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ABSTRACT 

In this paper, we use discrete-event simulation in an attempt to highlight the consequences of variability in 
surgical training. Under the current training model, case volume minimums are being used as a surrogate 
measure of a surgical trainee’s competency for a given operation. However, this assumes that 1) learning 
is a binary measure, 2) there is no variability in training opportunities, and 3) all trainees learn at the same 
speed. Our model addresses these variables by allowing the user to manipulate the distribution of 
continuous learning curves and arrival rates, simulating the competency outcomes of a surgical training 
model. The results demonstrate that when increasing the variability in learning speeds or decreasing the 
training opportunities, competency outcomes for common procedures such as appendectomies remain 
relatively unaffected. However, for rarer procedures like mediastinoscopies, these variabilities result in a 
greater proportion of decreasingly competent trainees, potentially endangering patient safety. 

1 INTRODUCTION 

1.1 Background  

The U.S. educational model for training surgeons is largely experience-based. The intent is that surgical 
trainees perform a number of procedures during their residency under progressively decreasing supervision 
until competency is achieved and they are fully prepared for independent practice. The way this is currently 
operationalized is that trainees are expected to perform a predetermined number of each procedure type 
within a predetermined window of time (Accreditation Council for Graduate Medical Education, 2019). 
Recent studies raise concerns that this approach does not ensure adequate training for all learners (George 
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et al., 2017). In particular, the approach does not recognize variability such as the speed in which trainees 
acquire competency and the number of surgical opportunities that may arise over different training periods.  

In the U.S., most surgical residency training programs last at least five years, depending on the 
specialization. Throughout this time, residents will rotate through different subspecialties and services like 
cardiology or emergency medicine on most often a monthly basis (Accreditation Council for Graduate 
Medical Education, 2022). On each service, they will observe and execute different procedures. Figure 1 
shows an example of how general surgery rotations repeat each year but with potentially different timelines. 
The Accreditation Council for Graduate Medical Education (ACGME) considers a resident to be competent 
in a particular surgical technique if they complete a minimum number of relevant medical procedures. 
Different categories of surgery require a different minimum number of cases. For example, residents are 
required to complete five thoracotomies versus eighty five biliary surgeries (Accreditation Council for 
Graduate Medical Education, 2019).  

When residents begin their training in a residency program, they are assigned a fixed schedule that 
outlines the different surgical services they are on and for how long. As an example, a resident may spend 
their first month on General and Vascular surgery, moving to Transplant surgery their second month, and 
then rotating to Endocrine surgery their third month. It is also common to be on the same service multiple 
times throughout the program, such as being on the Plastic surgery service for a month during the second 
year and then again for a month during the fourth year, or Acute Care surgery for a total of 6 times over the 
duration of the residency.  

 
Figure 1: The path to becoming a surgeon in the United States. 

ACGME outlines specific guidelines across the continuum of medical education with the goal of 
ensuring that residents and physicians are delivering safe, effective, and professional care. The case 
requirements for general surgery residents are static and not impacted by real-world variation in case arrival 
and individual resident learning curves. This model implies that all individuals learn at the same rate, that 
residents all have the same opportunity to perform the same number of cases, and that competency is a 
binary variable. These assumptions that the instructional model makes are broad generalizations that may 
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allow a class of general surgery residents to graduate with a wider distribution of competency in certain 
procedures than ACGME would desire. 

In this paper, we use discrete event simulation (DES) to model the impact of variability (both in 
procedure availability and in skill acquisition) on the ability of a residency program to ensure the 
development of adequate competence for all trainees. This research is based on a collaboration between the 
University of Michigan (UM) Department of Thoracic Surgery and the UM Center for Healthcare 
Engineering and Patient Safety (CHEPS). The goal was to identify opportunities for improvement of the 
surgical residency program by leveraging engineering techniques. In particular, recognizing the impact of 
variability is critical to the overall improvement of training programs. 

