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ABSTRACT 

Fault detection (FD) is crucial for a functioning microgrid (MG) but is particularly challenging since faults 

can stay undetected indefinitely. Hence, there is a need for real-time, accurate FD in the early phase of MG 

operations to mitigate small initial deviations from nominal conditions. To address this need, we propose 

an FD framework for MG operational planning. Our proposed framework is synthesized from i) a dataset 

generated by introducing faults into an MG with PV cells, ii) processing the dataset to train various machine 

learning (ML) models for FD, iii) benchmarking the resulting FD models using classification metrics, and 

iv) applying an appropriate fault mitigation strategy. Although noisy measurements were present during the 

experiment due to variations in ambient temperature and solar irradiance, our proposed FD model is shown 

to be both computationally efficient with an average training time of 1.76 seconds and accurate with a 

weighted F-score of 0.96. 

ABBREVIATIONS 

Acronym Description 

RES renewable energy sources 

PV photovoltaics 

MG microgrid 

ML machine learning 

FD fault detection 

MPPT maximum power point tracking  

 IPPT intermediate power point tracking 

TSO transmission system operator 

US United States 

1 INTRODUCTION 

Recently, renewable energy sources (RES) such as wind and solar have become ever more attractive as the 

rate of fossil fuel depletion and the frequency of extreme climate events increase. According to an annual 

electric power report in the United States (US), 3% of electricity generation in 2020 stemmed from solar 

power (EIA 2022).  
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Figure 1: Annual U.S. electricity net generation between 1990-2050 for all sectors (left) and solar electricity 

net generation between 2010-2050 for all sectors (right). 

The US Energy Information Administration also forecasted that solar power would be responsible for 

4% of US electricity generation in 2021 and 5% in 2022 as shown in Figure 1 on the left. It is also projected 

that solar generation will produce as much as 14% of the US total energy supply in 2035 and increase to 

20% in 2050. In 2011, solar at the distribution scale accounted for 68% of total U.S. solar electricity net 

generation. However, solar generation at the utility scale increased substantially in the US during the past 

decade as average construction cost for solar power plants fell. Now utilities produce the most solar 

generation with 68% of total solar generation in 2020 (Runsewe et al. 2020; Philippe et al. 2021). 

Subsequently, 13 GW of solar capacity was added in 2021 and this trend is expected to continue with an 

increase to 22 GW of solar capacity in 2022. Large additions to solar capacity at the utility scale are likely 

to continue due to declining production costs as depicted in Figure 1 on the right (EIA 2021). PV systems 

are susceptible to several anomalies due to their high sensitivity to external climate factors such as ambient 

temperature and solar irradiance. Thus, it is important to diagnose them as early as possible before large 

deviations from nominal operating conditions occur. PV systems can suffer from malfunctions caused by 

power electronics and possess very fast power dynamics which narrows the window for FD. Consequently, 

measurements from multiple sensors must be taken at a high enough frequency to capture the fault dynamics 

within an MG system. However, this high sampling rate generates ever-increasing amounts of data which 

may create a bottleneck for computationally intensive FD models (Sáenz et al. 2012). Since the reliability 

and service life of PV cells play an integral role in reducing the cost of PV systems, the aim of this study is 

to develop a fast and accurate machine learning (ML) model for real-time FD in the early phase of microgrid 

(MG) operations with PV systems. Various studies have investigated FD across a variety of power system 

configurations including PV generation (Darville and Celik 2020; Yavuz et al. 2020; Thanos et al. 2017; 

Mesham et al. 2020). Authors (Madeti et al. 2017) investigated FD in grid-connected PV systems and 

proposed an optimal location for electric current and voltage sensors to limit the cost increase due to the 

redundant nature of these devices. Likewise, a sensor-based FD analysis was also developed by (Saha et al. 

2020) to detect partial shading of PV cells. PV systems containing maximum power point tracking (MPPT) 

and intermediate power point tracking (IPPT) controllers generally require advanced FD methods to detect 

faults. MPPT algorithms for partial shading such as dynamic leader based collective intelligence and 

memetic salp swarm algorithms are reported to be both fast and effective at reducing power losses during 

transmission. However, these algorithms mask signs of a fault leading to lower accuracy especially for low 

voltage and current values.  

