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ABSTRACT 

Data farming combines large-scale simulation experiments with high performance computing and 
sophisticated big data analysis methods. The portfolio of analysis methods for those large amounts of 
simulation data still yields potential to further development, and new methods emerge frequently. Among 
the most interesting are methods of explainable artificial intelligence (XAI). Those methods enable the use 
of black-box-classifiers for data farming output analysis, which has been shown in a previous paper. In this 
paper, we apply the concept for XAI-based data farming analysis on a complex, real world case study to 
investigate the suitability of such concept in a real world application, and we also elaborate on which black-
box classifiers are actually the most suitable for large-scale simulation data that accumulates in a data 
farming project. 

1 INTRODUCTION 

For complex simulation models, conducting a traditional simulation study usually aims to achieve a 
specific, pre-determined goal, such as conducting a scenario-based analysis or even a simulation-based 
optimization. This can still leave a lot of room for actually understanding the behavior of the model in terms 
of relationships between factors and outcomes (Feldkamp et al. 2015; Painter et al. 2006). Sometimes, the 
discovery of new and interesting relationships that were previously unknown and outside the previously 
defined scope of a simulation project can actually improve decision making. In this context, the method of 
data farming has been developed (Horne and Meyer 2005). Data farming refers to the method of extracting 
data from the simulation model by using large-scale experimental design, high-performance computers for 
massively parallelized experiments to focus on more complete coverage of possible system responses and 
machine-assisted analysis (Horne and Schwierz 2008). Data farming problems fall into a category of 
problem solving that Lempert et al. define as long-term policy analysis that requires consideration of large 
ensembles of scenarios (Lempert et al. 2003). Data farming research has also always been concerned with 
the application of advanced data analysis methods to process these large volumes of simulation output data 
and produce appropriate and adequate insights (Lucas et al. 2015; Sanchez 2014). The concept of 
Knowledge Discovery in Simulation Data (KDS) was developed to dive deep into the analytics side of data 
farming and provide a detailed process model for applying data mining methods along with appropriate 
visualization and interaction methods to large-scale simulation data (Feldkamp et al. 2020). One aspect of 
the KDS process model is the use of model building algorithms that can approximate relationships between 
simulation input and output data. Rules from these models can then be used to derive knowledge about the 
system (Feldkamp et al. 2015). Initially, only white-box models such as mining frequent patterns, decision 
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trees, or Bayesian networks have been used for this, since those expose their internal set of rules and 
mappings in order to derive knowledge from it. However, in a recent paper, we introduced a concept for 
using methods of explainable artificial intelligence (Feldkamp 2021). Those overcome the lack of 
explainability and transparency of black-box algorithms such as artificial neural networks, which are known 
for being very precise at approximation even complex relations and response surfaces. In our previous 
paper, we evaluated the concept using an academic case study, which left little room for testing different 
black-box algorithms given its simplicity. In this paper, we use a complex real-world case study to evaluate 
the suitability of different black-box algorithms in detail, as well as to examine the applicability of the 
concept to a real-world data farming project in general. The remainder of this paper is structured as follows: 
In section two, we give an overview of the related work, namely being XAI, data farming, and the 
combination of both. In Section 3, we present the case study, by first introducing the scenario and simulation 
model, followed by an evaluation of suitable black-box classifiers. This is then followed by the application 
of the XAI-based concept for data farming output analysis. The paper ends with some final remarks and a 
discussion of possible future work in Section 4. 

