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ABSTRACT

Variable annuities are retirement insurance products created by insurance companies that contain financial
guarantees. To mitigate the financial risks associated with these guarantees, insurance companies have
adopted dynamic hedging, which is a risk management technique. However, dynamic hedging is associated
with computationally intensive valuations of variable annuity policies. Recently, metamodeling approaches
have been developed to address the computational problems. A typical metamodeling approach consists
of two components: an experimental design method and a metamodel. In this paper, we give a survey
of metamodeling approaches developed in the past ten years. For each metamodeling approach, we will
describe the experimental design method and the metamodel.

1 INTRODUCTION

Variable annuities are retirement insurance products that are created by insurance companies to address
concerns many people have about outliving their assets (Ledlie et al. 2008; Feng et al. 2022). Variable
annuities were first introduced in 1950s in the U.S. and have grown in popularity during the past two
decades. The popularity of variable annuities in the U.S. can be seen from Figure 1, which shows the
annual variable annuity sales in the U.S. from 2000 to 2021. From the figure, we see that the sales peaked
in 2007 with annual sales of 184 billion and then decreased to around 100 billion. In 2021, the annual
sales increased again.

When a person purchases a variable annuity policy from an insurer, the person actually enters a contract
with the insurer. The person is often called a policyholder. Under a variable annuity policy, the policyholder
agrees to make one lump-sum or a series of purchase payments to the insurer and in turn, the insurer agrees
to make benefit payments to the policyholder beginning immediately or at some future date. A typical
variable annuity policy has two phases (Hardy 2003): the accumulation phase and the payout phase. During
the accumulation phase, the policyholder builds assets for retirement by investing the purchase payments in
mutual funds provided by the insurer. During the payout phase, the policyholder receives benefit payments
from the insurer. The benefit payments can be a lump-sum, periodic withdrawals or an ongoing income
stream.

A main feature of variable annuities is that they contain guarantees, which can be bought as add-ons by
policyholders to protect their purchase payments from the downside of investment risks. There are two main
types of guarantees (Hardy 2003): guaranteed minimum death benefit (GMDB) and guaranteed minimum
living benefit (GMLB). A GMDB is the most basic guarantee type and guarantees that the beneficiaries
receive a minimum amount upon the death of the policyholder during the term of the policy. There are
different types of GMLB such as guaranteed minimum accumulation benefit (GMAB), guaranteed minimum
income benefit (GMIB), and guaranteed minimum withdrawal benefit (GMWB). Unlike a GMDB, a GMLB
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Figure 1: VA sales in the U.S. from 2000 to 2021. The numbers are obtained from LIMRA Secure
Retirement Institute.

is not triggered by the death of the policyholder. A GMLB is typically triggered on policy anniversaries.
Different GMLBs have different specifications on how and when the guarantee amount is determined.

The guarantees embedded in variable annuities are financial guarantees and are quite different from
other insurance risks such as mortality risks. As a result, the guarantee risks cannot be adequately addressed
by traditional pooling methods (Boyle and Hardy 1997). If the stock market goes down, the insurers lose
money on all the variable annuity policies that invest heavily in the equity market. In fact, top variable
annuity issuers lost money in the 2007/2008 financial crisis. We can see this from Figure 2, which shows the
stock prices of five top issuers of variable annuities during the period from 2007 to 2021. From the figure
we see that the stock prices of all these insurance companies declined significantly during the 2007/2008
financial crisis.

Insurers adopted dynamic hedging to mitigate the financial risks associated with the guarantees. However,
dynamic hedging requires calculating the fair market values of the guarantees in a timely manner. This
can be a challenging task, especially when an insurer has a large portfolio of variable annuity business.
Metamodeling techniques have been developed recently to address the computational challenges. In this
paper, we review the metamodeling techniques published in academic venues.

The remaining part of the paper is organized as follows. In Section 2, we introduce in detail the
computational problems associated with dynamic hedging of variable annuities. In Section 3, we review
various metamodeling approaches developed recently. In Section 4, we conclude the paper with some
remarks.

2 CHALLENGES OF VARIABLE ANNUITY VALUATION

Using dynamic hedging to mitigate the financial risks associated with variable annuity guarantees requires
quantifying the risks. This usually involves calculating the fair market values of the guarantees for a large
portfolio of variable annuity policies. In addition, the fair market values need to be calculated in a timely
manner so that insurer can take timely actions.