Statistical, ML and deep learning models are well positioned to be used for FD in PV systems since 

these models make inferences about the relationships between variables to make accurate predictions 

(Goodwin et al. 2022; Damgacioglu and Celik 2022; Wright et al. 2022). For example, (Hong and Pula 

2022) proposed a 3D CNN model considering stacked 2D images (volumetric image) generated from the 

Gramian Angular Field transform as inputs to perform FD in PV systems. This model reflected over 90% 

accuracy score compared to 85% accuracy from (Benkercha et al. 2018) using a decision tree, and 85.82% 
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accuracy from (Chen et al. 2018) using random forest. A summary of previous FD models throughout the 

literature is presented in Table 1.  

Table 1: Summary of previous FD models throughout the literature. 

Study Fault Type 
Classification  

Method 

Single- or Multi- 

classification 

Hong et al. 2022 

• Line-to-line 

• Shorted/open string in modules 

• Shorted/open strings in array 

• Convolution 

neural 

network 

• Multi 

classification 

Benkercha et al. 

2018 

• Free fault 

• String fault 

• Short circuit fault 

• Line-line fault 

• Decision tree 
• Binary & Multi 

classification 

Chen et al. 2018 

• Line-line faults 

• Degradation 

• Open 

• Circuit 

• Partial shading 

• Random forest 
• Multi 

classification 

Proposed 

• Open circuit & Partial shading 

• MPPT/IPPT controller faults 

• Inverter fault 

• Current feedback sensor fault 

• Voltage sags 

• Logistic 

Regression 

• Random Forest 

• Naive Bayes 

• Binary 

classification 

 

 This study proposes a new FD framework for MG operational planning. As opposed to considering 

multiple types of faults within a multi-classification problem, the fault variations are aggregated into a 

single undesired effect on the MG system in a binary classification problem. Binary classification is used 

to simply detect whether there is a fault as opposed to identifying the type of fault present. This steers the 

ML model to focus on predicting the presence of a problem with higher accuracy as opposed to focusing 

on the various types of problems present. Subsequently, a transmission system operator (TSO) will identify 

the type of fault and employ an appropriate mitigation strategy as the predictive performance may wane 

from one class to another within a multi-classification problem. This approach provides a semi-automated 

control for an MG system where the TSO’s domain knowledge is essential to appropriately rectify the type 

of fault or fault combinations present for a given scenario.   

This article is organized as follows: Initially, section 1 presents a short description of the previous 

literature on fault detection. Next, section 2 outlines the proposed FD framework for MG operational 

planning including i) a description of each variable in the dataset, ii) the various methods used to preprocess 

the data for training, and iii) the types of ML models used for FD. Subsequently, section 3 discusses the 

results of the proposed FD framework for MG operational planning and the application of ML models for 

FD in MG systems. Finally, section 4 concludes the findings of our study and presents future work. 

2 METHODOLOGY 

In this article, we propose an FD framework for MG operational planning. Initially, the proposed FD 

framework uses statistical models for FD in MG systems. Here, real-time data from an MG system is used 

to train these FD models (Darville et. al 2022). Next, validation metrics are used to compare the FD 

performance of data-driven methods against real faults under both MPPT and IPPT modes.  

In Figure 2, multi-sensor measurements are used to collect real-time data from an MG system. This 

data is then stored and preprocessed to train various ML algorithms for developing an array of FD models. 

Preprocessing is required to i) appropriately handle missing points, ii) encode the binary and ordinal 
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variables, iii) ensure the classes of the response variable are balanced prior to analysis, and iv) scale all 

variables to a similar range to limit bias during training toward variables with a larger range than their 

counterparts. 

Figure 2: Proposed FD framework for MG operational planning. 

 The array of FD models obtained are benchmarked using classification metrics to determine the best 

ML model for this experimental data. After detecting a fault with high accuracy, an appropriate mitigation 

strategy can be implemented by the TSO to rectify the fault and restore the MG system to nominal operating 

conditions. Although ML models can be used for FD, their predictions must be implemented with domain 

knowledge from the TSO as the underlying ML algorithms learn from the data provided. Thus, 

understanding which variables should be used to describe a response and the various forms the response 

can take are pre-requisites for any data-driven method in a cyber-physical system such as an MG (Darville 

and Celik 2022). 