2 RELATED WORK 

2.1 Explainable AI 

The transparency of decisions made by artificial intelligence and machine learning algorithms is becoming 
increasingly important, especially when people's everyday lives are directly affected. A decision explained 
with "because the computer said so" is no longer sufficient and consequently can also cause legal problems 
when suspected of unfairness and discrimination, for example in areas such as recruitment or credit granting 
(Dosilovic et al. 2018; Guidotti et al. 2019). Some lawmakers even think of a "right to an explanation" 
(Edwards and Veale 2017). On the other hand, black-box methods of machine learning and artificial 
intelligence, such as artificial neural networks, are among the most powerful algorithms for prediction and 
classification tasks. Due to the complexity of these algorithms in contrast to their white-box counterparts, 
such as decision trees and linear regression, there is a trade-of between performance and interpretability. 
Therefore, XAI has become a popular field of research recently in an effort to make black-box algorithms 
transparent. The term XAI actually encompasses a very wide range of diverse methods and so are the efforts 
to catalog and categorize those methods (Barredo Arrieta et al. 2020; Ras et al. 2018; Tjoa and Guan 2020). 
The most straight-forward distinction is between global and local explanations. While local explanations 
try to explain one individual predication, global explanation methods aim to explain the underlying model 
and its internal relations in a more general way, but these usually come at higher computational cost. Among 
the most commonly used and frequently cited methods are Local Interpretable Model-Agnostic 
Explanations (Lime) (Ribeiro et al. 2016), Anchors High-Precision Model-Agnostic Explanations 
(Anchors) (Ribeiro et al. 2018), and SHapley Additive exPlanations (SHAP) (Lundberg and Lee 2017). 

2.2 Data Farming Output Analysis Using Explainable AI 

Data farming combines large-scale simulation experiments with high-performance computing and 
sophisticated big data analysis techniques. The portfolio of analysis methods for these large volumes of 
simulation data still offers development potential, and new methods are frequently emerging. As an 
extension, the concept of knowledge discovery in simulation data was developed to take a deep dive into 
the analysis side of data farming by providing a process model and workflow for using data mining methods 
and suitable, interactive visualizations (Feldkamp et al. 2015). This is especially helpful for models with a 
large number of relevant outputs that exhibit a complex, multidimensional response surface. When outputs 
are congregated into groups of disparate system behavior by using unsupervised data mining algorithms 
such as clustering, the relation between factors and outputs can then be investigated to conclude knowledge 
about the system (Feldkamp et al. 2020). For this purpose, supervised learning algorithms can create models 
that represent the relations between simulation input data and previously created clusters, from which in 
turn we can derive rules that can contribute to knowledge creation through human interpretation. For a 
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supervised algorithm, each simulation experiment acts as a training record (Feldkamp et al. 2020). In other 
words, a classification problem needs to be solved. Extracting the underlying decision rules for the 
classification from white-box algorithms such as decision trees is relatively easy, as those are explicitly 
visible. However, other classification algorithms like for example artificial neural networks or random 
forests are very good at approximating a given input-output-relation for predictions, but less good at 
actually revealing the underlying model regarding its rules and relations. However, this is what we need in 
order to derive analyses and knowledge from it. To overcome the lack of understanding of such black-box 
algorithms, XAI can help to make those rules and relations visible and explain them in an understandable 
and comprehensible way. The workflow that we proposed in (Feldkamp 2021) is shown in Figure 1.  

 
Figure 1: Workflow for application of XAI-based methods for data farming output analysis (Feldkamp 
2021). 

The starting point are easy-to-calculate relevance measures, such as the importance of permutation 
features. These measures evaluate the overall importance of a factor for the output of the model, but they 
can only provide a rough overview. The next step is to extend the analysis to the actual classifications (i.e., 
the assignment of factors to clusters) at the global level. Using these methods, we can draw conclusions 
about the differences between clusters, i.e., which factor scores contribute to which cluster assignments. It 
should be noted that many XAI methods only support explanations for binary classifications. However, 
when using the KDS workflow, the data is usually classified into multiple clusters, creating a multi-class 
classification problem. This problem can be circumvented by converting the analysis into a one-versus-rest 
classification. This means that we compare each cluster of interest with the rest of the data. The drawback 
of this approach is that each of these comparisons requires a separately trained classification model and 
subsequent XAI evaluation. The final step is to use local explanation methods, that can be used to analyze 
selected representative points, such as the cluster medoid (representing the average of a given cluster). 

