
Proceedings of the 2022 Winter Simulation Conference 

B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew, T. Roeder, and    
P. Lendermann, eds. 

DEFINING DEVS MODELS USING THE CADMIUM TOOLKIT 

 
 

Gabriel Wainer 

Cristina Ruiz Martin 
 

Department of Systems and Computer Engineering 
Carleton University 

1125 Colonel By Drive  
Ottawa, ON K1S 5B6, CANADA  

 
 

ABSTRACT 

Discrete Event System Specification (DEVS) is a mathematical formalism to model and simulate discrete-
event dynamic systems. Using DEVS for modeling and simulation has numerous advantages, which include 
a rigorous formal definition of models, a well-defined mechanism for modular composition, and separation 

of concerns between the model definition and the simulation of the model, among others. In this tutorial, 
we will explain DEVS and present how to develop DEVS models using one of the multiple DEVS 
simulators: Cadmium. Cadmium is a DEVS simulator based on C++17. We will discuss the tool’s 
Application Programming Interface and we will present a model for the Rock-Paper-Scissors game as an 
example to explain how to define models in DEVS and implement them in Cadmium. 

1 INTRODUCTION 

Modeling and Simulation (M&S) has become an essential tool in science and engineering. Its ability to 
represent problems in several disciplines and perform scientific exploration has increased its popularity. 
There are many methodologies to develop M&S solutions, and some of them allow defining the models 
formally, which has a few advantages such as being able to discuss and show the model to stakeholders 
prior to the implementation. 
 In particular, the Discrete Event System Specification (DEVS) (Zeigler et al. 2000) provides a 

theoretical framework to develop discrete-event M&S and it was used in many applications since its 
creation. More specifically, DEVS allows a hierarchical and modular description of the models. Each DEVS 
model can be behavioral (atomic) or structural (coupled), consisting of inputs, outputs, state variables, and 
functions to compute the next states and outputs. 

Since the introduction of the DEVS formalism, several DEVS simulators have been developed. The use 
of DEVS simulators allows us to implement and simulate DEVS models without being worried about 

implementing, verifying, and validating the simulation algorithm. We can focus our efforts on the 
verification and validation of the model itself. Cadmium (Belloli et al. 2019) is one of those DEVS 
simulators. Cadmium allows to implement advanced DEVS models and has several advantages over other 
DEVS simulators such as advanced features that help with model verification and reduce the probability of 
running a simulation with a bug. It implements model checks for both atomic and coupled models. Some 
of them are in compilation time and others in execution time, but all of them before a simulation starts. 

Cadmium is implemented as a library written in C++, compliant with the C++17 and the Boost library 
coding standard. It supports multiple data types for the Time, and Messages, and compiles in multiple 
platforms, including Linux, Windows, and Mac OS. Cadmium is freely available on GitHub 
(https://github.com/SimulationEverywhere/cadmium). 

978-1-6654-7661-4/22/$31.00 ©2022 IEEE 1356



Wainer, and Ruiz Martin 
 

 

In this tutorial, we will explain the DEVS formalism along with the key features of the Cadmium 
simulator and how to use it to build DEVS models. Section 2 introduces the DEVS formalism, its 
advantages, DEVS-Graphs, and the current state of the art in DEVS simulators. In section 3, we present the 

Cadmium API and in Section 4, we present a case study to show how to define and execute DEVS models.  

2 THE DEVS FORMALISM 

The DEVS formalism (Discrete Event System Specification) is a formal discrete-event modeling and 
simulation methodology (Zeigler et al. 2000). It is derived from Systems Theory, and it allows one to define 
hierarchical modular models that can be easily reused. In DEVS, an atomic model defines the behavior of 
a component. An atomic model is defined by describing the set of states the model goes through, an internal 

and an external transition function, an output function, and a state duration function.  At every point in time, 
the model is in a given state that has an associated duration for that state. When the time elapses, an output 
is transmitted, and the internal transition takes place to change the model state. A state can also change 
when an external event is received, which triggers the execution of the external transition function. DEVS 
models can be put together by linking the outputs of a model to inputs of other models to form coupled 
models, which can also be coupled together. 

 The use of DEVS provides several advantages. It allows developing hierarchical models in a modular 
fashion, improving model reuse. The model definition, implementation, and experimentation are defined 
by independent formal specification and execution apparatus. The same model can be implemented on 
different platforms facilitating the reliability of models and results. Moreover, the DEVS simulation 
algorithm has been formally verified, ensuring the correctness of execution of atomic and coupled models.  
 DEVS can also be seen as a common denominator for many other formalisms (Vangheluwe 2000), as 

seen in Figure 1 where we show a Formalism Transformation Graph. This allows using DEVS as a common 
denominator that can be used to compose models defined in different formalisms. 
 

 
Figure 1: Formalism Transformation Graph. Adapted from (Vangheluwe 2000). 

2.1 DEVS Atomic Models 

Atomic models are the basic building blocks of all DEVS models: they are the lowest level indivisible 

models that encapsulate a portion of the modeled systems’ behavior. Equation (1) shows the formal 
specification of DEVS atomic models (Zeigler et al. 2000). 
 