Unlike standard options traded in exchanges, however, the guarantees embedded in variable annuities
are complex. Their fair market values cannot be calculated in closed form by using formulas. In practice,
insurance companies rely on the Monte Carlo method to calculate the fair market values of the guarantees.
The Monte Carlo method is flexible and can be used to value different types of guarantees. In general,
the Monte Carlo method works as follows. First, a large number of economic paths (e.g., 1000 paths) are
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Figure 2: The stock prices of five insurance companies from 2007 to 2021. These insurance companies
were top issuers of variable annuities.

projected over a long period of time (e.g., 30 years) in to the future. Then cash flows of the guarantees
embedded in a variable annuity policy are calculated at all time steps of all paths. Finally, the average
present value is calculated as the fair market value of the guarantees embedded in the variable annuity
policy. The process is repeated for each variable annuity policy in the portfolio.

Although the Monte Carlo method is flexible, it is extremely time-consuming to value a large portfolio
of variable annuity policies because every policy needs to be projected over many economic paths for a
long time horizon Dardis (2016). For example, (Gan and Valdez 2017b) developed a Monte Carlo method
to calculate the fair market values for a portfolio of 190,000 synthetic variable annuity policies. The Monte
Carlo method used 1,000 risk-neutral paths projected for a 30-year projection horizon with monthly time
steps. The total number of cash flow projections for this portfolio is:

1,000×12×30×190,000 = 6.84×1010.

It took a single CPU (Central Processing Unit) about 4 hours to calculate the fair market values for the
portfolio. The aforementioned runtime is the runtime for just one market scenario. In practice, an insurer
needs to see how the fair market value of the portfolio changes under different market scenarios. This will
need additional runs of the Monte Carlo method and requires additional runtime.

Using Monte Carlo to quantify risks for dynamic hedging of variable annuities leads to two main
computational problems (Gan and Valdez 2019a). The first computational problem arises from daily
hedging. For the daily hedging purpose, Greeks on a set of pre-defined market scenarios are calculated
overnight and are used to interpolate the Greeks in real-time (Gan and Lin 2017). Greeks are referred to
as sensitivities of the fair market values of the guarantees on market factors. There are different ways to
calculate the Greeks (Cathcart et al. 2015). In practice, the bump method is commonly used to calculate the
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Greeks. For example, the partial dollar delta of the guarantees on a market factor is calculated as follows:

Delta(l) =
V0

(
PA(1)

0 , . . . ,PA(l−1)
0 ,(1+ s)PA(l)

0 ,PA(l+1)
0 , . . . ,PA(k)

0

)
2s

−

V0

(
PA(1)

0 , . . . ,PA(l−1)
0 ,(1− s)PA(l)

0 ,PA(l+1)
0 , . . . ,PA(k)

0

)
2s

,

where s is the shock amount (e.g., 1%) applied to the partial account value, PA(l)
0 denotes the partial account

value in the lth investment fund, and V0(·, · · · , ·) denotes the fair market value expressed as a function of
partial account values. Here the partial account value refers to the account value of a particular investment
fund invested by a variable annuity policy. Calculating the Greeks for a large portfolio of variable annuity
policies is extremely time-consuming. If we calculate Greeks for the aforementioned portfolio of 190,000
variable annuity polices at 50 market scenarios, for example, we would need 2× 50× 4 = 400 hours of
runtime on a single CPU.

The second computational problem related to dynamic hedging arises from an insurer’s quarterly
financial reporting. Without hedging of the risks, an insurer needs to put a large amount of capital on
reserves, which are used to back future payouts on the guarantees. Reserves for variable annuity guarantees
are not static and are in fact sensitive to market conditions (Drexler et al. 2017). Dynamic hedging allows
an insurer to release some capital from reserves for other purpose and stabilizes the insurer’s funding
needs. To reflect the effect of dynamic hedging in quarterly financial reporting, insurers usually employ a
stochastic-on-stochastic (also known as nested simulation) framework.