1.2 Problem Definition 
There are three key assumptions underlying the ACGME competency model that may detract from the goal 
of achieving real competency for every surgical resident. Specifically, assuming that 1) learning is a binary 
measure 2) there is no variability in the availability of surgical training opportunities, and 3) that all trainees 
learn at the same rate can suggest that a training model which is strictly time-based will be effective. In 
actuality, such a training model that doesn’t consider the real world variability in training speed and 
procedure opportunity may fail to enable all residents to attain adequate competency. 

In order to move away from the idea that competency is a binary measure, it is important to consider 
learning the skills necessary to become competent in a procedure to be continuous. When a trainee begins 
practicing a procedure, their progress in developing competency with each additional training opportunity 
they have will increase in a continuous, non-linear manner (Subramonian, 2004). This can be plotted as a 
function that will be referred to as a learning curve which can be seen in Figure 2. As they complete more 
training, their competency in that particular procedure will increase until eventually reaching an asymptotic 
level. In Figure 3, it can be seen that each additional case completed does not contribute a relatively 
significant amount of competency. 

 
Figure 2: A sample learning curve for a given resident where they achieve 90% competency when they 
have completed the required 18 cases for that procedure. As the training progresses, the resident will 
eventually reach an asymptotic level, where each additional case completed does not significantly 
contribute to their overall competency in that procedure. 
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Figure 3: A sample learning curve for a given resident where they achieve 90% competency when they 
have completed the required 18 cases for that procedure. Over the course of the residency program, the 
variation in training opportunities can have a significant impact on the competency of that trainee in a 
procedure. For example, a trainee that completes 13 cases and a trainee that completes 15 cases of that same 
procedure could have a 17% difference in competency. However, when residents are towards the end of 
their learning curve, the difference in competency acquired is relatively smaller with each additional case 
completed. For example, a resident who completes 20 cases will only have a 2% difference in competency 
from a resident who completes 22 cases of the same procedure. 

Procedure opportunity can vary based on the program, where large general surgery residency programs 
associated with prominent hospitals have enough inflow of different cases to maximize the possibility that 
each resident will meet the minimum case requirements. However, the real life variability in the types of 
cases that arrive in a given month to smaller programs could make it difficult for all residents to meet case 
minimums. In light of recent circumstances surrounding the COVID-19 pandemic, anomalies that slow/shut 
down the American healthcare system must also be factored into the potential variability in cases. Elective 
surgeries were completely shut down throughout the United States amidst the pandemic and many residents 
were asked to help treat COVID-19 patients instead of continuing their curriculum (Aziz et al. 2021). 

Some procedures like hernia repair are very common, and residents likely have no problem fulfilling 
their case requirements. Other procedures however, like mastectomies, are more rare. For example, a given 
hospital with a residency program receiving on average 12 mastectomies per year would average to be 1 
procedure per month. Due to the nature of a fixed schedule, if there were 12 residents in that program that 
were each on the associated service for one month, although some trainees may receive exactly one 
mastectomy while on the service, others may receive 2 or 0. Although the average number of mastectomies 
completed across the trainees would be 1 per resident, the variation and unpredictability in procedure 
availability demonstrates how it could impact the consistency of training opportunities. Ultimately, this 
could result in varying levels of competency across the residents. 

Furthermore, each general surgery resident learns new skills at a different rate with each new chance 
to perform a procedure. Some residents may reach competency before completing the minimum number of 
cases. More importantly, there is another population of residents that learn skills at a slower rate who may 
be incorrectly deemed competent after meeting ACGME’s minimum case requirements, despite lacking the 
real competency level that would ensure safe practice. In Figure 4, the variation in learning curves arriving 
from different rates of learning is represented.  
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Figure 4: Three different learning curves for three different residents for a given procedure. ACGME case 
numbers imply that all trainees learn at the same rate. This figure displays how for a given procedure, 
different trainees may require different numbers of cases completed in order to reach the same level of 
competency. As a result, it is critical to assess the potential impact the variation of learning curves may 
have on residency program outcomes. 

