread via fomite route was insignificant compared with airborne route, with an average 
infection risk of 0.48%. The transmission risk nearly the same for different school level. To further 

eliminate the fomite transmission, the most effective mitigation measure is surface cleaning, reducing the 
transmission infection risk to 0.22%. 

ACKNOWLEDGEMENT 

This research was funded by the National Science Foundation (NSF) via Grant 2026719 and the Joint 

Directed Research and Development Program of Science Alliance at the University of Tennessee 

Knoxville. The authors gratefully acknowledge the support from NSF and the Science Alliance. Any 

opinions, findings, conclusions, and recommendations expressed in this paper are those of the authors and 

do not necessarily reflect the views of NSF, The University of Tennessee, Knoxville, and The University 

of Texas at San Antonio. 

REFERENCES 

Azimi, P., and B. Stephens. 2013. “HVAC Filtration for Controlling Infectious Airborne Disease Transmission in Indoor 

Environments: Predicting Risk Reductions and Operational Costs.” Building and Environment 70: 150–160. 

Batterman, S., F. Su, A. Wald, F. Watkins, C. Godwin, and G. Thun. 2017. “Ventilation Rates in Recently Constructed U.S. School 

Classrooms.” Indoor Air 27 (5): 880–890. 

Bouwknegt, M., K. Verhaelen, A. Rzezutka, I. Kozyra, L. Maunula, C. H. Bonsdorff, A. Vantarakis, P. Kokkinos, T. Petrovic, S. 

Lazic, I. Pavlik, P. Vasickova, K. A. Willems, A. H. Havelaar, S. A. Rutjes, and A. M. R. Husman. 2015. “Quantitative 

Farm-to-Fork Risk Assessment Model for Norovirus and Hepatitis A Virus in European Leafy Green Vegetable and Berry 

Fruit Supply Chains.” International Journal of Food Microbiology 198: 50–58.  

Buonanno, G., L. Morawska, and L. Stabile. 2020. “Quantitative Assessment of the Risk of Airborne Transmission of SARS-CoV-

2 Infection: Prospective and Retrospective Applications.” Environment International 145: 106112. 

CDC. 2022a. Omicron Variant: What You Need to Know. https://www.cdc.gov/coronavirus/2019-ncov/variants/omicron-

638

https://www.cdc.gov/coronavirus/2019-ncov/variants/omicron-variant.html


Xu, Zhu, Li, Cai, and He 
 

 

variant.html, accessed 21th April. 

CDC. 2022b. United States COVID-19 Community Levels by County. https://data.cdc.gov/Public-Health-Surveillance/United-

States-COVID-19-Community-Levels-by-County/3nnm-4jni, accessed 21th April. 

CDC. 2022c. CDC COVID Data Tracker: Variant Proportions. https://covid.cdc.gov/covid-data-tracker/#variant-proportions, 

accessed 21th April. 

Cheng, V. C., D. C. Lung, S. Wong, A. K. Au, Q. Wang, H. Chen, L. Xin, A. W. Chu, J. D. Ip, W. Chan, H. Tsoi, H. Tse, K. H. 

Ng, M. Y. Kwan, S. Chuang, K. K. To, Y. Li, and K. Yuen. 2022. “Outbreak Investigation of Airborne Transmission of 

Omicron (B.1.1.529) - SARS-CoV-2 Variant of Concern in a Restaurant: Implication for Enhancement of Indoor Air 

Dilution.” Journal of Hazardous Materials 430: 128504. 

Conover, W. J., and R. L. Iman. 1981. “Rank Transformations as a Bridge Between Parametric and Nonparametric Statistics.” The 

American Statistician 35 (3): 124–129. 

Gammaitoni, L., and M. C. Nucci. 1997. “Using a Mathematical Model to Evaluate the Efficacy of TB Control Measures.” 

Emerging Infectious Diseases 3 (3): 335–342. 

Hota, B., B. Stein, M. Lin, A. Tomich, J. Segreti, and R. A. Weinstein. 2020. “Estimate of Airborne Transmission of SARS-CoV-

2 Using Real Time Tracking of Health Care Workers.” MedRxiv. 

Hui, K. P.Y., J. C. W. Ho, M. Cheung, K. Ng, R. H. H. Ching, K. Lai, T. T. Kam, H. Gu, K. Sit, M. K. Y. Hsin, T. W. K. Au, L. 