Stochastic-on-stochastic valuation involves two levels of simulation (Reynolds and Man 2008; Dang
et al. 2019): at the first level, outer loop real-world paths are projected; at the second level, inner loop
risk-neutral paths are projected. Figure 3 shows a sketch of stochastic-on-stochastic valuation. The outer
loop involves projecting the variable annuity guarantees along real-world paths, which reflect realistic
assumptions about the market. At each node of an outer loop path, the guarantees are projected along a
large number of risk-neutral paths, which reflect unrealistic assumptions that investors are risk-neutral.

Figure 3: A sketch of stochastic-on-stochastic valuation. Outer loop paths are denoted by solid arrows and
inner loop paths are denoted by dashed arrows in blue.
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Since stochastic-on-stochastic valuation involves two nested simulations, it is extremely time-consuming.
For example, if we apply stochastic-on-stochastic valuation on the aforementioned portfolio of 190,000
policies with 1000 outer loop paths, 1000 inner loop paths, and 360 monthly time steps, then we would
need 1000×360×4 = 1440000 hours or 164.30 years to complete the calculation on a single CPU.

Approaches to addressing the aforementioned computational challenges can be broadly divided into two
types: hardware approaches and software approaches. In hardware approaches, multiple CPUs and GPUs
(Graphics Processing Units) have been used to value a portfolio of variable annuity policies in parallel. In
software approaches, mathematical models and algorithms are designed to speed up the computation. In
practice, both types of approaches are used together to help reduce the runtime of valuing a large portfolio
of variable annuity policies. In this paper, we provide a review of a particular type of software approaches
called metamodeling approaches. For other types of software approaches, readers are referred to (Gan and
Valdez 2019a).

3 METAMODELING APPROACHES

The main idea of metemodeling approaches is to reduce the number of variable annuity policies to be
valued by the valuation model. A typical metamodeling approach involves the following four major steps:

1. select a small number of representative policies from a portfolio of variable annuity policies;
2. use the Monte Carlo method to calculate the fair market values of the representative policies;
3. build a regression model based on the representative policies and their fair market values;
4. use the regression model to estimate the fair market value for every variable annuity policy in the

portfolio.

In the first step, the method used to select representative policies is referred to as the experimental design
method. In the third step, the regression model is called a metamodel because it is a model of the valuation
model. In practice, the valuation model for variable annuities is usually a Monte Carlos simulation model
and is time-consuming to value a large portfolio of variable annuity policies. The metamodel is built to
approximate the valuation model and is much faster than the valuation model. The metamodel can be any
predictive models such as regression models and neural network models. Figure 4 shows the sketch of a
typical metamodeling approach.

A Portfolio
of Variable

Annuity Policies

Experimental
Design Method

Representative
Policies

Valuation Model

Fair Market
Values of Repre-
sentative Policies

Metamodel

Fair Market
Values of

All Policies

Figure 4: A typical metamodeling approach for estimating the fair market values of guarantees embedded
in variable annuities.
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Compared to other approaches used to solve the computational problems, metamodeling approaches
have the following advantages:

• Metamodeling approaches are scalable. If a portfolio of variable annuity policies doubles its size,
we do not necessarily need to double the number of representative policies. As a result, the
computational time of metamodeling approaches will not increase much.

• Metamodeling approaches can be used to validate the valuation model. It is error-prone to create
a valuation model for thousands of different policies. The results from metamodeling approaches
can be used to identify any problems with the valuation model.

The accuracy of a metamodeling approach depends on its two components: the experimental design
method and the metamodel. Research on metamodeling has focused on these two components. Table 1
shows a list of papers related to metamodeling of variable annuities. The table also shows the experimental
design method and the metamodel investigated in each paper.

Table 1: Some metamodeling approaches published in the past ten years.

Publication Experimental Design Metamodel

Gan (2013) Clustering Kriging
Gan and Lin (2015) Clustering Kriging
Gan (2015) LHS Kriging
Hejazi and Jackson (2016) Uniform sampling Neural network
Gan and Valdez (2016) Clustering, LHS GB2 regression
Gan and Valdez (2017a) Clustering Gamma regression
Gan and Lin (2017) LHS, conditional LHS Kriging
Hejazi et al. (2017) Uniform sampling Kriging, IDW, RBF
Gan and Huang (2017) Clustering Kriging
Xu et al. (2018) Random sampling Neural network, regression trees
Gan and Valdez (2018b) Conditional LHS GB2 regression
Gan et al. (2018) Clustering Regression trees
Gan (2018) Random sampling Lasso
Cheng et al. (2019a) Clustering Kriging
Cheng et al. (2019b) Clustering Neural network
Gan and Valdez (2019b) Clustering Kriging
Feng et al. (2020) Clustering Cluster size multiple
Gweon et al. (2020) Conditional LHS Regression trees
Lin and Yang (2020) Cube sampling Spline regression
Gweon and Li (2021) Adaptive selection Regression trees
Quan et al. (2021) Clustering Regression trees
Liu and Tan (2021) Quasi-Monte Carlo Taylor approximation

