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ABSTRACT 

Few attempts have been made to simulate the complex natural history of opioid use disorder. We developed 
a model to simulate an agent’s opioid use over 15-minute time-steps. We followed the principles of control 
theory and opponent-process theory, formalizing representations of several processes (tolerance, effect, 
craving) as weighted integrations of opioid concentration, which was modeled with a pharmacokinetic 
equation. We calibrated our model to reproduce five qualitative opioid use trajectories commonly observed 
in the literature. We demonstrate how a relatively simple control theory approach can reproduce many of 
the key characteristics of real-world opioid use. 

1. INTRODUCTION 

This paper presents a prototype of Virtual Opioid User: a control-theoretic model that simulates an agent’s 
opioid use. (We call our simulation Virtual Opioid User—rather than a virtual person who uses opioids—
because the model is intended only to represent opioid use and does not cover the full spectrum of features 
that characterize a person.) Although many simulation models intend to help understand the epidemiology 
of opioid overdose, less attention has been paid to understanding and modeling the natural history of opioid 
use disorder. However, such models provide the basis for public health prevention and clinical treatment 
interventions. Because the natural history of opioid use disorder is complex, data is unavailable to 
parameterize and calibrate many components of such models. Therefore, we calibrated our model to 
reproduce five common, qualitative opioid use trajectories. These trajectories apply to both licit and illicit 
opioid use. In this paper, we describe the design of the model and the results of the qualitative calibration. 
 The opioid crisis in the United States reached National Public Health Emergency level as declared in 
2017. In 2016, 91.8 million (34.1%) U.S. civilian, noninstitutionalized adults used prescription opioids; 
11.5 million (4.3%) misused them. In 2021, over 100,000 Americans died from overdoses, 600% more than 
in 2010 (CDC, 2022). The mortality rate has been rising over the period of the COVID-19 pandemic.  

Virtual patients have been used broadly in clinical and medical research to help understand and simulate 
effects that are difficult or impossible to obtain in real world (Kononowicz et al. 2019). In the substance 
use field, little has been done to simulate the natural history of the disease, largely because substance use 
is very complex. It involves neurobiology, psychosocial factors, behavioral economics, and even political 
and cultural aspects of society (Bobashev et al. 2017; Bobashev et al. 2020). 

Many population-level models have been built to inform opioid policy. Typically, agents are considered 
to pass through discrete states (e.g., abstinence, experimental use, recreational use, dependence, disorder, 
recovery) (Bobashev et al. 2018; Chen et al. 2019). These models assume immediate transitions between 
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states like those in infectious disease models. However, in substance use, these transitions can take years 
and include movements back and forth between stages. For example, it is difficult to define how dependent 
a person is on a drug. Often a substance use disorder is recognized after it manifests strongly, but the 
disorder could develop gradually, and each point of time in an agent’s state could be defined as being 
between recreational and problematic use. This motivated us to develop models in fine-grained, almost 
continuous time that describe agent behaviors rather than hard labeling them as discrete states. 

Psychiatric and epidemiologic literature provides a rich basis of narrative pathways an individual could 
take as they use drugs (Goldstein 2001; Koob and Volkow 2010). A general narrative is that an individual 
starts with a small dose, likes the effect of the drug, and starts using it on a regular basis. After a while, they 
develop dependence (i.e., feel strong discomfort when not using the drug). A defining component of 
dependence is withdrawal, a physiological response to the sudden quitting or slowing of use. With time, an 
individual develops tolerance (i.e., a higher dose is needed to produce the same effect). Therefore, the dose 
tends to escalate, and regular use creates brain plasticity (i.e., the brain does not recover to the initial, 
unaffected state after cessation of drug use). These irreversible effects lead to substance use disorders and 
require treatment (Koob and Le Moal 2006; Koob and Volkow 2010). Another aspect of drug dependence 
is craving (i.e., a strong desire to use the drug). Craving is critical in the context of quitting and relapse. If 
a person is capable of withstanding craving, it will eventually decrease, but craving persists in long-term 
memory and can trigger relapse even after a period of cessation.  