L. M. Poon, M. Peiris, J. M. Nicholls, and M. C. W. Chan. 2022. “SARS-CoV-2 Omicron Variant Replication in Human 

Bronchus and Lung Ex Vivo.” Nature 603 (7902): 715–720. 

Jimenez, J., and Z. Cai. 2022. COVID-19 Aerosol Transmission Estimator. 

https://docs.google.com/spreadsheets/d/16K1OQkLD4BjgBdO8ePj6ytf-RpPMlJ6aXFg3PrIQBbQ/edit#gid=519189277, 

accessed 21th April. 

NCES. 2008. Average Number of Hours in the School Day and Average Number of Days in the School Year for Public Schools. 

https://nces.ed.gov/surveys/sass/tables/sass0708_035_s1s.asp, accessed 21th April. 

Klompas, M., and A. Karan. 2022. “Preventing SARS-CoV-2 Transmission in Health Care Settings in the Context of the Omicron 

Variant.” JAMA 327 (7): 619–620. 

Kraay, A. N.M., M. A.L. Hayashi, N. Hernandez-Ceron, I. H. Spicknall, M. C. Eisenberg, R. Meza, and J. N.S. Eisenberg. 2018. 

“Fomite-Mediated Transmission as a Sufficient Pathway: A Comparative Analysis across Three Viral Pathogens 11 Medical 

and Health Sciences 1117 Public Health and Health Services.” BMC Infectious Diseases 18 (1): 1–13. 

Kruskal, W. H., and W. A. Wallis. 1952. “Use of Ranks in One-Criterion Variance Analysis.” Journal of the American Statistical 

Association 47 (260): 583–621. 

Kwon, T., N. N. Gaudreault, and J. A. Richt. 2021. “Environmental Stability of SARS-CoV-2 on Different Types of Surfaces under 

Indoor and Seasonal Climate Conditions.” Pathogens 10 (2): 227. 

Li, S., Y. Xu, J. Cai, D. Hu, and Q. He. 2021. “Integrated Environment-Occupant-Pathogen Information Modeling to Assess and 

Communicate Room-Level Outbreak Risks of Infectious Diseases.” Building and Environment 187:107394. 

Lopez, G. U., C. P. Gerba, A. H. Tamimi, M. Kitajima, S. L. Maxwell, and J. B. Rose. 2013. “Transfer Efficiency of Bacteria and 

Viruses from Porous and Nonporous Fomites to Fingers under Different Relative Humidity Conditions.” Applied and 

Environmental Microbiology 79 (18): 5728–5734. 

Lyngse, F. P., C. T. Kirkeby, M. Denwood, L. E. Christiansen, K. Mølbak, C. H. Møller, R. L. Skov, T. G. Krause, M. Rasmussen, 

R. N. Sieber, T. B. Johannesen, T. Lillebaek, J. Fonager, A. Fomsgaard, F. T. Møller, M. Stegger, M. Overvad, K. Spiess, 

and L. H. Mortensen. 2022. “Transmission of SARS-CoV-2 Omicron VOC Subvariants BA.1 and BA.2: Evidence from 

Danish Households.” MedRxiv. 

Morawska, L., and J. Cao. 2020. “Airborne Transmission of SARS-CoV-2: The World Should Face the Reality.” Environment 

International 139: 105730.  

NCES. 2021. National center for education statistics (NCES). https://nces.ed.gov/ccd/elsi/tablegenerator.aspx, accessed 21th April. 

Nicas, M., and D. Best. 2008. “A Study Quantifying the Hand-to-Face Contact Rate and Its Potential Application to Predicting 

Respiratory Tract Infection.” Journal of Occupational and Environmental Hygiene 5 (6): 347–352. 

Nicas, M., and R. M. Jones. 2009. “Relative Contributions of Four Exposure Pathways to Influenza Infection Risk.” Risk Analysis 

29 (9): 1292–1303. 

Pitol, A. K., and T. R. Julian. 2021. “Community Transmission of SARS-CoV-2 by Surfaces: Risks and Risk Reduction Strategies.” 