In this paper, we present a DES model to evaluate the impact of these underlying assumptions, so as 
to motivate the development and analysis of more flexible, trainee-focused alternatives. By building a 
simulation model and running computational experiments where we changed the level of variability, 
competency outcomes for different surgical procedures were assessed.  

2 SIMULATION MODEL 

Our model was built using C++, where the inputs to the simulation were parameters for distributions that 
would determine the number of cases a resident would receive for a given procedure and how many cases 
the resident must complete in order to become 90% competent in that procedure (also known as the learning 
curve parameter, LCP). Using the LCP, a learning curve for each trainee for each procedure is generated, 
where their competency in that procedure is based on the number of cases they completed over the duration 
of their residency program. We applied this model to compute the total competency gained by residents in 
various procedures after rotating through a general residency program of block-scheduled training.  

The user of the simulation model selects the procedures within a service category and assigns each 
resident to one service per rotation. For example, only a resident assigned to the Thoracic service in July 
will be able to perform thoracotomies in July. 

In order to simulate the number of cases of a given procedure a resident gets exposed to, the user is able 
to select a distribution and its associated parameters to model arrival rates. As an example, if a user were 
to input the parameters for the distribution of the arrivals of colectomies, every time the trainee is on the 
associated service, the model will randomly draw a value from that distribution that will serve as the number 
of training opportunities for that procedure on that rotation. As residents rotate through their schedule, 
sometimes being on the same service multiple times, the total number of cases completed for each procedure 
will be stored. These values will then be used to calculate competency through the use of their learning 
curve, which can be seen in Appendix A.  
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As there is also variation in the learning speeds of different trainees, the user will be able to define a 
distribution and its associated parameters to represent the possible range of learning curves for the residents. 
When the simulation is run, the resident will be assigned a LCP for every procedure, which is then used to 
create the learning curve for each procedure.  

In summary, when the simulation is run, the code will generate a sample trainee, with the number of 
arrivals for each procedure drawn from their associated distributions based on the resident’s schedule, as 
well as the trainee’s LCP from their associated distributions for the same procedures. Once the simulation 
has rotated through the entirety of the resident’s schedule, the total number of cases completed for each 
procedure is used to calculate the competency of the resident in each of the procedures using the associated 
learning curves. This process is repeated for a user-defined number of replications, where at the end, 
summary metrics such as the mean and median competency and the distribution of competencies for all 
residents are produced. A flowchart that demonstrates the process of one replication of the simulation model 
can be seen in Figure 5. 

 
Figure 5: An overview of one replication of our simulation model. This process will repeat for the user-
defined number of replications, where each replication can be thought of as one resident going through the 
residency program.  

3 COMPUTATIONAL EXPERIMENTS AND RESULTS 

3.1 Simulation Inputs 

The following computational experiments are based on real-world parameters from a general surgery 
residency program in a major academic U.S. medical center. To compare and contrast the impact of 
variation on a common procedure versus an uncommon procedure, the competency outcomes for 
appendectomy and mediastinoscopy were investigated. The goal was to assess the potential impact that 
variation in arrivals and learning curves could have on competency outcomes. In this first scenario, we 
simulate when there is no variation in procedure opportunities nor learning speeds, followed by a second 
scenario with only variation in procedure opportunities. Finally, a third scenario combines variation in 
learning curves with variation in procedure opportunities. 

The fixed schedule assigns the trainee to 12 months on the acute care service and 2 months on the 
thoracic service over the duration of their training. These are the specialties where a resident would receive 
their training opportunities for appendectomies and mediastinoscopies, respectively. 
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The ACGME case requirements of 40 and 5 for appendectomies and mediastinoscopies, respectively, 
were used as the parameter mapping to 90% competency on the baseline deterministic learning curve, which 
was done because the learning curve is generated from the LCP which defines the number of cases required 
to achieve 90% competency (see Appendix A). The values of 40 and 5 were also used as the mean for the 
Normal distribution used to generate learning curves to demonstrate the variation among residents 
(Accreditation Council for Graduate Medical Education, 2019; Accreditation Council for Graduate Medical 
Education, 2017). Standard deviations for the learning curve distributions were increased across 
experiments to assess the impact this increase in variation had on competency outcomes.  