1.1. Control Theory Models 

In this study, we use control theory formalism to simulate the use of opioids and illustrate potential 
pathways toward increased use and overdose.  In previous work, we introduced a control theory approach 
to modeling opponent process (see Section 1.2) and applied it to smoking and cocaine (Ahmed et al. 2007; 
Bobashev et al. 2007, Bobashev et al. 2017; Newlin et al. 2012). In this study, we used a similar approach 
to develop a model to simulate opioid use. To make the problem tractable, we focused on a subset of aspects 
of opioid use, namely consumption and choice of doses. In Bobashev et al. (2017), we illustrated our 
approach with the following example:  

 
When an individual is walking, several complex processes happen simultaneously in the brain, 
but from the control theory perspective, maintaining balance is just a coordination of feedback 
loops that can be formally modeled and realized in self-stabilizing devices such as a walking 
robot. Although the real stabilizing mechanisms in a human brain and a robot are different, the 
stabilizing feedback principles remain the same. 
 
Here we developed an opioid-using agent whose behavior mimics patterns of opioid use of a human. 

The use behavior is controlled by formalized feedback mechanisms. Because several control theory models 
can lead to the same phenomenological description, we present “a” model rather than “the” model. 

1.2. Opponent Process Models of Pathways to Dependence 

Many interlocked neurobiological processes guide pathways to dependence and disorder, but one—
opponent process—is key to the shifting setpoint characteristic of brain plasticity. In this study, we translate 
opponent process into mathematical terms and use it to guide agent behavior. Opponent process theory is 
based on the concept that the brain is designed to maintain a steady state (homeostasis). This state is 
characterized by a certain set point. When the system deviates from this point (e.g., because of an external 
stimulus), neurobiological processes bring the system back to the set point, thus maintaining a steady state. 
The process that restores homeostasis is thus called the opponent process, as introduced by Solomon and 
Corbit (1973). Applied to brain reward circuits, it means that when a strong reward (e.g., drug) creates a 
lasting effect, it must be countered by the opponent process to return the brain to the set point. Because the 
system does not need to respond to random noise, the opponent process is slower and responds to the signal 
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accumulated over an interval. Homeostasis, however, cannot explain a slow shift into drug dependence and 
disorder and must be modified by the concept of allostasis, where after prolonged use the set point shifts, 
and the system does not return to the original steady state. Opponent process thus leads to an important shift 
in individual motivation for consumption. When the opponent process accumulates, it overwhelms the 
system and starts driving substance use to counter the negative effect of the opponent process. After some 
time, substance use is motivated not by the pleasurable effects of the drugs, but the negative effects of the 
opponent process (Koob and Le Moal 2006; Koob and Volkow 2010). We therefore consider a cascade of 
processes. Each process in a sequence is slower than its predecessor, producing a delay between the peak 
values of these processes. The set point is a function of the combined effect of the slower processes, 
reflecting the accumulation of the deviation from the satiated state because of prolonged use. 

1.3. Opioid Use Trajectories 

In our study, we calibrated the model to reproduce several trajectories described in the literature as 
narratives. One is the pathway from the use of prescription opioids to gradual increase in dose and 
development of disorder, potentially leading to eventual overdose and death (Goldstein 2001). Another 
scenario is common for most pain patients, who are prescribed low doses of opioids and who use them 
without developing much tolerance, increasing dose, or developing problems (Hayden et al 2021). A similar 
scenario was described by Hoffer (2005) where opioid brokers who connect heroin buyers to dealers get 
rewarded with a small amount (tax) of heroin and maintain steady use of these small doses over time. 
Finally, we consider a scenario where an individual who has developed a high level of tolerance abruptly 
ceases opioid use (e.g., gets incarcerated) and experiences craving. We also show how taking opioids can 
lead to an overdose after such periods due to reduced tolerance. This scenario has been described in research 
showing that the rate of overdoses is up to 40 times higher among individuals who have been recently 
released from jail or prison (Frank et al 2017; Ranapurwala et al 2022; Victor et al 2022). Therefore, we 
calibrated our model to reproduce the following qualitative simulation scenarios:  
 

• maintenance of low dose without craving or dose increase, 
• gradual increase of dose at medium doses, 
• rapid increase of dose and craving at high doses,  
• increased craving during periods of cessation, and 
• increased overdose risk when resuming use after a period of cessation. 