1357



Wainer, and Ruiz Martin 
 

 

                                        𝑀 = ⟨𝑋, 𝑌, 𝑆, 𝛿𝑒𝑥𝑡 , 𝛿𝑖𝑛𝑡 , 𝛿𝑐𝑜𝑛𝑓 , 𝜆, 𝑡𝑎⟩         (1) 
 

The above specification consists of a number of individual elements: 

X = {(p, v)|p ∈ IPorts, v ∈ Xp} is the set of input events, where IPorts represents the set of input ports  
 and Xp represents the set of values for the input ports; 
Y = {(p, v)|p ∈ OPorts, v ∈ Yp} is the set of output events, where OPorts represents the set of output 
 ports and Yp represents the set of values for the output ports; 
S: is the set of sequential states; 
δext: Q × Xb → S is the external state transition function, with Q = {(s, e)|s ∈ S, e ∈ [0, ta(s)]} and e  is 

the elapsed time since the last state transition; 
δint: S → S is the internal state transition function; 
δconf: Q × Xb → S is the confluent transition function; 
λ: S → Yb is the output function; and 
ta: S → R+

0 ∪  ∞ is the time advance function. 
 Once a model enters a state, it will stay there until one of two conditions are met: 

1. An external event occurs causing the model to transition into a new state, depending on the events 
received and the time of receipt, as specified by 𝛿𝑒𝑥𝑡. 

2. The elapsed time has reached the value of the time advance function in the current state, 
necessitating an internal transition to occur according to 𝛿𝑖𝑛𝑡. 

The confluence function determines the behavior of the model when both an internal and external 
transition are scheduled at the same time.  

When an internal transition occurs, a bag of outputs is generated through the output ports allowing the 
model to interact with other models. After each state change, a new time advance is calculated, and the next 
internal event is scheduled. If the time advance is infinite the model is said to be passive, i.e., awaiting 
external inputs indefinitely.  

2.2 DEVS Coupled Models 

DEVS coupled models are comprised of either DEVS atomic models or other DEVS coupled models. This 

way, components can be built up hierarchically by coupling simple models together to form more complex 
models. Equation (2) shows the formal specification of DEVS coupled models (Zeigler et al. 2000). 
 

𝐶𝑀 = ⟨𝑋,  𝑌,  𝐷,  {𝑀𝑑|𝑑  ∈  𝐷|},  𝐸𝐼𝐶,  𝐸𝑂𝐶,  𝐼𝐶⟩         (2) 
 

The above specification consists of a number of individual elements: 

X: {(p, v)|p ∈ IPorts, v ∈ Xp} is the set of input events, where IPorts represents the set of input ports  and 
Xp represents the set of values for the input ports; 
Y: {(p, v)|p ∈ OPorts, v ∈ Yp} is the set of output events, where OPorts represents the set of output 
 ports and Yp represents the set of values for the output ports; 
D: is the set of the component names and for each d ∈ D;  
Md: is a DEVS basic (i.e., atomic or coupled) model; 

EIC: is the set of external input couplings, EIC ⊆ {((Self, inSelf ), (j, inj))|inSelf ∈ IPorts, j ∈ D,  
inj ∈ IPortsj};  
EOC: is the set of external output couplings, EOC ⊆ {((Self, outSelf ), (j, outj))|outSelf ∈ IPorts, j ∈ D,  
outj ∈ OPortsj}; 
IC: is the set of internal couplings, IC ⊆ {((Self, outi), (j, inj))|i, j ∈ D, outi ∈ OPortsi, inj ∈ IPortsj}. 
 The purpose of the coupling elements of the formal specification is to define how each of the sub-

models in the coupled model (Md) connect to the inputs of the coupled model (through the elements of 
EIC), send outputs from the coupled model (through the elements of EOC), and connect to each other 
(through elements of IC). All these couplings illustrate the structure of the model and, when combined with 
all the sub-model definitions, determine how the model will behave. It has been proven that for any given 

1358



Wainer, and Ruiz Martin 
 

 

coupled model an equivalent atomic model can be created, this is called the closure under coupling property. 
The advantage is that through the decomposition of models we can create and design complex models 
through simple components 

2.3 Graphical Specification of DEVS Models 

A graphical specification (DEVS-graphs) can be used in specifying DEVS models (Praehofer and Pree, 
1993). The main benefit of the DEVS-graphs notation is that it allows for greater interaction and clearer 
communication with stakeholders who may have limited knowledge of the formalisms, mathematical 
notation, and programming skills. Additionally, it assists the modeler with visualizing the system. These 
benefits result in a developed system that accurately represents the stakeholders’ needs. 

Notations exist for modeling both atomic and coupled DEVS models. For atomic models (Figure 2), 
this notation is similar to a finite state machine: there are nodes (representing the states) connected by 
directed edges (representing the transitions), though several key extensions have been made. 

 

 
Figure 2: DEVS Atomic Models using DEVS-Graphs (Wainer 2009). 

 

 As shown in Figure 2, the edges connecting nodes can be of two types: a dashed line to represent an 
internal transition or a solid line to represent an external transition. Some additional annotations are required 
to fully define the model: 

 
1. Each state must be labeled with an ID and a time advance value (LT) associated to the state. 
2. Each internal transition must be labeled with any outputs to ports and the associate output values 

that are generated when the internal transition fires. 
3. Each external transition must be labeled with the input port and value pair that must be received in 

order for the transition to occur. 
  
 Coupled models can then be built up by connecting the inputs and outputs from atomic models to each 
other. It is useful in this circumstance to hide the structure of the atomic model inside a black box (Figure 

3), and focus on the interfaces of the model when constructing coupled models. Atomic and coupled models 
are then connected together using arrows, the ends of which specify the sending or receiving port. 

 

 
Figure 3: DEVS Coupled Models using DEVS-Graphs (Wainer 2009). 