3.1 Models

In this subsection, we shall review the metamodeling approaches that have been developed in the past ten
years. Papers (e.g., Dang et al. (2019), Goudenège et al. (2020)) that are related to the aforementioned
computational problems but do not use metamodeling approaches are not included in the review.

Gan (2013) was one of the first papers that proposed the metamodeling approach to address the
computational problems associated with the valuation of large variable annuity portfolios. In this paper, a
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clustering algorithm called the k-prototypes algorithm was used as the experimental design method to select
representative variable annuity policies. The k-prototypes algorithm is an extension of the well-known
k-means algorithm that can handle both numerical and categorical features. The ordinary kriging method
was used as the metamodel to estimate the fair market values of variable annuity policies.

The ordinary kriging method used in (Gan 2013) is commonly used in geostatistics. Let z1, z2, . . ., zk
denote the representative policies selected by the clustering algorithm. For j = 1,2, . . . ,k, let y j denote the
fair value corresponding to the jth representative policy that is obtained from the valuation model such as
the Monte Carlo method. For an arbitrary policy xi in the portfolio, the ordinary kriging method estimates
the fair value for xi as follows:

ŷi =
k

∑
j=1

wi jy j,

where wi j’s are kriging weights determined by the following linear equation system:
V11 V12 · · · V1k 1

...
...

. . .
...

...
Vk1 Vk2 · · · Vkk 1
1 1 · · · 1 0




wi1
...

wik
θi

=


Di1

...
Dik
1

 .

Intuitively, the kriging method assigns more weight to policies nearby to the policy of interest than those
farther away. Here θi is a control variable used to make sure the sum of the kriging weights is equal to
one. In addition, Vrs’s and Dis’s are determined according to the distances between representative policies
and the distances between representative policies and xi, respectively. For example, Gan (2013) used the
following equations:

Vrs = α + exp
(
− 3

β
d(zr,zs)

)
, Dis = α + exp

(
− 3

β
d(xi,zs)

)
, r,s = 1,2, . . . ,k,

where α ≥ 0, β > 0, and d(·, ·) is the distance function used in the k-prototypes algorithm. The ordinary
kriging method is simple to implement and is quite robust.

Gan and Lin (2015) extended the idea of Gan (2013) to address the computational problem associated
with nested simulation of large variable annuity portfolios. Gan and Lin (2015) tried to use metamodeling to
speed up the calculation of Greeks along a single out-loop path. To do that, a small number of representative
policies were selected by the k-prototypes algorithm and the Greeks of each representative policy were
obtained at each time step of the out-loop path under consideration. Then a metamodel called the UKFD
(Universal kriging for functional data) was used to estimate the Greeks of all policies at each time step of
the out-loop path. In this metamodel, the Greeks along an out-loop path were treated as functional data.
This metamodeling approach can be repeated for each out-loop path. However, if there are 1000 out-loop
paths, the same procedure has to be repeated 1000 times. As a result, the metamodeling approach proposed
by Gan and Lin (2015) is limited in terms of reducing the runtime of nested valuation.

Gan (2015) followed up the study of Gan (2013) by trying a different experimental design method to
select representative policy. In particular, Gan (2015) proposed to use the Latin hypercube sampling method
to select representative policies. The k-prototypes algorithm tends to find representative policies in dense
areas of the portfolio. The Latin hypercube sampling method ignores the density of policy distribution in
the portfolio and finds representative policies in the whole space that maximize the minimum distance of
representative policies.