Environmental Science and Technology Letters 8 (3): 263–269. 

Sobolik, J. S., E. T. Sajewski, L. Jaykus, D. K. Cooper, B. A. Lopman, A. N.M. Kraay, P. B. Ryan, J. L. Guest, A. Webb-Girard, 

and J. S. Leon. 2022. “Decontamination of SARS-CoV-2 from Cold-Chain Food Packaging Provides No Marginal Benefit 

in Risk Reduction to Food Workers.” Food Control 136: 108845. 

Standard 52.2- 2017 - American society of heating, refrigerating and air-conditioning engineers. 

https://ashrae.iwrapper.com/ASHRAE_PREVIEW_ONLY_STANDARDS/STD_52.2_2017, accessed 17th March. 

WHO. 2020. Transmission of SARS-CoV-2: Implications for Infection Prevention Precautions. https://www.who.int/news-

room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions, accessed 28th June. 

WHO. 2021. Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern. https://www.who.int/news/item/26-11-

2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern, accessed 21th April. 

639

https://www.cdc.gov/coronavirus/2019-ncov/variants/omicron-variant.html
https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-Community-Levels-by-County/3nnm-4jni
https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-Community-Levels-by-County/3nnm-4jni
https://covid.cdc.gov/covid-data-tracker/#variant-proportions
https://docs.google.com/spreadsheets/d/16K1OQkLD4BjgBdO8ePj6ytf-RpPMlJ6aXFg3PrIQBbQ/edit#gid=519189277
https://nces.ed.gov/surveys/sass/tables/sass0708_035_s1s.asp
https://nces.ed.gov/ccd/elsi/tablegenerator.aspx
https://ashrae.iwrapper.com/ASHRAE_PREVIEW_ONLY_STANDARDS/STD_52.2_2017
https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions
https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions
https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern
https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern


Xu, Zhu, Li, Cai, and He 
 

 

Xu, Y., J. Cai, S. Li, Q. He, and S. Zhu. 2021. “Airborne Infection Risks of SARS-CoV-2 in U.S. Schools and Impacts of Different 

Intervention Strategies.” Sustainable Cities and Society 74: 103188. 

AUTHOR BIOGRAPHIES 

YIFANG XU is a Ph.D. candidate and research assistant in the Department of Civil and Environmental Engineering at the 

University of Tennessee Knoxville. She earned her Master’s degree at Carnegie Mellon University. Her research interests includes 

sensing, machine learning, data analytics, building information modeling, and simulation. Her email address is 

yxu79@vols.utk.edu.  

 
SIYAO ZHU is a research assistant in the Department of Civil and Systems Engineering at Johns Hopkins University. He graduated 

from Carnegie Mellon University with a master’s degree in Civil Engineering. His research of interest focuses on mathematic 

simulation and modeling, statistics, data analysis, natural language processing and web application design. His email address is 

szhu34@jhu.edu.  

 
SHUAI LI is an Assistant Professor in the Department of Civil and Environmental Engineering at the University of Tennessee 

Knoxville. He graduated from Purdue University with a Ph.D. degree in Civil Engineering, a Master’s degree in Industrial 

engineering, and a Master’s degree in Economics. His research is centered on developing human-cyber-physical systems to improve 

built environment health and sustainability. His email address is sli48@utk.edu. 

 
JIANNAN CAI is an Assistant Professor in the School of Civil & Environmental Engineering, and Construction Management at 

the University of Texas at San Antonio. She holds a Ph.D. degree in Civil Engineering from Purdue University and a M.S. degree 

in Civil Engineering from Tongji University. Her research interests include data sensing and analysis, computer vision, deep 

learning, and robotics in construction, infrastructure, and building engineering and management. Her e-mail address is 

jiannan.cai@utsa.edu. 
 
QIANG HE is a Professor in the Department of Civil and Environmental Engineering at the University of Tennessee Knoxville. 

His research is centered on built environment microbiology and health. His email address is qianghe@utk.edu. 

640

mailto:yxu79@vols.utk.edu
mailto:szhu34@jhu.edu
mailto:sli48@utk.edu
mailto:jiannan.cai@utsa.edu
mailto:qianghe@utk.edu