1359



Wainer, and Ruiz Martin 
 

 

2.4 DEVS Simulators 

There are different DEVS Simulators, each of them with its advantages and disadvantages. Van Tendeloo 
and Vangheluwe (2017) provide an overview of the current state of eight different DEVS simulators, 

selected based on their functionality, DEVS compliance, and performance. In their study, they specifically 
evaluate ADEVS (a Discrete Event Simulator) (Nutaro 2014), PythonPDEVS (Van Tendeloo and 
Vangheluwe 2014), CD++ (Wainer 2002), VLE (Virtual Laboratory Environment) (Quesnel et al. 2007), 
MS4 Me (Seo et al. 2013), DEVS-Suite (Kim et al. 2009), PowerDEVS (Bergero and Kofman 2011), and 
X-S-Y (Hwang 2012). 
 As of 2017, ADEVS was the fastest well-established DEVS framework evaluated so far (Van Tendeloo 

and Vangheluwe 2017). ADEVS is implemented as a lightweight C++ library and both atomic and coupled 
models are defined using C++ programming language. ADEVS has evolved during the last 15 years, has 
over 29 releases, and supports high performance by relying on optimized data structures.  

The performance of PythonPDEVS is close to ADEVS. The main advantage is that it offers a variety of 
schedulers (sorted list, activity map, and a heapset) for speedup. PythonPDEVS supports dynamic typing; 
therefore, all the messages are not required to be of the same type. PythonPDEVS has sequential and 

distributed variants (Van Tendeloo and Vangheluwe 2014b) but both focus on computational activity 
information to reduce simulation time. New features (such as pause, resume, and step the simulation) have 
been added to help debugging (Van Mierlo et al. 2017). 

Other DEVS simulators have also relevant features. For example, CD++ allows to implement both 
DEVS and Cell-DEVS models and couple them together. VLE couples multiple simulators within a DEVS-
Bus architecture and uses DEVS for coordination. MS4Me allows building models using a custom natural-

like language called DNL combined with Java. DEVS-Suite is the successor of DEVSJava (Sarjoughian 
and Zeigler 1998) and it includes additional features such as visualization of coupled model simulation. 
PowerDEVS contains a graphical modeling environment. X-S-Y is written in Python and its more relevant 
feature is the verification of finite and deterministic DEVS models. 
 A more recent DEVS simulator is CD-Boost (Vicino et al. 2015) a new DEVS simulator that introduced 
a sequential architecture and an effective implementation of the abstract simulator presented in (Chow et 

al. 1994). The authors evaluated the performance by comparing it to adevs using DEVStone, and it showed 
that no new overhead was introduced. It outperforms adevs when there are numerous simultaneous events. 
However, CD-Boost had several disadvantages such as the lack of multiple input/output ports, or different 
types of messages for different models. This resulted a lack of use by the community because the complexity 
implementing the models, the difficulties in verification of the models, and slow compilation (and massive 
use of memory). In (Belloli et al. 2019), we presented Cadmium, an evolution of CD-Boost that solves the 

two main disadvantages of CD-Boost simulator: (1) lack of ports and (2) the restriction of using a single 
type of data for all the messages. Additionally, we implemented other advanced features that help with 
model verification and reduces the probability of running a simulation with a bug. Cadmium implements 
model checks for both atomic and coupled models. Some of them are in compilation time and others in 
execution time, but all of them before a simulation starts. For atomic models, it checks that all the methods 
of the atomic model are defined, that the model port types are correct, and that the model has a state defined. 

For coupled models, Cadmium checks that there are no connections between ports with different message 
types, that there are no invalid connections based on the model EIC, EOC or IC link structure, and that all 
the submodels inside a couple are valid (i.e. it performs atomic model checks). Cadmium is implemented 
as a library written in C++, compliant with the C++17 and the Boost library coding standard. It supports 
multiple data types for the Time, and Messages, and compiles in multiple platforms, including Linux, 
Windows, and Mac OS. Cadmium is available on GitHub 

(https://github.com/SimulationEverywhere/cadmium).  

1360



Wainer, and Ruiz Martin 
 

 

3 CADMIUM APPLICATION PROGRAMMING INTERFACE 

Cadmium provides three main functionalities: an interface for defining atomic models, an interface for 
defining coupled models, and methods to run the simulation and define the structure and contents of 

simulation logs. Figure 4 shows the interface used for defining atomic models.  
 

1 struct AtomicName_defs{        //Input&Output Port declaration 

2    struct input_port1 : public in_port< MSGi1> {}; 

3    struct input_portn : public in_port< MSGin> {}; 

4    struct output_port1 : public out_port< MSGo1> {}; 

5    struct output_portn : public out_port< MSGon> {};   }; 

6 

7 template<typename TIME> class AtomicName{ 

8    using defs=AtomicName_defs;   //port definition in context 

9  public:   

10  // Model parameters 

11  struct state_type{ //Define your state variables }; 

12  state_type state; 

13  AtomicName() noexcept { //parameters/initial state values} 

14 

15  //DEVS functions 

16  void internal_transition() { 

17  // Define internal transition function } 

18  void external_transition(TIME e, typename make_message_bags  

19   <input_ports>::type mbs) { 

20  // Define external function    } 

21  void confluence_transition(TIME e, typename 

22          make_message_bags <input_ports>::type mbs) { 

23   // Define confluent function    } 

24  typename make_message_bags<output_ports>::type output() const { 

25   // Output function 

26    typename make_message_bags<output_ports>::type bags; 

27    //Define your output function. Fill bags 

28    return bags;         } 

29 TIME time_advance() const {  

30      //Define time advance function    } 

31 }; 

Figure 4: DEVS atomic model implementation using Cadmium. 
 

 As seen in Figure 4, we first declare the model ports as structures (lines 1-5) using in_port and out_port 
classes defined in the simulation tool. The atomic model is defined as a template class of type Time (lines 
7-31) in order to allow atomic models to be instantiated with different data types for time. This gives 
flexibility in the data structures chosen for the definition of simulated time. Each atomic model class can 

contain as many parameters as needed (line 10). It has a set of state variables grouped together in a structure 
called state_type (lines 11-12). It also has a model constructor to instantiate the model parameters and 
initialize the state (line 13). There may be additional constructors with different input parameters, but the 
default constructor must also be present. Then, we implement all the DEVS functions (internal, external, 
confluence, output, and time advance) using the template provided in lines 15-31) in C++. The code in bold 
cannot be modified as it is part of the simulator. 