Hejazi and Jackson (2016) proposed to use a variant of the Nadaraya-Watson estimator to approximate
the Greeks of an arbitrary variable annuity policy. The variant of Nadaraya-Watson estimator is given by

ŷi =
k

∑
r=1

Ghr(d(xi,zr)yr

∑
k
s=1 Ghs(d(xi,zs)

,
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where Kh(·) is a a nonlinear differentiable function with a parameter h. Hejazi and Jackson (2016) proposed
a feed-forward neural network to find good Ghr functions and hr values. Uniform sampling was used to
select representative policies.

Gan and Valdez (2018b) proposed to use the GB2 (generalized beta of the second kind) distribution
to model the fair market values, which exhibit fat-tails. The density function of the GB2 distribution is
given by:

f (z) =
|a|

bB(p,q)

( z
b

)ap−1 [
1+

( z
b

)a]−p−q
, z > 0,

where a ̸= 0, p > 0, q > 0, b > 0, and B(p,q) is the Beta function. The GB2 distribution has three shape
parameters (i.e., a, p, and q) and one scale parameter (i.e., b). The GB2 distribution can capture the skewness
of the fair market values. The conditional Latin hypercube sampling was used to select representative
policies. The difference between Latin hypercube sampling and the conditional Latin hypercube sampling
is that representative policies selected by the former may not be policies from the portfolio. The conditional
Latin hypercube sampling method selects policies in the portfolio as representative policies.

Gan and Valdez (2016) compared several experimental design methods used in metamodeling approaches.
In particular, Gan and Valdez (2016) compared random sampling, low-discrepancy sequences, the TFCM
(truncated fuzzy c-means) clustering algorithm, Latin hypercube sampling, and conditional Latin hypercube
sampling. The metamodel was the GB2 regression model proposed in Gan and Valdez (2018b). They
found that the data clustering method and the conditional Latin hypercube sampling method are better than
other experimental design methods in terms of accuracy. However, those two experimental design methods
are slower than other methods.

Gan and Valdez (2017a) studied the use of copula to model the dependence between partial Greeks,
which are used to hedge different risk factors (e.g., large cap equity risk, small cap equity risk, interest rate
risk). Instead of building a metamodel for each partial Greek, the copula allows building a single metamodel
for all partial Greeks. The authors considered the independence copula, the Gaussian copula, the t copula,
the Gumbel copula, and the Clayton copula. The Gamma distribution was used as the marginal distribution.
However, Gan and Valdez (2017a) found that modeling the dependence structures in the metamodels does
not improve the prediction accuracy at the portfolio level.

Gan and Lin (2017) proposed a two-level metamodeling approach that can be used to estimate Greeks in
real time. The first-level metamodel is used to estimate the Greeks at some well-chosen market conditions.
In the first level, the conditional Latin hypercube sampling was used to select representative policies and
the universal kriging method was used as the metamodel. The second-level metamodel is used to estimate
the Greeks at the current market level based on the pre-calculated Greeks. In the second level, Latin
hypercube sampling was used to select market conditions from a space and the ordinary kriging was used
as the metamodel.

Hejazi et al. (2017) proposed a spatial interpolation framework to estimate the Greeks of variable
annuity policies. In particular, the authors compared kriging, inverse distance weighting (IDW), and radial
basis functions and found that the kriging method with the spherical variogram model is quite robust in
terms of providing accurate estimations.

Gan and Huang (2017) proposed a metamodeling approach as a data mining framework to estimate the
Greeks. In the data mining framework, a data clustering algorithm called the TFCM++ (Truncated Fuzzy
c-means) algorithm was used to select representative policies and the ordinary kriging method was used
to predict the fair market values of the guarantees embedded in variable annuity policies. The TFCM++
algorithm is an extension of the TFCM algorithm with an improved method to select initial cluster centers.

Xu et al. (2018) proposed a moment matching Monte Carlo method to speed up stochastic-on-stochastic
valuation of variable annuities. Instead of generating real-world scenario in a normal way, the authors used
a moment matching method to generate real-world scenarios, which were then used to estimate Greeks,
value at risk (VaR), and conditional value at risk (cVaR) for a single variable annuity policy. The theory
behind the idea is the Johnson curve, which can convert any continuous random variable into a standard
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normal random variable based on the first four moments. The moment matching method was shown to be
much faster than nested Monte Carlo simulation. The authors also proposed a metamodeling approach to
calculate Greeks, VaR, and CVaR for a portfolio of variable annuity policies.