Finally, we used a Poisson distribution to represent independently-occurring procedural opportunities 
in a fixed time interval, with means of 38 and 3 per month, respectively, for appendectomies and 
mediastinoscopies, based on historical data (Gart, 1975). Table 1 shows a summary of our inputs in the 
simulation model. A total of 10,000 replications were run for each scenario. 

Table 1: A table showing a summary of the inputs to the model for the computational experiments. 
 

Associated 
Service, 
Number of 
months on 
Service 

Arrival Rate 
Distribution 

Arrival Rate 
Distribution 
Parameters 

Learning 
Curve 
Distribution 

Learning Curve 
Distribution 
Parameters 

Appendectomy Acute Care, 12 Poisson Mean = 38 Normal Mean = 40 
S.D. = Varied 

Mediastinoscopy Thoracic, 2 Poisson Mean = 3 Normal Mean = 5 
S.D. = Varied 

3.2 Scenario 0 

We begin by presenting a baseline scenario where all residents receive equal opportunities for both 
procedures, and they learn at the same rate; the simulation model allows us to easily compute the outcomes 
for this simple case. 

 
Figure 6A and 6B: Mean and median competencies for appendectomy and mediastinoscopy when no 
variation is introduced.  

With this control scenario, there was no variation in competency observed. This makes sense, as 
everyone has equal training opportunities and has the same learning curve. Every simulated resident should 
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be getting 38 appendectomies per month for 12 months and 3 mediastinoscopies per month for 2 months, 
which safely guarantees that everyone surpasses the required 40 and 5, respectively, achieving at least the 
90% target goal. Given that there is no variability, the median and mean competency are of course equal. 
This scenario demonstrates how the current ACGME standards assume residential trainees develop 
competency. 

3.3 Scenario 1 

Next, we assess the impact of varying arrival rates by introducing a Poisson distribution with a mean of 38 
and 3 for the arrival rate of appendectomies and mediastinoscopies, respectively, while keeping the learning 
curves consistent for all trainees.  

 
Figure 7A and 7B: Mean and median competencies for appendectomy and mediastinoscopy when variation 
in training opportunities was introduced.  

Results of this simulation can be seen in Figure 7A and 7B, where it can be seen that varying the arrival 
rates for appendectomies did not greatly affect the competency outcome because there is an abundance of 
these procedures and the arrival rate over the residency program is well beyond the required number of 40 
cases to achieve 90% competency on the learning curve. There is ample time for all residents to receive 
training opportunities, and we observe all residents still achieving full competency.  

With the Thoracic service, however, there are relatively few training opportunities, and introducing 
variation in arrival rates substantially impacts the competency outcome. The median competency score of 
97.2% may well be viewed as a success by program directors with limited experience exploring 
stochasticity. Comparing this to the mean of 83.1%, however, suggests that there are trainees with 
substantially lower scores to drag down the mean. In fact, on further examination, we see that only 72% of 
the trainees achieve the target of at least 90%. In other words, simply incorporating the random arrival 
pattern of procedures highlights the potential risk for some trainees to receive inadequate training 
opportunities, which (without intervention) could risk patient safety in the future.  

3.4 Scenario 2 

Finally, we add in the consideration of variation in learning speeds, assigning each resident a learning curve 
from a normal distribution for both procedures (means of 40 and 5 for appendectomy and mediastinoscopy, 
respectively). By keeping the variation in the arrival rates from the previous scenario and also increasing 
the standard deviation of the normal distribution of learning curves, we demonstrate that greater variability 
in trainee learning curves will amplify the spread of competency across a class of residents.  
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Figure 8A and 8B: Mean and median competencies for appendectomy and mediastinoscopy when there is 
variation in both the training opportunities and learning speeds.  