 Once atomic models are defined, the coupled models are implemented using the template provided in 
Figure 5, which is an implementation of the coupled model shown in Figure 6.  

1361



Wainer, and Ruiz Martin 
 

 

1 //*****INSTANTIATE ATOMICS *******// 

2 template<typename TIME>   

3 class iestream_int : public iestream_input<int,TIME> { 

4    public: 

5      iestream_int(): iestream_input<int,TIME>  

6      ("inputs/test_filterNetworks.txt") {};   }; 

7 //*****DEFINE COUPLED *******// 

8  struct inp_in_1 : public in_port<int>{};  

9  struct outp_out_1 : public out_port<double>{};  

10 using iports_C1 = std::tuple< inp_in_1>;  

11 using oports_C1 = std::tuple< outp_out_1>; 

12 using submodels_C1=models_tuple<filterNet, iestream_int> ; 

13 using eics_C1=tuple<EIC 

14      <inp_in_1,iestream_int, >; 

15 using eocs_C1 =tuple< EOC 

16     < filterNet, filterNet _defs::out, outp_out_1> >; 

17 using ics_C1=tuple<IC  

18     <iestream_int,iestream_defs::out, 

19           filterNet, fiterNet _defs::in> >; 

20 

21 using C1=coupled_model <TIME,iports_C1,oports_C1, 

22           submodels_C1,eics_C1,eocs_C1,ics_C1>; 

Figure 5: DEVS coupled model implementation using Cadmium. 

 

 After instantiating all atomic models (lines 1-6), we declare the coupled model ports (lines 8-9) as 

structures using in_port and out_port classes defined by the simulation tool (as we did with the atomic 

models in lines 2-5). Then, we assign the input and output ports we just declared to the model as a tuple 

(lines 10-11). Then, we create a tuple with all the submodels (line 12). The external input couplings (line 

13-14), external output couplings (line 15-16), and internal couplings (line 17-19) are also defined as tuples. 

For example, the external input couplings is defined as a tuple of the coupled model input port (e.g., 

inp_in_1, the name of the submodel (e.g., iestream_int) and the input port of the submodel (e.g., 

iestream_defs::in). The internal couplings and the external output couplings are defined similarly. The 

coupled model (line 21-22) is defined as a tuple of all these components.  
 

 
Figure 6: Example of a DEVS coupled model. 

 
 Once the top model is defined, we need to define loggers to store the simulation results, and define 
parameters to run the simulation. This is done as defined in Figure 7. The logger is defined by declaring the 
name of an output file (line 1). Then, we need to define the structure oss_sink_messages (lines 2-5) to tell 

define where to save the output log. In lines 7-9, we specify which elements we want to log. In this case, 
we define how the messages between the models are generated (lines 7-8). We also define how the state of 
the models is logged (line 9). In this specific case, we decided to log the messages output by the different 
models along with the global simulation time when each message was generated. Finally, we need to create 
the runner (line 11) and call the run_until method (line 12) with the simulation end time. The runner is 
created using the time class and the logger as template parameters and the top model name as parameter. A 

detailed manual for the Cadmium simulation tool can be found in (Ruiz-Martin and Wainer 2019). 

1362



Wainer, and Ruiz Martin 
 

 

1  static std::ofstream out_data("output_file_name.txt"); 
2    struct oss_sink_provider { 
3       static std::ostream& sink()           
4       return out_data;  
5   }; 
6 
7 using log_messages=cadmium::logger::logger<cadmium::logger::logger_messages, 
8    cadmium::logger::formatter<TIME>, oss_sink_provider>; 
9 using logger_top=cadmium::logger::multilogger<log_messages, global_time>; 
10  
11 cadmium::engine::runner<NDTime, logger_top> r(TOP, {0}); 
12 r.run_until(NDTime("04:00:00:000"));         

Figure 7: Logger definition and simulator call in Cadmium. 

4 ROCK-PAPER-SCISSORS GAME DEVS IMPLEMENTATION 

In this section we use a simple modeling example to show how to define DEVS models and implement 
them using Cadmium. The model defines a discrete-event specification of the “rock-paper-scissors” game 

with two players. Each player chooses between rock, paper and scissors at the same time. The winner is 
calculated according to the following rules: rock beat scissors; scissors beat paper, paper beat rock. 

4.1 Rock-Paper-Scissors Game DEVS Model Definition 

The rock-paper-scissors game can be modeled using DEVS as a coupled model with 3 components (Figure 
8): Player1, Player2, and Comparer. Each player is further decomposed into two atomic models: 
RequestReceiver to model the decision to play, and ActionMaker to choose one of the three options of the 

game. The Comparer determines which player won the round. RequestReceiver, ActionMaker and 
Comparer are atomic models. 

 
Figure 8: Rock-Paper-Scissors Coupled model. 

RequestReceiver 

This atomic model imitates the human instinct of receiving a request of doing something, pondering 
about the decision, and deciding to act. The formal definition of the atomic model is defined in equation 

(3) and the DEVS-Graph notation of the model is shown in Figure 9. 
 

RequestReceiver = < X, Y, S, 𝛿𝑖𝑛𝑡, 𝛿𝑒𝑥𝑡, 𝜆, ta >      (3) 
 

1363



Wainer, and Ruiz Martin 
 

 

X = {(playGameIn ∈ {true, false})}; 
Y = {(playGameOut ∈ {true, false})}; 
S ={active, passive}; 

𝛿𝑖𝑛𝑡(S) = passive 
𝛿𝑒𝑥𝑡(S, e, x){ 

 if (x==true AND S == false) then S = active} 
𝜆(active) = true 
ta(active) =  20sec;  ta(passive)= INFINITY 

 

 
Figure 9: DEVS Graph of the request receiver atomic model. 