Gan et al. (2018) explored the use of tree-based models as the metamodel for the valuation of large
variable annuity portfolios. In this paper, a hierarchical k-means algorithm was used to select representative
policies. This clustering algorithm first divides the whole portfolio into two clusters. Then it keeps dividing
the largest cluster into two clusters until a desired number of clusters is reached. The tree-based model
rpart from the R package rpart was used as the metamodel.

Gan (2018) investigated the use of linear regression models with interaction effects as the metamodel
for the valuation of large variable annuity portfolios. A linear model with first-order interactions has the
following form:

E[Y |X1,X2, . . . ,Xp] = β0 +
p

∑
j=1

β jX j +∑
s<t

βs:tXsXt ,

where the term XsXt models the interaction effect between Xs and Xt . Including interactions will increase
the number of predictors and may lead to overfitting. Regularization was employed to avoid overfitting.
The R package glinternet was used to fit a linear interaction model with regularization. In this paper,
random sampling was used to select representative policies.

Cheng et al. (2019a) proposed a deep neighbor embedding method to select representative policies.
A deep neural network was used to embed variable annuity policies in a low-dimensional space. The
low-dimensional representation can preserve similarities among policies in both policy features and the
historical performance. The k-means algorithm was applied to the low-dimensional representations to select
representative policies. In this paper, the kriging method was used as the metamodel.

Cheng et al. (2019b) explored the use of transfer learning for the valuation of large variable annuity
portfolios. The transfer learning method is able to handle more representative policies than the kriging
method, which involves matrix inversion.

Feng et al. (2020) proposed a metamodeling approach by using a simple random sampling and clustering
Method to select representative policies and a simple cluster size multiple metamodel. The method for
selecting representative policies consists of two stages. In the first stage, a random sample is drawn from
the portfolio of variable annuity policies. In the second stage, a clustering algorithm is applied to the
sample to select representative policies. In the cluster size multiple metamodel, the fair market value of an
arbitrary policy is predicted to be the fair market value of its nearest representative policy.

Gweon et al. (2020) proposed a bias-corrected bagging method as the metamodel for the valuation of
large variable annuity portfolio. The bias-corrected bagging method can reduce the prediction bias arising
from the bagging approach, which involves many regression models trained on the bootstrap samples to
improve the prediction accuracy and reduce prediction variance. The bias-corrected bagging method trains
two sequential bagging models. In the first bagging model, the fair market value is used as the response
variable. In the second bagging model, the prediction bias is used as the response variable. Mathematically,
the bias-corrected bagging method predicts the fair market value of an arbitrary policy x as follows:

ŷ∗ = f̂ (x,D)− B̂(x,D),

where D = {(z1,y1), . . . ,(zk,yk)} denotes the training data. The term f̂ (x,D) is obtained from the first
bagging model and the term B̂(x,D) is obtained from the second bagging model.

Lin and Yang (2020) proposed a method based on surrogate models (i.e., metamodels) to speed up
nested simulation for portfolios of variable annuities. The method can reduce the number of outer-loops
and the number of policies for the nested simulation. The reduction of outer-loops was achieved through
a spline regression model. To reduce the number of policies, the method used a model-assisted finite
population estimation framework. The surrogate model was a linear model given by:

Li(s) = x′ib(s)+ ei(s),

923



Gan

where Li(s) is the liability estimated from the spline model of the ith policy at the sth outer-loop simulation,
xi denotes the features of the ith policies, and ei(s) represents the prediction error.

Gweon and Li (2021) proposed an active learning framework to speed up the valuation of large
variable annuity portfolios. In the active learning framework, representative policies were select iteratively
and adaptively. At the beginning, a small number of representative policies are selected randomly from
the portfolio and used to build a regression model. Then the regression model is used to evaluate the
informativeness of other policies in the portfolio and select a subset of the most informative policies, which
need to be valued by the Monte Carlo method. The process is repeated until the computational budget for
valuing the policies runs out. The bagging method is used as the metamodel to estimate the fair market
values of the guarantees. The informativeness is measured through the prediction ambiguity, which is
roughly proportional to the prediction variance.