2. METHODS 

2.1. Overview 

Virtual Opioid User is an open-source project. The code base is on GitHub (Preiss et al., n.d.) and an 
interactive app (Preiss, n.d.) is available to interact with the model.  
 The model core is a system of differential equations that represent an opponent process and control 
when the agent takes a dose. Other mechanisms such as tolerance, craving, dose increase, and overdose are 
formalized as functions of opioid use. External and individual factors such the drug type, starting dose, drug 
availability, and risk levels are inputs in the model. We use a pharmacokinetic decay function to translate 
opioids taken to the concentration of opioids in an agent’s system at a given time. The model is a fixed-
increment time simulation. There are 100 time-steps per day, with each time-step representing roughly 15 
minutes. During calibration, we used a simulation length of 2 years. At each time-step t, a series of functions 
determines the agent’s opioid use behavior. Broadly, the steps are the following: 

 
1. Compute concentration of opioids at t using a pharmacokinetic model. 
2. Compare concentration to the agent’s threshold to determine if the agent will take a dose at t. 
3. Compute tolerance and perceived effect of opioids in the agent’s system at t. 
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4. Compute the agent’s levels of craving at t. 
5. If the agent takes a dose at t, check whether it caused an overdose. 
6. If the agent takes a dose at t, compare its perceived effect to their preferred dose to determine if 

they will increase their preferred dose. 
7. Recalculate the agent’s use threshold based on opponent processes. 

 
A schematic diagram of the model is presented in Figure 1. 

 

Figure 1: A schematic diagram of the model. Colors indicate linked components: green for the multiscale 
opponent process described in Section 2.2; orange for the tolerance and dose increase mechanism described 
in Section 2.5, red for the overdose mechanism described in Section 2.7, and blue for all other components 
described below. The model is flexible to incorporate other processes as necessary. 

2.2. Multiscale Opponent Process Modeled as Weighted Integrations of Previous Processes 

We consider a cascade of five continuous functions to represent a multiscale opponent process. The 
processes sequentially feed each other with linear accumulation and first-order extraction, which is 
consistent with models of many biological processes (Murray 2002). We used this approach in Newlin et 
al. (2012) and further developed the modeling framework in Bobashev et al. (2017), but the 
parameterization is different to reflect opioid use as opposed to smoking tobacco. Each process is 
characterized by a temporal scale associated with accumulation and extraction rates. Each process is 
constructed as a weighted integration of the previous process, thus, the scale of each is longer than the scale 
of the previous process. The equations are not designed to represent any specific biological process; they 
are designed to describe the observed phenomenon.  

The first process, A, corresponds to the concentration of the drug, which is modeled with a 
pharmacokinetic equation. The second process, B, describes the accumulation of the drug and the body’s 
processing of it. This process is modeled as a running weighted mean of process A. The third process, C, 
characterizes how much drug an agent consumes over a long period. This process thus reflects the recent 
history of opioid use and is defined on the scale of days. It was modeled as a running weighted mean of 
process B. The fourth process, D, is again a running weighted mean of process C. It does not have a clear 
biological interpretation and is added for consistency of opponent process (i.e., to prevent a large leap in 
scale from process C to process E). Finally, process E is a long-term hedonistic memory defined on the 
scale of years. After a long period of cessation when processes A through D are quite low or virtually zero, 
process E holds its slow-changing values. It is used primarily for calculating an agent’s level of craving, 
which is discussed further below. Alphas and betas in the process equations are scaling parameters 
calibrated to reproduce our target trajectories. P is the concentration function discussed in Section 2.4. 
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!#
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2.3. Use Threshold 

Underlying the functionality of the model is a set point, or threshold, corresponding to a satiated state. 
When the actual state is below the threshold, the agent is motivated to use opioids. The threshold is dynamic 
and is a function of processes A through D, relying more on short- to medium-term memory of past use. 
When opioid use is high, the threshold gradually increases, and when opioid use is low, the threshold 
gradually decreases.  