2.1 Dataset Description 

The Grid-connected PV System Faults (GPVS-Faults) data was collected from lab experiments by (Bakdi 

et al. 2021) where faults were manually introduced at various levels of severity halfway during these 

experiments in an MG system with PV generation.  This dataset contains seven fault scenarios operating 

using MPPT and IPPT modes including: partial shading, open circuit, inverter, voltage sags, current 

feedback sensor, MPPT/IPPT controller in boost converter faults, and nominal operating conditions (no 

faults). Consequently, there are 16 distinct fault scenarios across both modes to train various ML models 

for FD in PV systems and reactive MG system maintenance. Based on the type of fault present, a TSO can 

employ a corresponding mitigation strategy outlined in Table 2.   

Table 2: MG fault types and their respective mitigation strategies. 

Fault Type Description Mitigation Strategy Strategy Source 

F1 Inverter fault 
Complete failure in 

one of the six IGBTs 

Using specific inverter control 

(e.g., hysteresis controllers to 

account for the IGBT failures) 

Tabbache et. al 

(2013) 

F2 

 

 

Feedback 

Sensor 

fault 

One phase sensor 

fault 20% 

Switching among different 

observers, 

Wang et. al 

(2017) 

F3 Grid anomaly 
Intermittent voltage 

sags 
Dynamic voltage restorer 

Francis et. al 

(2014) 

F4 

PV array 

mismatch 

 

10 to 20% 

nonhomogeneous 

partial shading 

Bypass diodes 

Cell interconnection Shadow 

mode (string inverters) 

Module Level Power Electronics 

Sinapis et. al 

(2016) 
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The faults in Table 2 are a function of the MG’s state and subsequently the state variables (or predictors) 

used to denote the MG system are outlined in Table 3. 

Table 3: Description of state variables used to denote the MG system. 

Variable Variable Type Description 

Time Numeric 
Time-real in seconds with an average sampling of 9.9989 

microseconds 

Ipv Numeric PV array current  

Vpv Numeric PV array voltage  

Vdc Numeric DC voltage  

ia Numeric Phase_A current  

ib Numeric Phase_B current 

ic Numeric Phase_C current 

va Numeric Phase_A voltage 

vb Numeric Phase_B voltage 

vc Numeric Phase_C voltage 

Iabc Numeric Positive sequence estimated current magnitude 

If Numeric Positive sequence estimated current frequency 

Vabc Numeric Positive sequence estimated voltage magnitude 

Vf Numeric Positive sequence estimated voltage frequency 

Fault 

(Response) 
Binary 

“Yes or No” for fault present in {F1, F2, …  , F7} in either 

IPPT or MPPT mode  

  

 In Table 3, domain knowledge about MG systems is required to select state variables to be considered 

in FD analysis. Therefore, appropriate state variables including i) time to track changes in an MG’s 

behavior, ii) voltage and current values used to determine power output from PV arrays and at each phase 

within a 3-phase AC MG, iii) positive sequence components for voltage and current since they describe an 

MG operating under normal conditions (power flow from source to load), and iv) the resulting fault due to 

large variations in the previous variables (Bansal et al. 2018). After determining which state variables 

should be used to describe fault behavior within an MG system, these state variables are organized into a 

structured dataset for preprocessing and subsequently training ML models for FD.     

F5 
PV array 

mismatch 

15% open circuit in 

PV array 

photovoltaic array reconfiguration 

methods 

Yang et. al 

(2021) 

F6 

MPPT/IPPT 

controller 

fault 

−20% gain 

parameter of PI 

controller in MPPT/ 

IPPT controller of 

the boost converter 

Proportional Integral (PI) 

controller plus a phase-shift 

technique 

Siriwat et al. 