Quan et al. (2021) explored the use of tree-based models as metamodels for the valuation of variable
annuity guarantees. The authors considered traditional regression trees, tree ensembles, and trees based on
unbiased recursive partitioning. In addition, they compared tree-based models with existing metamodels
such as the ordinary kriging model and the GB2 (generalized beta of the second kind) regression model
in terms of prediction performance. They found that tree-based models can produce accurate predictions
and the gradient boosting method is superior to other tree models in terms of prediction accuracy.

Liu and Tan (2021) proposed the use of mesh methods to select representative policies for the valuation
of large variable annuity portfolio. In particular, the authors studies standard mesh methods and conditional
mesh method produced by Latin hypercube sampling and quasi-Monte Carlo. Once the mesh is constructed,
the Taylor approximation is used to approximate the fair market value of a variable annuity policy from
its neighbors.

3.2 Validation Measures

To validate a metamodeling approach, we usually need the following three validation measures: runtime,
accuracy at the portfolio level, and accuracy at the policy level.

Runtime is an important validation measure for metamodeling approaches because the purpose of
metamodeling approaches is to reduce the runtime of valuing large portfolios of variable annuity policies.
Runtime should be further decomposed to reflect the runtime used by the experimental design method and
that used by the metamodel.

In additional to runtime, prediction accuracy is another important validation measure. A metamodeling
approach should be fast and accurate in predictions. Accuracy of a metamodeling approach needs to be
measured at the portfolio level and at the individual policy level. Since risk management of variable
annuities is done for the whole portfolio rather than individual policies, it is important to know the accuracy
at the portfolio level. Measuring accuracy at the policy level helps us to see how a metamodeling approach
performs in terms of predicting individual policies.

A widely used validation measure to measure the accuracy at the portfolio level is the percentage error
given by PE = ∑

n
i=1(ŷi−yi)/∑

n
i=1 yi, where yi and ŷi denote the fair market values of the ith policy obtained

from the valuation model (e.g., Monte Carlo simulation model) and the metamodel model, respectively, n
is the total number of policies in the portfolio. A lower absolute value of PE indicates a better result.

A common validation measure to measure the accuracy at the individual policy level is the R2, which is
defined as R2 = 1−∑

n
i=1(ŷi−yi)

2/∑
n
i=1(yi−µ)2, where µ is the average fair market value, i.e., µ = 1

n ∑
n
i=1 yi.

A higher value of R2 means a better result.

3.3 Public Data

Ideally, metamodeling approaches should be tested by using real datasets from insurance companies.
However, it is extremely difficult for researchers to obtain real datasets from insurance companies. To
facilitate the development and dissemination of metamodeling approaches, synthetic data have been produced.
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For example, Gan and Valdez (2017b) created a large synthetic portfolio of variable annuity policies and
implements a simple Monte Carlo simulation model for valuing the synthetic portfolio. This portfolio
contains 190,000 synthetic variable annuity policies, whose fair market values and Greeks are also obtained
from the simple Monte Carlo simulation model. Due to space constraints, I will not describe the data in
this paper. Readers are referred to (Gan and Valdez 2017b) for detailed description of the data.

For nested simulation, Gan and Valdez (2018a) created a synthetic dataset with Greeks along 1,000
real-world paths, which are generated from a regime-switching model. The portfolio of synthetic variable
annuity policies is extracted from the portfolio created by Gan and Valdez (2017b) and contains 38,000
policies. This dataset contains seriatim results, which are important for developing and testing metamodeling
approaches.

4 CONCLUSIONS

Variable annuities are popular retirement products created by insurance companies. A major feature of
variable annuities is that they contain financial guarantees, which caused huge losses to large insurers in the
2007/2008 financial crisis. Dynamic hedging has been adopted by many insurance companies to mitigate
the financial risks of the guarantees. However, dynamic hedging requires valuation of variable annuities
on a daily basis and stochastic-on-stochastic valuation on a quarterly basis. Valuation of a large variable
annuity policies is computationally intensive. In this paper, we gave a survey of metamodeling approaches
that have been developed recently to address these computational problems.

From the survey, we found that most metamodeling approaches were developed to address the compu-
tational problem arising from the daily hedging of variable annuities. Only a few metamodeling approaches
were developed to address the computational problem associated with stochastic-on-stochastic valuation.
In addition, these approaches are complicated and rely on certain assumptions of the guarantees. As a
result, applying these metamodeling approaches in practice can be difficult. In the future, there still lots
of work can be done to solve the computational problem on nested simulation.
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