2.4. Pharmacokinetic Model of Opioid Concentration 

We use a pharmacokinetic decay function calibrated to the half-life of morphine in plasma to measure how 
much of the opioid (in morphine milligram equivalents [MME]) was in the agent’s system at any given 
time. Per Lötsch (2005), three studies identified the morphine plasma half-life as 2.8 hours, which we use 
in our calculation. We scale the concentration to MME based on the drug selected. Our model uses 100 
time-steps per day (or 14.4 minutes per time-step). The half-life of opiates in our model’s time units is 
11.667 time-steps. This leads to a first-order decay constant of 𝑘  = ln 2 /11.667, or a decrease of a factor 
of 0.0594 for each time-step.  
 The concentration of opioids in the agent’s system is necessary to properly understand how an agent 
will interact with the drug. At every time-step in our model, we calculate the concentration of opioids and 
use this as input to calculate the agent’s tolerance, perceived effect, and desire to increase their dose. This 
equation is modifiable to represent the usage of pills, injections, etc. To represent the rate at which opioids 
are reaching blood stream through digestion, the first-order decay equation is modified as follows, where 
ka and ke are coefficients of absorption and elimination respectively, F is an individual scaling coefficient, 
and d is the time since the last dose: 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛  =  𝐹 × A
𝑘-

𝑘- − 𝑘.
B × C𝑒(01!×!) − 𝑒(01"×!)D. 

2.5. Tolerance, Perceived Effect, and Dose Increase 

To calculate the agent’s opioid tolerance, we use a logistic function of the agent’s recent opioid use. When 
an agent has been using opioids more often, tolerance will be higher, and when an agent has been using 
less, tolerance will be lower. Parameters of this function are relative to dose, resulting in the relationship 
between concentration and effect changing at different doses. In turn, this results in agents tending to 
maintain use of a low dose for a long time and increase their dose faster as the dose gets higher.  

We use a standard logistic function to model tolerance: 𝑌 = 𝐿 / G1 + 𝑒401×(505#)6I. The input to the 
logistic function (𝑥) is a rolling mean of the agent’s opioid concentration over a window of past time-steps, 
multiplied by a constant. The number of past time-steps and the multiplier are calibrated parameters. The 
parameters of the logistic function are functions of the agent’s current preferred dose and several calibrated 
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parameters. The maximum of the logistic curve is defined as 𝐿 = 𝑑𝑜𝑠𝑒7$ × 𝑙&. The growth rate is defined 
as 𝑘 = 𝑘$ − 𝑑𝑜𝑠𝑒 × 𝑘&. The midpoint of the logistic curve is defined as 𝑥8 = 𝑑𝑜𝑠𝑒 × 𝑥. 

The agent’s perceived effect is a function of opioid concentration and tolerance. When a weighted 
average of the effect of recent doses passes below their use threshold, the agent is motivated to increase 
their preferred dose. 

2.6. Craving 

Craving plays a key role in an individual’s motivation to take opioids, their motivation to cease taking 
opioids, and their desire to increase/decrease dose. Craving is calculated from the longest-term memory of 
past use (Process E above) moderated by the agent’s threshold, which decays more quickly after cessation. 
The overall effect of combining threshold and long-term memory is that craving peaks rapidly upon 
cessation, then gradually decays. Craving directly influences the availability of opioids in the model, since 
an agent experiencing stronger craving will try harder to seek opioids, thus increasing their likelihood of 
use. We define craving as 𝐶𝑟 = 𝑑,𝐸(𝑇 − 𝐴)/(𝑆 + 𝐸), where T is a satiation threshold, S is a calibration 
coefficient, and A and E are processes. 