 
ActionMaker 

This atomic model defines the decision making process for choosing a motion (Rock, Paper or 
Scissors), and present this final decision. The formal definition of the atomic model is shown in (4). 

 
ActionMaker = < X, Y, S, 𝛿𝑖𝑛𝑡, 𝛿𝑒𝑥𝑡, 𝜆, ta >       (4) 

 
X = {playGameIn ∈ {true, false}}; 
Y = {gameActionOut ∈ {“R”, “P”, “S”}}; 
S = {(active ∈ {true, false}), (choice ∈ {“None”, “R”, “P”, “S”})}; 

𝛿𝑖𝑛𝑡(active = true){ 
 active = false 
 choice = “None” } 

𝛿𝑒𝑥𝑡(s, e, x){         
 if (active == false)  
  active = true; 

  choice = random(“R”, “P”, “S”) // choose at random  } 
𝜆(active = true){ Send choice } 
ta(active = true) = 3sec; ta(active = false) = infinity 

 
Comparer  

The Comparer atomic model begins the game upon receiving a trigger signal input of type from the 

playGameStartIn input port. From there, it waits 5 seconds before triggering the output function to alert the 

players that the game has begun. Once the model receives the players’ choices, the model decides which 

player won based on their actions. The formal definition of the atomic model is shown in equation (5). 

 

Comparer = < X, Y, S, 𝛿𝑖𝑛𝑡, 𝛿𝑒𝑥𝑡, 𝜆, ta >       (5) 

 

X = {(playGameStartIn ∈ {true, false}), (gameActionIn1 ∈ {“R”, “P”, “S”}),  

(gameActionIn2 ∈ {{“R”, “P”, “S”})}; 

Y = {(playGameOut1 ∈ {true, false}), (playGameOut2 ∈ {true, false}), (winReportOut ∈ {0 ,1, 2})}; 

S = {(active ∈ {true, false}), (playerResult1 ∈ {{“None”, “R”, “P”, “S”}),  

(playerResult2 ∈ {“None”, “R”, “P”, “S”}), (received1 ∈ {true, false}), (received2 ∈{true, false}, 

1364



Wainer, and Ruiz Martin 
 

 

(playerIDWin ∈{-1,0,1,2}), (winnerTracker ∈ {[{0,1,2}],[{0,1,2}],…})}, (leading ∈ {0,1,2})}} 

𝛿𝑖𝑛𝑡(s){ 

 active = false; 

 received1 = false; 

 received2 = false; 

 playerIDWin = -1;  

 playerResult1 = “None”; 

 playerResult2 = “None”;              } 

𝛿𝑒𝑥𝑡(s, e, x) { 

 if (x.playGameStartIn == true)   // Start game  

  if (active == false)   active = true; 

 if (x.gameActionIn1)  //receiving player input 

  if (active == true AND received1 == false) 

   playerResult1 = x.gameActionIn1   // store the action of the player 

   received1 = true; 

 if (x.gameActionIn2)  

  if (active == true AND received2 == false) 

   playerResult2 = x.gameActionIn2   // store the action of the player 

   received2 = true; 

 //Evaluate who won if possible and update the leading board 

 if (active == true AND received1 == true AND received2 == true)  

  (playerResult1 == playerResult2)  ? playerIDWin = 0; 

  (playerResult1 == “R” AND playerResult2 == “S”) ? playerIDWin = 1; 

  (playerResult1 == “S” AND playerResult2 == “P”) ? playerIDWin = 1; 

  (playerResult1 == “P” AND playerResult2 == “R”) ? playerIDWin = 1; 

  else playerIDWin = 2; 

 Add the winner to winnerTracker vector 

 //count who is leading the game 

 if count 1s in winnerTracker > count 2s in winnerTracker:  leading = 1 

 else if count 1s in winnerTracker = count 2s in winnerTracker: leading = 0 

 else leading = 2                } 

𝜆(s) { 

 if (active == true AND received1 == true AND received2 == true AND playerIDWin != -1)  

  send playerIDWin through port winReportOut 

 else if (active == true AND received1 == false)  

            send true through port playGameOut1 

 else if (active == true AND received2 == false)  

            send true through port playGameOut2                 } 

ta(s) { 

 if (active == true AND (state.received1 == false OR state.received2 == false))  

  5 sec //referee time to alert players 

 else if (active == true AND received1 == true AND received2 == true)  

   15 sec//referee time to make winning decision 

 else  

  infinity      } 

4.2 Rock-Paper-Scissors Game Implementation in Cadmium 

To show how to use Cadmium to implement the DEVS models, we will focus on the definition of one of 
the atomic models (ActionMaker) and the top coupled model. The complete model implementation and the 

1365



Wainer, and Ruiz Martin 
 

 

instruction on how to run the simulations are available on GitHub: 
https://github.com/SimulationEverywhere-Models/RockPaperScissors. 

Atomic models are implemented in Cadmium in an hpp file as shown in Figure 10. We first declare the 

ports with the type of message that they will manage. In this case, the output port is a string (we need to 
represent S, R and P) and the input port it is a Boolean. Then, we define the atomic model as a class, in this 
case ActionMaker. We first define the model parameters (in this case, thinkingTime). Then, we define the 
input and output ports as tuples and then the state, the constructor/s and all the DEVS functions.  