(2016) 

F7 

Boost 

converter 

controller 

fault 

+20% in time 

constant parameter 

of PI controller 

in MPPT/IPPT 

controller of the 

boost converter 

Fuzzy controllers augmented 

using a feedforward 

compensation technique 

Pena et. al 

(2002) 
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2.2 Preprocessing Data 

Preprocessing state variables is required to train FD models as previously illustrated in Figure 2. Here, we 

describe each of the four steps taken to prepare the data for training purposes. These four steps are applied 

concurrently to both the training and testing dataset which contain 80% and 20% of the original data. State 

variables with a significant number of missing values negatively impact the ML algorithm’s training since 

there consequently many uninformative predictors to learn from. Thus, missing points are replaced in step 

1 with the median value for each predictor since all predictors contain numeric values. Next, the binary 

response variable is encoded in step 2 such that the “Yes” class corresponding to the presence of a fault is 

labeled “1” and the “No” class corresponding to the absence of a fault is labeled “0”. Subsequently, we 

check the class distribution of the response variable in step 3 since a severe skew in the class distribution 

can influence many ML algorithms to ignore the minority class entirely. Hence, ML algorithms are trained 

using a comparable amount of each possible outcome (or balanced classes) since the minority class is often 

the most important for predictions as shown in Figure 3.  

Figure 3: Imbalanced class distribution of response variable (left) and balanced class distribution of 

response variable after oversampling (right). 

 Figure 3 shows an imbalance class distribution for the response variable on the left, where class 0 is the 

majority class. The two most common approaches to rectifying an imbalance dataset are to i) delete data 

points from the majority class or under-sample the majority class and ii) to duplicate data points from the 

minority class or over-sample the minority class. Thus, class “1” is oversampled using synthetic minority 

oversampling technique (SMOTE)  to match the number of observations in class “0” and balance the class 

distribution in Figure 3 on the right. Notably, oversampling was chosen due to the risk of losing valuable 

information by under-sampling the majority class. Finally, to mitigate bias toward predictors with a larger 

range of values, all predictors were scaled to a similar range in step 4 before training ML algorithms to 

develop FD models. 

 
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (1) 

 Therefore, the GPVS-Faults dataset is normalized using the min-max scaler function defined in (1). 

The level of impact scaling has on an FD model’s predictive performance depends on the ML algorithm, 

where ML algorithms can be categorized based on their learning behavior (e.g., distance learners, gradient 

descent, trees) and decision boundary (e.g., linear and non-linear). Thus, the min-max scaler function was 

selected since it does not reduce the effect of potential outliers which may indicate a severe fault in an MG 

system.  
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2.3 Machine Learning Models 

After preprocessing, ML algorithms suited for classification including Logistic Regression (LR), Random 

Forest (RF) and Naïve Bayes (NB) are trained to develop a robust FD model for an MG system. LR is a 

distance-based classification model that generates a linear decision boundary between classes within the 

response variable. LR assumes there is a linear relationship between each predictor and the log of odds of 

the response variable.   

 

ŷ = sigmoid (ln (
𝑃(𝑘|𝑥)

1 − 𝑃(𝑘|𝑥)
) = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛) 

(2) 

 LR is defined in (2). Hypothesis testing is then used to determine the significance of each predictor 

with respect to the response where the null hypothesis assumes the predictors have no effect on the response. 

Furthermore, LR assumes there are no leverage points, duplicate points, or multicollinearity (collinear 

predictors) as these factors tend to negatively impact the reliability of regression coefficients. Distance 

based models tend to scale poorly with larger datasets as the number of distance computations increase 

exponentially with each additional point. Therefore, statistical inferences drawn from the distributions of 

input variables can inform a current belief for faster predictions. 

  

P(H|E) =
𝑃(𝐻) × 𝑃(𝐸|𝐻)

𝑃(𝐸)
 

(3) 

 Bayes Theorem is the learning mechanism underlying the NB classifier and is defined in (3). Like LR, 

NB generates a linear decision boundary between classes within the response variable. Although the results 

from linear models are interpretable, a line or hyperplane that separates classes within the response variable 

may not exist. Thus, non-linear models which generate any decision boundary excluding a hyperplane are 

used to provide a more powerful separation tool. The tradeoff for this improved predictive performance is 

often a high model complexity which tends to make the resulting prediction intractable. 