2.7. Overdose 

One of the primary outcomes of interest in our model is simulating the variables that can lead to opioid 
overdose. For each single dose taken, we calculate the agent’s probability of overdose from that dose, based 
on their concentration of opiates, tolerance, and a baseline overdose risk function. The baseline overdose 
risk function is derived from Dasgupta et al. (2015), which presents population-level overdose risk statistics 
at various opioid prescription doses. We fitted a logistic model to their data, along with the assumption that 
a single dose of 2,000 MME has an overdose probability of 1. Because Dasgupta et al. (2015) used 
prescription data, we assume that the overdose risks they reported are for people who are tolerant to their 
prescribed dose. Therefore, we add an excess risk multiplier, based on the ratio of the dose to the agent’s 
tolerance. We define excess as (𝑑𝑜𝑠𝑒/𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 − 1)&. Baseline risk (from the function derived from 
Dasgupta et al.) is multiplied by the excess risk multiplier (and then limited to 1) to create a tolerance-
adjusted overdose probability. For each dose taken, a random draw is compared to the tolerance-adjusted 
overdose probability for that dose to determine whether the agent overdosed. 

Once an agent has overdosed, we assess whether the overdose was fatal. Each overdose has the potential 
of having a fatal outcome. We modeled this using the statistic that 1 of every 8.5 overdoses is fatal, per 
Dunn et al. (2010). 

Once an agent has overdosed, assuming it was not fatal, we adjust the agent’s behavior moving forward. 
We calculate the amount of time the agent will cease using opioids after overdose using an exponential 
distribution, which is scaled by their social and individual risk (see below). This period can range from a 
few hours to 60 days. This stoppage can also be coupled with a reduction in dose, which is also based on 
the agent’s social and individual risk. The lowest-risk agent will reduce their dose by half, while the highest-
risk agent will maintain the same dose. 

2.8. Inputs 

The model is flexible to add additional inputs to conduct various experiments. Below we describe the inputs 
in our application and how they play a role in our simulation outcomes. For our initial calibration, the 
following inputs were most important. Other inputs are listed in Table 1. 
 

• Starting dose: The agent starts the simulation taking their preferred dose consistently. This 
parameter controls their preferred dose at the start of the simulation. 

• Composite risk factors for the agent and their environment: 
o Social risk: a composite of external/environmental factors (e.g., social determinants of 

health) motivating the agent to use opioids and seek increased effects from them 
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o Individual risk: a composite of psychological/biological factors (e.g., risk tolerance) 
motivating the agent to use opioids and seek increased effects from them 

• Use pattern: to simulate the effects of resuming opioid use after a period of cessation, each model 
run can either include or exclude a 6-month period where opioids are unavailable in the middle of 
the simulation. 

 
Table 1: Other inputs that can be varied across simulation runs. 

 
Input Description 

Dose Variability 
The agent always has a preferred dose. If this parameter is 0, they always take that 

exact dose. If this parameter is > 0, each dose varies from the preferred dose. 
 

Opioid Type 

The agent takes one opioid type throughout the simulation. They can increase their 
dose over time, but always continue to take the same opioid. The chosen opioid is 

converted to morphine milligram equivalents within the simulation. 
 

Opioid 
Availability 

The probability that, each time an agent intends to take a dose, opioids will be 
available for them to take. 

Dose Increase 
Amount 

When the agent is no longer satisfied with the effect of their preferred dose, they 
may increase their preferred dose. This parameter controls the amount by which 

they will increase their preferred dose. 
 