3 USE CASE SCENARIO 

3.1 Scenario and Simulation Model 

To investigate the suitability of XAI methods for data farming output analysis in real world applications, 
we used the discrete-event simulation model of a production line from the field of high voltage engineering. 
More precisely, in our case study insulators for high-voltage plants are manufactured. The process is 
schematically shown in Figure 2. The simulation model was built using the simulation software Siemens 
Plant Simulation. 

Local explanation using 
cluster medoid

• Permutation feature importance, sensitivity measures

• Evaluation is subject to size of dataset (or if reasonable sample can be drawn)
• Using one-vs-rest-classification if XAI-algorithm does not support multi-class 
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• Detailed explanation (if representative cluster point can be drawn)
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Figure 2: Flowchart of the production process. 

First, the delivered insulator tubes and flanges must be washed using a washing system so that the 
subsequent bonding, priming and casting processes can be performed. The tubes are then joined together 
with the flanges. Subsequently the tube is coated with the insulator in several priming and casting processes. 
A big challenge of this production line are the different sizes and shapes of the insulators depending on the 
customer requirements and a large number of special processes. For this reason, many setup operations 
have to be performed and several specially trained workers are available, all of whom have their own set of 
workflow rules. Therefore a key goal of optimizing this use case is to reduce setup times and maximize 
worker utilization. The quality of these manufacturing processes is ensured by several testing and control 
procedures. After the complete insulator is manufactured, it is ready to be delivered to customers. 

In the simulation model of the described use case, the following adjustable factors are available. First 
of all, it is possible to vary the number of certain available workers. For worker ten (Worker 10 count), the 
number can be set between one and four, which all perform the same work. For other workers it is possible 
to vary their availability, this includes the workers two (Worker 2 available), nine (Worker 9 available) and 
a second worker eleven (Worker 11-2 available). These all have procedures specifically set for them and 
therefore presumably have an impact on the performance of the system. The second group of factors relates 
to the washing system, which includes the volume of the washing basket (Volume washing basket), the 
maximum parts in the washing basket (Maximum parts washing basket), the setup time (Setup time washing 
basket), and the residual running time of the washing system (Residual running time washing machine). 
With regards to the insulators, the maximum laytime after the washing process (Max laytime after washing) 
and the buffer size (Buffer size joining) in which the insulators can be temporarily stored before being 
transported for joining can be varied. Finally, the orders for manufacturing the insulators can be sorted 
according to six different sorting strategies (Sorting strategy). These include earliest due date, random 
sorting, some strategies which aim at optimizing setup times and sorting according to the size of the order 
quantity (larger orders first). For the experimental design, an LHS with the size of ten thousand was created, 
which was crossed with the six sorting strategies, as it was suspected that these would have a larger impact 
on the output data. This sums up to sixty thousand experiments that have been conducted in the 
corresponding data farming study. For this study, this was the best tradeoff between performance and 
information gain. After performing these experiments the most relevant outputs for this simulation model 
according to their magnitude of variance are the cycle time, the worker utilization (average for all workers) 
and the amount of insulators which exceeded their maximum laytime. To group the generated data farming 
output, we used a Gaussian mixture model with the mentioned output for which we first transformed the 
data to the interval zero and one to improve the training process. Three components achieved the best 
separation of the data and the result is shown in Figure 3 as a scatterplot matrix where each dot represents 
one simulation experiment. The orange cluster contains the bad performing experiments where the staff 
utilization is low, the number of insulators exceeding the laytime is high, and the cycle time is above 
average. The green cluster, on the other hand, collects the good performing experiments, with the best 
worker utilization, low cycle time, and the fewest insulators that exceed the laytime.  

On this basis, we performed an analysis of the data using typical data farming methods in order to 
subsequently investigate whether XAI methods can confirm these findings or even find new knowledge.  
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Figure 3: Scatterplot matrix of the results of the clustering based on three outputs.  