 Non-linear models can generate a decision boundary that has a stair-case shape as with trees or a curvy 

shape as with neural networks (NNs). RF is a tree-based classification model that leverages the power of 

multiple decision trees called bagging (Altman and Krzywinski 2017) to generate a non-linear decision 

boundary between classes within the response variable. Since a random subset of available predictors are 

used to iteratively build single decision trees, RF combines the output of multiple decision trees or weak 

learners to generate the final output known as majority voting (Breiman 2001).  

 

1 − ∑ 𝑃𝑘
2

𝐾

𝑘=1
 

(4) 

∑ 2𝑛
𝑁

𝑛=0
 

(5) 

 Decision trees learn by dividing nodes into sub-nodes using a splitting criterion such as the Gini 

Impurity defined in (4). Furthermore, the total number of nodes within a decision tree or its size is defined 

in (5), where (𝑛) is the depth of the tree. Parent nodes are continuously branched using the splitting criterion 

in (4) throughout the training process until only pure (or homogenous) terminal nodes remain. Thus, 

significant predictors can be identified based on how well they separate the GPVS-Faults dataset or reduce 

impurities during training. Moreover, tree-based regularization techniques can be employed by constraining 

(𝑛) to mitigate any underfitting or overfitting observed during testing. Due to a computationally efficient 

decision rule, tree base ML models tend to scale well with larger datasets.   
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3 RESULTS AND DISCUSSION 

Within the proposed FD framework, each ML model was tested for its ability to detect a fault during MG 

operations. The proposed ML models were coded in Python 3.6 and ran on a computer with an Intel i7 2.67 

GHz processor and 16 GB RAM for replicability purposes. Training and validation data was collected from 

lab experiments conducted by (Bakdi et al. 2021) and is outlined in Table 3. The assumptions required to 

implement each ML model in (2) to (4) were both tested and addressed accordingly. 

The assumption investigated in LR was the presence of multicollinearity. To check for collinear 

variables, a correlation matrix was used where coefficients closer to 1 reflect co-dependence between 

variables as shown in Figure 4. 

Figure 4: Correlation matrix to check for multicollinearity among variables. 

 Although Figure 4 shows the presence of multicollinearity among variables in the GPVS-Faults dataset, 

these correlations are observed and not introduced by creating new variables from existing ones. Hence, 

domain knowledge about the system and collection method must inform how multicollinearity should be 

addressed. In this study, data was collected from an MG system that produce three phase power where 

power is a function of voltage and current at each phase. Notably, the voltage and current at one phase (e.g., 

va-ia, vb-ib, vc-ic) are independent whereas there is a dependence between the voltage at one phase and the 

current at the other two phases. This observation is presumed to be the result of three symmetrical single-

phase components operating simultaneously to satisfy a balanced three-phase loading within an MG 

(Weedy et al. 2012). Another correlation is observed between ‘Vpv’ and ‘Fault’ where the PV cells are 

manually exposed voltage imbalances generating faults such as F4 and F5 in Table 2. Therefore, 

correlations such as these are to be expected within an MG system and should not be manipulated or 

removed to improve the reliability of regression coefficients in (2).  

 After investigating assumptions associated with LR, assumptions associated with NB were investigated 

since RF does not require any preconditions to be implemented. NB assumes all the predictors are 

dependent, but this assumption is relaxed in NB classifier since each predictor requires it unique PDF for 

tractability (Taheri and Mammadov 2013). Since assumptions for LR, RF, and NB are satisfied, RF is 

applied to the GPVS-Faults dataset. The learning mechanism in (4) behind RF is used extract variables that 

influence the training process. 

In Figure 5, the significance scores for RF are based on the decrease of Gini impurity when a variable 

is chosen to split a node. Since this importance is derived from the learning mechanism in (4), it does not 

directly reflect the relationship between variables and the response. Hence domain knowledge is required 

to better interpret the result for the MG system. Here, Figure 5 suggests PV cells voltage “Vpv” is the most 

significant variable for learning to classify “Faults” which was previously corroborated by Figure 4. 
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Moreover, applying the NB classifier results in the same significance scores across variables in the GPVS-

Faults dataset. After addressing the assumptions required to implement each ML model and identifying 

variables that may influence the likelihood of a fault, the predictive performance of each ML model is 

reported in Table 4. 