The model state is defined as a struct called state_type which includes as many attributes as needed. 
In this case, we use two: active (a Boolean representing if a decision must be notified) and choice (a 

string representing the decision, i.e., S, R, P or None). For the constructor, we must define a default 
constructor that does not take any parameters, but we can add additional constructors if needed. In the 
constructor, we define the initial state of the model. In this case, the model in not active and the choice is 
None. 

For implementing the DEVS functions, we just need to translate the formal definition described in the 
previous section into C++ using the Cadmium interface. 

 
struct ActionMaker_defs{   //Port declaration 
   struct gameActionOut : public out_port<string> {}; 
   struct playGameIn : public in_port<bool> {}; 
}; 
 
template<typename TIME> class ActionMaker{  
   TIME thinkingTime = TIME("00:00:03:000") 
 
   public: 
 
   // ports definition 
   using input_ports=tuple<typename ActionMaker_defs::playGameIn>; 
   using output_ports=tuple<typename ActionMaker_defs::gameActionOut>; 
 
   struct state_type {    // state definition 
      bool active; //triggered to true when playGameIn received 
      string choice; //player choice 
   };  
 
   state_type state; 
 

ActionMaker() {      // default constructor 
      state.active = false; // set to true once game request received 
      state.choice = “None”; // means no choice 
   } 
      
   void internal_transition() {    // internal transition function 
      state.active = false; 
      state.choice = -1; 
   } 
 
   void external_transition(TIME e,typename make_message_bags<input_ports>::type mbs){ 
      if (state.active == false) { 
         state.active = true; 
         std::random_device rand; 
         std::mt19937 generate(rand()); 
         std::uniform_int_distribution<> distribute(1, 3); 
         value = distribute(generate);   //generate a value between 1-3 
         if (value == 1) state.choice = “R”; 
         else if (value == 2) state.choice = “P”; 

1366



Wainer, and Ruiz Martin 
 

 

         else if (value == 3) state.choice = “S”; 
       } 
   } 
 
   void confluence_transition(TIME e,typename make_message_bags<input_ports>::type  
                              mbs) {    // confluent transition function 
      internal_transition(); 
      external_transition(TIME(), move(mbs)); 
   } 
 
   typename make_message_bags<output_ports>::type output() const {    // output function 
      typename make_message_bags<output_ports>::type bags; 
      if (state.active == true) { 
         vector<string> gameChoice;             //output choice 
         gameChoice.push_back(state.choice); 
         get_messages<typename ActionMaker_defs::gameActionOut>(bags) = gameChoice; 
      } 
      return bags;  
   } 
 
   TIME time_advance() const {      // time_advance function 
      if  (state.active)  return thinkingTime 
      else return numeric_limits<TIME>::infinity(); 
   } 
};     

Figure 10: Cadmium code snippet: ActionMaker atomic model. 

Once all the atomic models are defined, we need to instantiate them and implement the coupled model 
as we show in Figure 11. We first specify the time type for the model (we can use a float or any other class). 

In this case, we use a custom data type, NDTime. We then declare the ports for all the coupled models. In this 
case, the output port of the top model winReportOutP of type out_port (a class provided by the simulator) 
and using int messages. We do the same for the ports of the Person coupled model. Then, we specialize all 
the atomic models that are defined using a template system. In this case, we specialize a model that parses 
the input file (iestream_input) as GameTrigger with the message type bool. Finally, we define the main 
function including the logger definition, the atomic models’ instantiation, the implementation of the coupled 

models using the template provided in Figure 5. We use the standard logger definition and the atomic 
models are instantiated with the command cadmium::translate::make_dynamic_atomic_model, which 
includes the atomic model identifier (i.e. a unique name such as play_game_gen to create an instance of the 
GameTrigger, and the parameters for the constructor. In the case of play_game_gen, we include the input 
file from where to read the inputs. All atomic models are instantiated in a similar way. For each coupled 
model, we need to declare, as arrays, the sub-models, input ports, output ports, external input couplings, 

external output coupling, and internal coupling. For example, Player1 has two submodules defined as 
modeling::Models submodels_Player1 = {requestReceiver1, actionMaker1}; one input port defined as 
modeling::Ports iports_Player1 = {typeid(playGameIn)}; one output port defined as modeling::Ports 
oports_Player1 = {typeid(gameActionOut)}; one external input coupling (EIC) connected to the 
RequestReciver model where playGameIn is the input port of the Player coupled model and 
RequestReceiver_defs::playGameIn is the port of the RequestReceiver atomic model; one external 

output coupling (EOC) connected to the ActionMaker atomic model where 
ActionMaker_defs::gameActionOut is the output port of the ActionMaker atomic model and gameActionOut 
is the output port of the Player coupled model; and one internal input (IC) coupling connecting the output 
port of RequestReceiver with the input port of ActionMaker. The coupled models are defined with the 
command std::make_shared<cadmium::modeling::coupled<TIME>> as an array of the six previous elements 
preceded by the coupled model identifier. Player2 and the top model are defined in a similar way.   