2.9. Calibration 

Our model used pharmacokinetic parameters from published literature representing human patients (Lötsch 
2005). Dose-specific overdose risk parameters were derived from Dasgupta et al. (2015). Other parameters 
were drawn from expert opinion, such as the distribution of cessation length following overdose. However, 
many control theory parameters were not directly observable or did not have biological interpretation and 
therefore were calibrated to produce the five target opioid use trajectories described above. Because our 
calibration targets were qualitative, the typical calibration approach of minimizing a loss function was not 
feasible. Therefore, we used an iterative, human-in-the-loop calibration process, in which we calibrated 
individual functions to produce desired behavior, then combined functions, adjusting as needed to maintain 
desired behavior. For example, we calibrated the tolerance-building function independently as a starting 
point. Then, once it was integrated to the full model, we made small adjustments to the function’s 
parameters to produce the desired trajectories. The trajectories were then reviewed by ethnographers and 
opioid treatment psychiatrists for feasibility. 

3. RESULTS 

Our model reproduced the five target opioid use trajectories. 

3.1. Maintenance of Low Dose Without Craving or Dose Increase 

When the simulation starts with a relatively low dose, later dose increases are unlikely, as seen in Figure 2 
below. This is due to the design of the tolerance function. At lower doses, the logistic curve has a smaller 
growth rate, midpoint, and maximum. In other words, agents become less tolerant of lower doses and 
tolerance builds more slowly. 
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Figure 2: An average agent with a starting dose of 50 milligrams of hydrocodone maintains their starting 
dose throughout the simulation. 

3.2. Gradual Dose Increase at Medium Starting Doses 

At somewhat higher starting doses (around the Centers for Disease Control and Prevention’s maximum 
recommended dose of 90 MMEs), agents are more likely to increase their dose during the simulation, as 
seen in Figure 3. At these doses, tolerance builds more quickly, reducing perceived effect relative to 
preferred dose and motivating dose increase. 

Figure 3: An average agent with a starting dose of 70 milligrams of hydrocodone begins to increase their 
dose after about 500 days. 
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At medium starting doses, other parameters in the model are especially important in determining the agent’s 
trajectory. Parameters like opioid availability, social risk, and individual risk tend to be dominated at very 
low or high starting doses. However, at medium doses, they can have great impact. For example, at the 
same starting dose of 70 milligrams of hydrocodone, an agent with a higher individual risk level tends to 
increase their dose more than an average agent (not shown). However, at a starting dose of 50 MME, agents 
tend to maintain the same dose regardless of risk level. Conversely, at a starting dose of 100 MME, even 
agents with low risk levels tends to increase their dose over time. 

3.3. Rapid Dose Increase at High Starting Doses 

At starting doses above 90 MMEs, agents tend to increase their dose rapidly. As tolerance builds at a greater 
rate with ever higher doses, this can lead to extreme dose increases over the course of the simulation, which 
greatly increases the likelihood of overdose. No figure has been included for this scenario as the trajectory 
is similar to Figure 3, but with a faster and greater increase in dose. 

3.4. Increased Craving During Subsequent Periods of Cessation 

When an agent abruptly ceases opioid use for a long period (simulating a cold-turkey treatment program or 
incarceration), their levels of craving increase rapidly, peak within a few days, then begin to slowly decay, 
as shown in Figure 4 below. This represents the high desire to use opioids during withdrawal and the long-
term desire to use opioids driven by hedonic memory. Increased history of opioid use prior to cessation 
leads to a higher peak and longer duration of craving. 
 

Figure 4: An agent with a dose of 225 milligrams of hydrocodone experiences peak craving within a week 
of cessation. After 6 months of cessation, craving nears zero. Craving is not shown in other figures for 
simplicity, but the craving mechanism was included in all model runs. 

3.5. Increased Overdose Risk When Resuming Use After a Period of Cessation 

Tolerance decays during periods of cessation. When agent resumes use after cessation, the effect of a given 
dose is much higher, leading to higher risk of overdose. In Figure 4, the agent reduces their dose when they 
resume use after cessation. In Figure 5, the agent resumes use at the same dose. If an agent who is 
accustomed to a high dose resumes use at the same dose after cessation, overdose risk can be very high. 
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Figure 5: An agent resumes taking a dose of 700 milligrams of hydrocodone after 6 months of cessation 
and overdoses. 