 Figure 5: Variable significant for training RF. 

In Table 4, the false positive (FP/n) and false negative (FN/n) ratios reflect type 1 and type 2 error 

respectively. With respect to MG operational planning, type 1 error measures the amount of misclassified 

negative values or rate at which the ML model is sending a false alarm to the TSO. Although these false 

alarms can incur an additional cost as the TSO time is consumed investigating them, it is the desired 

alternative compared to type 2 error. Type 2 error is of greater concern because it measures the amount of 

misclassified positive values or rate at which faults are being overlooked within an MG system by the ML 

model. Ideally both types of error should be minimized across each ML model; however, this is rarely 

observed in data science and domain knowledge should be used to define an operating region or an 

acceptable margin of error for the TSO. Furthermore, precision and recall describe the quality and quantity 

of data for each class of the binary response variable. However, neither precision nor recall can be used 

independently to benchmark the overall performance of an ML model. Therefore, an F-score combines both 

precision and recall into a metric to benchmark an ML model’s overall performance. 

Table 4: Results using ML models for FD. 

Classifier 
Classification Metrics Training Time 

(sec) FP/n FN/n Class Precision Recall F1 Score Accuracy 

Logistic 

Regression 
0.011 0.016 

0 
1 

0.97 
0.98 

0.98 
0.97 

0.97 

0.97 
0.97  

(0.05) 
15.3 (+/- 0.35) 

Random 

Forrest 
0.046 0.029 

0 
1 

0.97 
0.96 

0.96 
0.97 

0.96 

0.96 

0.96 

(0.01) 
1.67 (+/- 0.7) 

Naive 

Bayes 
0.181 0.187 

0 
1 

0.63 
0.63 

0.64 
0.63 

0.63 

0.63 

0.63 

(0.12) 
0.07 (+/- 0.0) 

 

 Notably, the F-score and accuracy are equivalent in each class for each ML model since the class 

distributions of the response variable are balanced (see Section 2.2). Finally, K-fold cross validation is used 
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to ensure the average accuracy and standard deviation that describe the predictive performance remain 

consistent across each ML model. 

 According to Table 4, RF shows a comparable training time of 1.67 seconds to learn compared to NB 

with the shortest training time at 0.07 seconds. However, NB shows poor predictive performance at 0.63 

compared to LR at 0.97 and RF at 0.96. Although LR and RF have comparable predictive performance, LR 

has the longest training time at 15.3 seconds and will scale poorly data accrued during real-time MG 

operations compered to NB and RF. Therefore, amongst the ML models applied to the GPVS-Faults dataset 

in this study, RF should be chosen based on the F-score and time taken to train each model. 

4 CONCLUSION 

In this study we propose an FD framework for MG operational planning. Initially, the TSO uses domain 

knowledge to determine which state variables should be considered in FD analysis for MG systems. 

Preprocessing real-time data to train ML models for FD involves checking the assumption associated with 

a particular ML model using domain knowledge about MG systems before its implementation. Although a 

few correlations were observed between variables, they were not introduced by combining existing 

variables to synthesize new ones. Therefore, the variables producing these correlations should not be 

manipulated to improve the interpretability of a LR based FD model. Based on the predictor’s significance 

during training across each ML model, insight on which state variables best describe an MG system’s 

behavior were obtained. The ML algorithms were applied to the GPVS-Faults dataset including LR, RF, 

and NB. These ML models were chosen since that have unique learning mechanisms (e.g., distance, trees, 

probability) to develop a variety of FD models with either linear or non-linear decision boundaries. The 

classification performance metrics amongst the ML algorithms chosen showed LR can identify faults in 

MG systems best but takes the longest time to train and subsequently scale. Conversely, NB takes the least 

time to train but is also the least accurate when making predictions. Therefore, RF was shown to be the 

most appropriate ML model for FD in MG systems with PV generation with comparable accuracy to LR 

and comparable training time to NB. 
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