1367



Wainer, and Ruiz Martin 
 

 

using TIME = NDTime; //Specify the time class 
struct winReportOutP : public out_port<int> {}; // Declare output ports for coupled model  
 
// Declare output ports for Player Coupled Model 
struct gameActionOut : public out_port<string> {}; 
struct playGameIn : public in_port<bool> {}; 
 
// Specialize the atomic parser to send inputs to the top model 
template<typename T> class GameTrigger : public iestream_input<bool, T> { 
   public: 
      GameTrigger() = default; 
      GameTrigger (const char* file_path) : iestream_input<bool, T>(file_path) {} 
}; 
 
int main(int argc, char ** argv) {  // Loggers  
  static std::ofstream out_data("rock_sissors_paper_out.txt"); //define output file name 
    struct oss_sink_provider{ static std::ostream& sink(){  return out_data; }      }; 
  using log_messages=cadmium::logger::logger<cadmium::logger::logger_messages, 
        cadmium::logger::formatter<TIME>, oss_sink_provider>; 
 
  string input_data = argv[1];    // Instantiate GameTrigger  
  const char * i_input_data = input_data.c_str(); 
  std::shared_ptr<cadmium::modeling::model> play_game_gen =  
    cadmium::translate::make_dynamic_atomic_model<ApplicationGen, TIME, const 
    char* >(" play_game_gen " , std::move(i_input_data)); 
 
  shared_ptr<modeling::model> comparer;   // Instantiate Comparer  
  comparer = translate::make_dynamic_atomic_model<Comparer, TIME>("comparer"); 
 
  // Player 1 Coupled Model definition 
  shared_ptr<modeling::model> requestReceiver1 =   
    translate::make_dynamic_atomic_model<RequestReceiver,TIME>("requestReceiver1"); 
 
  shared_ptr<modeling::model> actionMaker1 =  
    translate::make_dynamic_atomic_model<ActionMaker,TIME>("actionMaker1"); 
 
  modeling::Ports iports_Player1 = {typeid(playGameIn)}; 
  modeling::Ports oports_Player1 = {typeid(gameActionOut)}; 
  modeling::Models submodels_Player1 = {requestReceiver1, actionMaker1}; 
  modeling::EICs eics_Player1 = { 
    translate::make_EIC<playGameIn,RequestReceiver_defs::playGameIn>("requestReceiver1") }; 
  modeling::EOCs eocs_Player1 = { 
 translate::make_EOC<ActionMaker_defs::gameActionOut,gameActionOut>("actionMaker1") }; 
  modeling::ICs ics_Player1 = { 
     translate::make_IC<RequestReceiver_defs::playGameOut, ActionMaker_defs::playGameIn>  
          ("requestReceiver1","actionMaker1") 
}; 
   
  shared_ptr<modeling::coupled<TIME>> Player1 = make_shared<modeling::coupled<TIME>> 
       ("Player1",submodels_Player1, iports_Player1, oports_Player1, eics_Player1,  

         eocs_Player1, ics_Player1); 
... 
 
  /*******TOP MODEL********/ 
    modeling::Ports iports_TOP = {}; 
    modeling::Ports oports_TOP = {typeid(winReportOutP)}; 
    modeling::Models submodels_TOP = {play_game_gen, Player1, Player2, comparer}; 
    modeling::EICs eics_TOP = {}; 
    modeling::EOCs eocs_TOP = {  

1368



Wainer, and Ruiz Martin 
 

 

     translate::make_EOC <Comparer_defs::winReportOut, winReportOutP>("comparer")  }; 
    modeling::ICs ics_TOP = { 
        translate::make_IC<iestream_input_defs<bool>::out,Comparer_defs::playGameStartIn> 
            ("play_game_gen","comparer"),translate::make_IC<Comparer_defs::playGameOut1, 
                Player1_defs::playGameIn>("comparer1","Player1"), 
         
      translate::make_IC<Comparer_defs::playGameOut2,Player2_defs::playGameIn> 
              ("comparer1","Player2"), 
      translate::make_IC<gameActionOut,Comparer_defs::gameActionIn1>("Player1","comparer"), 
      translate::make_IC<gameActionOut,Comparer_defs::gameActionIn2>("Player2","comparer")   
    }; 
 
    shared_ptr<modeling::coupled<TIME>> TOP = make_shared<modeling::coupled<TIME>>("TOP", 

         submodels_TOP, iports_TOP, oports_TOP, eics_TOP, eocs_TOP, ics_TOP); 
 
    // Call Runner  
    engine::runner<NDTime, logger_top> r(TOP,{0}); 
    r.run_until(NDTime("00:10:00:000")); 
} 

Figure 11: Rock-Paper-Scissors coupled model definition. 

After implementing all the coupled models, we define the runner as cadmium::engine::runner<NDTime, 
logger_top> r(TOP, {0}), where NDTime represents the time type, logger_top is the logger we have selected, 

TOP is the name of the variable where the Top Model is defined and {0} is the simulation starting time. 
Finally, we call the runner with the simulation finishing time as a parameter as explained in Figure 7. 

4.3 Simulating the Rock-Paper-Scissors Game  

In Figure 12, we show a simulation log for a scenario where the game is played for one round. As we can 

see in the log file, at time 2 min, the signal to trigger the game is generated. 5 seconds after, the comparer 

notifies the players that an action must be generated. 20sec after (at time 2min 25sec) the receiver sends the 

request to perform the action. At time 2min 28sec action maker 1 (i.e., player 1) generates the decision P 

(i.e., paper) and player 2 S (i.e., scissors). At time 2min 43 sec the comparer generates an output stating that 

player 2 won the round.  

 
00:02:00:000 [iestream_input_defs::out: {true}] generated by model play_game_gen 
00:02:05:000 [Comparer_defs::playGameOut1: {true}, Comparer_defs::playGameOut2: {true}]  

              generated by model comparer1 
00:02:25:000 [RequestReceiver_defs::playGameOut: {true}] generated by model requestReceiver1 
             [RequestReceiver_defs::playGameOut: {true}] generated by model requestReceiver2 
00:02:28:000 [ActionMaker_defs::gameActionOut: {“P”}] generated by model actionMaker1 
             [ActionMaker_defs::gameActionOut: {“S”}] generated by model actionMaker2 
00:02:43:000 [Comparer_defs::winReportOut: {2}] generated by model comparer1 

Figure 12: Simulation log snipped. 

The simulation log files can be processed using different techniques to identify, for example, what is 
the percentage of games won by each player or the percentage a player choose a given action. 