An important finding of the analyses is that the number of parts in the washing basket has a significant 
impact on the output of the system. It can be suspected that after the washing system, the production line 
mainly lacks small parts and the throughput and the worker utilization decreases. Therefore, the number of 
parts seems to limit the system more than the volume of the washing basket. Another important finding is 
that allowing a high maximum laytime leads to high worker utilization. Therefore, our management 
recommendations include the following: Try to maximize the number of parts that are washed at the same 
time and to check if there are possibilities to extend the allowed laytime of the insulators (e. g. dust 
protection). A deeper insight into the results through typical data farming methods would exceed the scope 
of this paper. The goal here is to investigate if XAI-based analysis can be applied on a real world case study, 
and if we can confirm the previous findings or even find new insights. 

3.2 Preliminary Considerations on Black Box Classifiers 

Before using XAI-algorithms for analyzing the data farming output, we need to train an AI-model in the 
first place. This then raises the question which type of classification algorithm is best suited for modeling 
the response surface of an discrete event simulation model in the context of production and logistics as 
introduced in the previous section. Large quantities of farmed simulation data tend to expose some special 
features that the regarding AI-model needs to reflect on. The nature of the input space is usually packed 
very densely. For the response, we cluster multiple outputs that are relevant into different clusters, resulting 
into a one-dimensional response that corresponds with the cluster allocation. Since the underlying outputs 
that are used for the clustering also tends to be very dense and packed, we apply partitioning clustering 
algorithms like k-means that sharply partition the response surface into multiple cluster areas, since this has 
turned out to produce the best separation between clusters. In some cases, an clustering can even be 
improved by using Gaussian mixture models. Those work very similar to k-means, but add a variance 

•  Good performance
•  Average performance
•  Bad performance
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component to each cluster, which basically means that the cluster may overlap in some of their underlying 
output dimensions. This can render very problematic for some classification algorithms, since it means that 
in some rare cases the final cluster allocation could be different although the input factor values are nearly 
similar for some datasets. This can furthermore be problematic if the model contains strong stochastic 
influences. This is usually intercepted by replications. However, it must be taken into account that in view 
of limited computing capacity, the number of actual experiments must be reduced by increasing the number 
of replications. Which number of replications is considered appropriate is quite controversial if the 
generated data are to be further analyzed with other mathematical methods. Santos and Santos were able to 
show that a lower number of replications in favor of a higher number of experiments does not increase the 
accuracy of regression models trained on them (Santos and Santos 2009). However, MacDonald and Gunn, 
in turn, were able to show that this is not true for non-parametric regressions. According to this, a good 
coverage of the result space is clearly more important than the statistical accuracy of a single data point 
(MacDonald and Gunn 2012). Different methods can react differently and sensitively to the properties of 
data sets generated by data farming, and can therefore behave differently with regard to their accuracy in 
terms of mapping the relationship between factors and cluster allocation. We carried out a comparison of 
accuracy for the most commonly used black-box classification algorithms. For this purpose, we let each of 
them fit a model of the farmed simulation data in terms of mapping factors to the cluster allocation as shown 
in Section 3.1. We then calculated the accuracy by letting them predict the complete data set. Note that 
hyperparameters for each algorithm were tuned by pre-testing to achieve the highest possible accuracy. 
Hyperparameters will not be discussed further here, as these must be adjusted each time anew depending 
on the individual model and use case via testing in order to achieve a good performance. There was no 
splitting in training and test data, because overfitting is actually desired. This is because the trained model 
is not utilized to make predictions but rather to learn from its internal input/output mapping and 
approximation of rules. Because we already have a large and mostly complete representation of the response 
surface through data farming, a training phase as thoroughly as possible is desired, so that the existing data 
can be fitted as smoothly as possible.  The result of this comparison is shown in Figure 4. We can see that 
with the exception of artificial neural network and support vector machine, all classification algorithms 
were able to fit the model with an accuracy of almost 100%. Since the dataset used for training contains 
60 000 records, the reason for the lower accuracy of the artificial neural network may be that these data 
points are insufficient to overtrain the network. For the support vector machine, the overlaps between data 
points are probably too large, as can be seen in Figure 4. This makes it impossible for the support vectors 
to separate the data 100% correctly. The same presumably applies for the artificial neural network. These 
overlaps result from our choice of a Gaussian mixture model for the clustering, as explained above. 