With the high arrival rate of appendectomies and extensive time spent on the Acute Care service, the 
competency outcomes remain robust even under variation in learning curves. 

However, increasing the standard deviation and thereby broadening the range of learning curves begins 
to significantly lower the mean competency in mediastinoscopies, even while leaving the medians relatively 
stable. Similar to the results of Scenario 1, it is evident that despite the majority of residents still achieving 
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competency, greater variation in learning curves means that there is a risk of an increasing population of 
surgical residents who require intervention to ensure adequate preparation for independent practice. In fact, 
while we see that 72% achieve the target value of 90% competency with consistent learning curves, this 
drops to 62.7% with a standard deviation, and all the way to only 48.5% when the standard deviation is 5. 

4 DISCUSSION 

With the results of all three simulation scenarios, it is evident that in cases where common procedures like 
appendectomies have high arrival rates, the impact of variation is marginal. There are enough learning 
opportunities that any kind of learner can have enough practice to become competent. However, rarer 
procedures like mediastinoscopies are far more likely to be impacted by variable arrival rates and learning 
curves. While the majority of residents would still achieve the 90% competency target, greater variation 
leads to the growing of a population of residents that do not. Therefore, interventions are needed to ensure 
patient safety and prevent programs from graduating surgical residents who are fully prepared for 
independent practice. 

A key motivator of our work is to inform ACGME guidelines, recognizing that residency programs 
may not adequately understand how variability could impact the competency of their trainees. While we 
recognize that we have made underlying assumptions about case arrivals and learning curves, it is clear that 
variation in competency among residents is very possible. Further research into characterizing the 
individual learning curves of general surgery residents and more intentionally collecting data on resident 
learning opportunities would allow for refined analyses that accurately represent reality and allow specific 
programs to adjust accordingly. 

Two key areas where the simulation model could be expanded to more accurately represent surgical 
competency are transference and skill decay. When residents practice the basics of surgery (sutures, 
incisions, etc.), they are learning transferable skills that apply to many different types of surgery. For 
example, when a resident has the opportunity to perform a laparoscopic cholecystectomy, there is an amount 
of gained skill and knowledge that is applicable to performing laparoscopic colonoscopy due to the shared 
laparoscopic components. Residents may achieve a higher level of competency more quickly when they 
get to practice a surgical skill in different contexts. Skill decay refers to the fact that, due to the rigid block 
scheduling of residency programs, there are many months where residents do not get the opportunity to 
repeat a procedure that they have already learned. This factor is important because of the multiyear nature 
of residency programs, giving residents time during which their skills may decay (Perez, 2013). 

While our research focused on assessing a potential problem within general surgery residency programs, 
it does not produce a clear cut solution. Rather, we highlight the impact of variability and the need to thus 
incorporate variability in learning programs. Key areas for future research are improved methods to measure 
an individual resident’s surgical competency, ways to better predict outcomes given variability in both 
procedural opportunities and learning curves, and strategies for more dynamic block scheduling, shifting 
procedures to those who need more to gain competency, rather than having a one-size-fits-all approach to 
training. We see the importance of continued collaboration between simulation and surgical experts to 
identify and assess strategies for mitigating the impacts of variability in silico before piloting in clinical 
practice. 
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APPENDIX A 

As seen in Figure 2, the learning curves are logistic shaped curves. The function used to calculate 
competency for a trainee T in procedure P in the learning curve demonstrated in Figure 2 is as follows: 
 

LTP(x) = 1/(1 + 𝑒!"($!%)) 
 
where, LTP(x)  is the learning curve function for trainee T  in procedure P , x  is the number of cases 
completed by trainee T in procedure P, i is the LCP for trainee T in procedure P, 𝑎	 = 	 (6.7923)/𝑖, and 
𝑏	 = 	0.6765 ∗ 𝑖. 
 
The LCP can be used to define a function which maps the number of cases that a trainee completes in a 
procedure to their % competency in that procedure. 
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