4. DISCUSSION 

We developed a theoretical model that can qualitatively reproduce five key trajectories of opioid use. We 
showed that a simple control theory model with variability in the starting dose, use pattern, and risk factors 
can reproduce these patterns. We formalized a multiscale opponent process to control the allostatic 
threshold for opioid use, as well as mechanisms of tolerance, dose increase, and craving, which form 
feedback loops with opioid use. We also developed an overdose risk module, which determines whether 
each dose taken by an agent causes overdose. 
 Our theoretical model is an early step in a research program with various implications. From a public 
health perspective, improved simulation of individual pathways to dependence and disorder could help 
improve our understanding of these phenomena, ultimately leading to advances in prevention and treatment 
of substance use disorders. Methodologically, simulating substance use continuously rather than in discrete 
states offers theoretical and practical advantages. Agent-based models and microsimulations could use 
populations of Virtual Opioid Users to simulate emergent behavior more accurately. Finally, like other 
virtual patient models, our model could be used to help clinicians better understand their patients. For 
example, medical students could interact with our application [Preiss n.d.] to see how different dosing 
practices affect long-term outcomes. 

4.1. Limitations  

We acknowledge that true calibration to real-world data currently is not possible for many parameters due 
to the lack of corresponding data. Our model is conceptual and provides a theoretical base rather than being 
fully practical. Therefore, major limitations are related to the validity of many of the model assumptions. 
These key assumptions include the mechanism causing the increase in tolerance, the probability of 
overdosing given dose and tolerance, and the somewhat ad-hoc formulation of a withdrawal and craving 
relationship with the opponent processes. The functional forms of these processes were selected to represent 
narratives described by scientific literature, addiction psychiatrists, and people who discuss opioids on 
Reddit. Despite this limitation, such conceptual models can still have practical uses beyond theory 
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development and serving as a foundation for future models. For example, Abo-Tabik et al. (2020) combined 
our similar virtual smoker model (Bobashev et al. 2017) with external data to significantly improve the 
forecast of relapse episodes among smokers. 

4.2. Future Work 

We have two main goals for the future development of Virtual Opioid User. First, we plan to validate the 
model more rigorously. Second, we plan to use the model as the foundation for various microsimulations 
and agent-based models, adding features as necessary.  
 Validating the model entails the challenging task of identifying real-world data for many difficult-to-
measure constructs. Nevertheless, we are optimistic that real-world calibration targets exist for many of the 
model’s components. For example, parameters in the excess overdose risk multiplier could be calibrated to 
the overdose incidence rate in a population of interest. More challenging examples include the allostatic 
threshold for opioid use and the dose increase mechanism. Opponent process parameters could conceivably 
be calibrated to observed patterns of opioid use from clinical or ethnographic research. Similarly, tolerance 
function parameters could be calibrated to dose increases from longitudinal opioid prescription data. 
Although such calibrations would be imperfect, and no calibration target exists for the model’s overall 
output, calibrating individual components in this fashion would increase the model’s practical usefulness.   

We plan to use Virtual Opioid Users as agents to simulate the use of counterfeit pills (potentially laced 
with fentanyl); the mixture of pills and heroin; environmental factors (e.g., new prescription guidelines); 
the effects of medication-assisted treatments; and polysubstance use (e.g., heroin and benzodiazepines). 
Because of the model’s modular structure, components can be added or replaced with more advanced 
models when needed. For example, the addition of dependence and disorder would require incorporation 
of psychosocial factors such as the failure to fulfil work and family obligations. This module could be added 
to the base simulation when the timing of use interferes with external environmental prompts. Individual 
characteristics such as risk scores and parameters guiding tolerance building could interact with 
environmental factors to create realistic psychosocial outcomes. So far, we model the environment only 
through the availability of drugs and a composite environmental risk factor. Even with this simple 
parameterization, we can simulate increased overdose risk after periods when drugs are not available.  
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