 
Figure 4: Comparison of classifier accuracy 
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In addition to prediction accuracy, we also measured the time for training the model, as shown in Figure 
5 (left side). Here, we see some dramatic differences in training time, with artificial neural network and 
support vector machine again among the worst performing contenders. As a third important metric, we 
measured the average prediction time, which is the time needed to predict the total dataset once, as shown 
in Figure 5 (right side). 

 
Figure 5: Comparison of average classifier training time (left) and average prediction time (right). 

XAI algorithms are usually based on making predictions using the underlying model and deriving the 
respective explanations through a large number of pairwise comparisons. The computation of XAI 
explanations can be extremely computationally intensive and thus lengthy, in most cases significantly 
longer than the actual training time of the underlying model. The prediction time of a model therefore also 
contributes significantly to how long the XAI algorithm needs to explain the model. The measured 
prediction time is nearly the same for classification algorithms except once again artificial neural networks 
which is about 4 times slower than the other contenders and support vector machine being several hundred 
times slower. In summary, the comparison shows that quadratic discriminant analysis and random forest 
should be favored for using them for subsequent XAI analysis of the data farming output. Both show the 
highest accuracy, fastest prediction time, and adequate training time. As a result, the differences in the 
suitability of black-box classifiers between simple academic case studies (Feldkamp 2021) and complex 
real-world applications can be identified. While in the academic case studies no differences in accuracy 
could be observed, surprisingly the more traditional machine learning algorithms (random forest and naïve 
bayes) perform better in a real world application than the ones that get more attention in scientific and 
public perception nowadays (artificial neural networks and support vector machines). Reinforced by the 
results in training time and prediction time, the assessment can be made that for real world applications 
machine learning models that have fewer hyperparameters are better suited for XAI-based evaluations of 
data farming datasets, such as random forest.  
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3.3 Results Using XAI-based Analysis 

In this section, we discuss the results of applying XAI-based data farming output analysis in order to see if 
we can confirm findings from the previous study or if we even can find new insights. Figure 6 shows the 
results of an XAI method called permutation feature importance. This method evaluates the contribution of 
factors to the cluster allocation in general, i.e., the contribution of an allocation to any of the three clusters. 
The figure confirms the finding that the factors max laying time after washing and maximum parts washing 
basket have the most influence on cluster allocation. The factor worker 10 count also has a recognizable 
influence, since the availability of this employee can be varied between 1 and 4. This was therefore to be 
expected in previous analyses and is confirmed here. Noteworthy, but also expected, is that the sorting 
strategy 2 (random sorting) has no influence on the cluster allocation, whereas sorting strategy 3 has the 
most influence on the cluster allocation of all sorting strategies. 

A new finding, however, is the high importance of the availability of employee 2 (worker 2 available), 
which did not emerge to the same extent in the previous analyses. In further detailed analyses, we are going 
to evaluate which concrete factor values lead to which cluster assignment regarding this factor. 

 
Figure 6: Results of feature relevance evaluation using permutation feature importance. 

To perform a more in-depth analysis, we used the SHAP package for computation of so-called SHAP 
values (Lundberg et al. 2020; Lundberg and Lee 2017), which is shown in Figure 7. The concept of SHAP 
values was adapted from game theory, where the Shapley value quantifies the contribution of each player 
to the outcome of a game. The SHAP value for XAI picks up this idea by treating every factor of a black-
box model as an individual player, thus calculating their contribution to the overall outcome of a prediction 
(representing the outcome of one game). This is done by aggregating the marginal contribution of each 
factor in every possible combination with the other factors present. This makes the calculation of SHAP 
values very costly in terms of computation time, because computation time grows exponentially with the 
number of factors. The individual SHAP values for the factors can be interpreted relative to the base effect, 
comparable to how we would interpret coefficients relative to the intercept in a linear regression model. 
We again resort to a binary one-vs-rest classification, so a value of 1 indicates a classification towards the 
corresponding good performance cluster, and a value of 0 indicates a classification towards not being in 
those cluster, hence being in one of the other clusters. Figure 7 shows a random selection of experiments, 
represented by the vertical lines. For each line, the explained contribution of each factor to the classification 
is shown, where a value greater than 0.5 indicates a contribution to good performance classification, while 
a value smaller than 0.5 indicates a contribution to the other classification. The color of the lines indicates 
the actual classification. Note that the mean value is not 0.5 but less than 0.4. This is because there are 
significantly more experiments in the other cluster and the average contribution shifts accordingly. 
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Figure 7: SHAP values plot for summarizing all factors sorted by importance in descending order. 