5 CONCLUSIONS 

In this tutorial, we have reviewed the DEVS formalism, the DEVS-Graph notation, and some of the DEVS 

simulators available to the community. We have focused on one of those simulators, Cadmium. Through 
an example, we have explained how to define both atomic and coupled models using the DEVS formalisms 
and how to implement them using Cadmium. A comprehensive list of DEVS models and their 

1369



Wainer, and Ruiz Martin 
 

 

implementation in Cadmium can be found on our GitHub repository: 
https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment 

REFERENCES 

Belloli, L., D. Vicino, C. Ruiz-Martin, and G. Wainer. 2019 “Building Devs Models with the Cadmium Tool”, In Proceedings of 

the 2019 Winter Simulation Conference (WSC), National Harbour, Meriland, USA, , edited by N. Mustafee, K.-H.G. Bae, S. 

Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y-J. Son, 45-59. Piscataway, New Jersey: Institute of Electrical and 

Electronics Engineers. 

Bergero F, and E. Kofman. 2011 “PowerDEVS: a Tool for Hybrid System Modeling and Real-Time Simulation”. Simulation; 87: 

113–132. 

Chow, A.C., B. P. Zeigler, and D. H. Kim. 1994, “Abstract Simulator for the Parallel DEVS Formalism”. Proc. of the Fifth 

Conference on AI, Simulation, and Planning in High Autonomy Systems, Gainesville, FL 

Hwang, MH. 2012 X-S-Y. https://code.google.com/p/x-s-y/. Accessed 26th April 2022. 

Kim, S., H. Sarjoughian, and V. Elamvazhuthi. 2009. “DEVS-Suite: a Simulator Supporting Visual Experimentation Design and 

Behavior Monitoring”. In Proceedings of the 2009 Spring Simulation Multiconference. Art. No. 161. 

Nutaro, J. 2011 Building Software for Simulation: Theory and Algorithms, with Applications in C++. Hoboken, NJ: Wiley.  

Nutaro, J. 2014. A Discrete EVent System Simulator. http://web.ornl.gov/~1qn/adevs/adevs-docs/manual.pdf. Accessed 22nd April 

2022. 

Quesnel,G., R. Duboz, E. Ramat, and M. K. Traore. 2007 “VLE: a Multimodeling and Simulation Environment” in Proceedings 

of the 2007 Summer Computer Simulation Conference, San Diego, CA. 

Ruiz-Martin, C., and G. Wainer. 2019. Cadmium. A Tool for DEVS Modeling and Simulation. User’s Guide. 

http://www.sce.carleton.ca/courses/sysc-5104/lib/exe/fetch.php?media=cadmium.pdf. Access 26th April 2022. 

Sarjoughian, H., and B.P. Zeigler. 1998 “DEVSJava: Basis for a DEVS-based Collaborative M&S Environment”. Simulation 30: 

29–36 

Seo, C., B.P. Zeigler, R. Coop, and D. Kim. 2013. “DEVS Modeling and Simulation Methodology with MS4Me Software”. In 

Proceedings of the 2013 Spring Simulation Multiconference. pp. 33:1–33:8. 

Vangheluwe, H. 2000. “DEVS as a Common Denominator for Multi-Formalism Hybrid Systems Modelling”. In CACSD. 

Conference Proceedings. IEEE International Symposium on Computer-Aided Control System Design. IEEE, pp. 129–134. 

Van Mierlo, S., Y. Van Tendeloo, and H. Vangheluwe. 2017 “Debugging Parallel DEVS” Simulatio, 93(4): 285-306. 

Van Tendeloo, Y., and H. Vangheluwe. 2014 “The Modular Architecture of the Python (P)DEVS Simulation Kernel”. In 

Proceedings of the Symposium on Theory of Modeling & Simulation, Tampa, FL, USA 

Van Tendeloo, Y., and H. Vangheluwe. 2014b “Activity in PythonDEVS" ITM Web of Conferences, vol. 3, p. 01002. 

Van Tendeloo, Y., and H. Vangheluwe. 2017 “An Evaluation of DEVS Simulation Tools” Simulation 93(2): 103-121. 

Vicino, D., D. Niyonkuru, and G. Wainer. 2015 “Sequential DEVS Architecture” Proceedings of the Symposium on Theory of 

Modeling and Simulation, Alexandria, VA, USA 

Wainer G. 2002 “CD++: A Toolkit to Develop DEVS Models”. Software: Practice and Experience 32(13): 1261–1306. 

Wainer, G. 2009. Discrete-Event Modeling and Simulation: A Practitioner's Approach. CRC Press, Boca Raton, FL, USA 

Zeigler, B.P., H. Praehofer, and T. G. Kim 2000 Theory of Modeling and Simulation: Integrating Discrete Event and Continuous 

Complex Dynamic Systems, San Diego, CA: Academic Press 

AUTHOR BIOGRAPHIES 

CRISTINA RUIZ MARTIN, PhD, is an Instructor at the Department of Systems and Computer Engineering at Carleton 

University. Her research interests are in the area of Modeling and Simualtion. Her email address is 

cristinaruizmartin@sce.carleton.ca 

 

GABRIEL WAINER, PhD, is a Full Professor at the Department of Systems and Computer Engineering at Carleton University. 

He is a Fellow of SCS. His research interests are in the area of Modeling and Simualtion His email address is 

gwainer@sce.carleton.ca 

1370

https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment
https://code.google.com/p/x-s-y/
http://web.ornl.gov/~1qn/adevs/adevs-docs/manual.pdf
http://www.sce.carleton.ca/courses/sysc-5104/lib/exe/fetch.php?media=cadmium.pdf
mailto:cristinaruizmartin@sce.carleton.ca
mailto:gwainer@sce.carleton.ca