Again, we can see that the factors maxium parts washing basket, max laytime after washing, and worker 
10 count have the strongest influence on the cluster allocation regarding good performance, with maximum 
parts washing basket consistently being the largest influencing factor, but some simulation experiments 
show some extreme contributions for max laytime after washing in one direction or the other, strongly 
influencing the final classification. In addition, there are plots available that can show the SHAP values for 
individual factors for the range of their factor values. One example of this is shown in Figure 8 for the factor 
max laytime after washing. Interestingly, we can see that high factor values strongly contribute to good 
performance, as we already knew from previous analysis, but nevertheless we see that even factor values 
below 45.000 seconds contribute to good performance in most cases, although the contribution is not quite 
as strong. 

 
Figure 8: SHAP values plot for the factor maximum laytime after washing. The X-axis represents the factor 
value (in seconds), the y-axis represents the SHAP values. 
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For an even more detailed explanation of results, we used the Anchors-Package (Ribeiro et al. 2018), 
as shown in Figure 9. First, we again analyzed the good performance cluster by conducting a binary good-
vs-other classification. Because Anchors is a local explanation method, which means that it is used to 
explain individual samples, we took the cluster medoid for explanation. The medoid is the point that is the 
closest to the average of all points in the cluster, therefore representing the majority of all points. The result 
of this explanation is shown in the left side of Figure 9. We can see a rather complex rule with a lot of 
components, but nonetheless confirming our assumptions form the previous analyses. However, we can see 
that the factor worker 2 available seems not to be relevant here, although it was the third most important 
factor according to the relevance evaluation over all three clusters (Figure 6) and the fourth most important 
factor according to the good-vs-rest evaluation (Figure 7). We therefore looked for samples that were not 
predicted as good performance, and it became obvious that this factor becomes relevant in a certain 
combination with the factor maximum parts washing basket (Figure 9 right side), where the outcome is not 
good performance but rather one of the two other clusters in almost 100% of the cases. This is another 
finding that was not discovered in previous analyses before using XAI-methods. 

 
Figure 9: Local explanations using Anchors showing explanations for good performance vs other clusters 
comparison. 

We also conducted a binary bad-vs-other classification and used Anchors to explain the medoid of the 
bad cluster, which is shown in Figure 10.  

 
Figure 10: Local explanations using Anchors showing explanations for bad performance vs other clusters 
comparison. 

We see the rule for this cluster allocation is much simpler than for the good performance case, and it 
also has a much higher probability. However, since we are only looking at the cluster medoid, we can most 
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likely assume that other combinations of values of those two factors would also lead to bad performance 
allocation, if we look at points that are located more towards the boundary of the cluster. 

4 CONCLUSIONS AND FUTURE WORK 

In this paper, we successfully applied methods of explainable artificial intelligence for the output analysis 
of data farming projects in a real world case study. We were able to confirm previously known relations in 
the model and also could investigate some of those findings in even more detail. Furthermore, we were also 
able to see findings that were previously unknown and could not be extracted with traditional analysis 
methods. Therefore, the application of XAI-based output analysis can be worthwhile, especially if a level 
of detail is needed that cannot be reached with other analysis methods. Another advantage is that these 
methods usually have a very intuitive, graphical approach and are therefore easy to interpret, even for users 
that are not simulation-experts.  

However, most of these methods are very computational intensive and therefore are not suitable for 
time-critical tasks. However, XAI is a very current research topic. Many further developments and 
optimizations of the methods and algorithms are to be expected, which in turn could also be of interest for 
use in data farming. Therefore, developments in XAI should be monitored closely for future work. 
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