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ABSTRACT

This paper proposes a hypothetical agent-based model of home grocery delivery operation using electric
and autonomous vehicles. In the last-mile delivery context, agent-based modelling studies that consider
the use of autonomous vehicles is lacking. The model in this paper can produce a mixed-fleet design
that can serve a set of synthetic orders punctually. Through extensive computer experimentation, firstly,
we investigate how infrastructure setup affects the fleet design. Secondly, we highlight the benefits of
mixed-fleet over homogeneous fleet design. And thirdly, we evaluate the benefits of using autonomous
vehicles in last-mile delivery operation.

1 INTRODUCTION

In 2021, about 16% of greenhouse gas (GHG) emissions in Europe came from the transportation sector
(Eurostat 2021), of which light goods vehicles (LGVs) made a significant contribution. In the UK, 6% of
carbon monoxide and 35% of nitrogen oxide emissions in 2018 were from LGVs (Department for Transport
2018). Electric vehicles (EV) can reduce fossil fuel consumption in the transportation sector (Al-Alawi and
Bradley 2013). The UK government has set a target for all new car and van sales should be zero-emissions
by 2040. The uptake of electric vans for delivery operations remains low due to factors such as range
constraints, battery weight and and higher cost of ownership.

The driver’s salary is a significant cost component, and shift length is a constraint to delivery efficiency.
The use of autonomous vehicles (AVs) might thus become an option for reducing the cost of adopting EVs
in delivery operations. Adopting battery-powered AVs may also reduce GHG emissions.

This paper is a part of a bigger project to analyse how logistics systems should be reorganized to better
accommodate the use of EVs, considering LGVs, heavy goods vehicles (HGVs) and electric bikes among
the potential mix. Using agent-based modelling (ABM), we have demonstrated how a real-world retailer
in Manchester, UK, can replace all of its diesel LGVs with EVs. However, we highlighted a significant
risk of degrading the service levels by about 30% (Utomo et al. 2019). The retailer can deliver the same
number of orders, but the punctuality of the delivery may decline due to the time required for charging. We
have also demonstrated that by introducing two opportunistic charging hubs outside the stores, about 20%
of the service levels can be recovered while keeping the fleet size and profile fixed (Utomo et al. 2019).
This research was followed up by investigating the charger power that should be installed at the retailer’s
stores, and how the vehicles should be charged to further increase the service levels without increasing the
fleet size or the battery capacity (Utomo et al. 2021).

Our previous works in home grocery delivery focus on the infrastructure and design problems (Boysen
et al. 2021), in which we aimed at optimally locating charging hubs, and choosing charger power by
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assuming that the retailer’s fleet is fixed. This study will investigate the relationship between infrastructure
and fleet design, and evaluate the benefits of using AVs in home grocery delivery. This paper presents a
hypothetical ABM to explore those research questions.

The remainder of this paper is organized as follows. In section 2, we present the literature review
to position our research in the context of ABM applications in last-mile delivery. The assumptions and
process to develop our ABM are discussed in section 3. Sections 4 and 5 discuss the findings of this study,
conclusion and potential future studies.

2 LITERATURE REVIEW

ABM has been widely applied to study last-mile delivery problems. Boysen et al. (2021) defined last-mile
delivery as all logistics activities from a starting point in an urban area (e.g., a central depot) and end when
the shipment has successfully reached the customer’s preferred destination. They also consider last-mile
delivery and city logistics concepts to have some overlaps. City logistics is, however, a broader concept
that also considers passenger transportation (Boysen et al. 2021). In this section, we summarize recent
ABM applications that are relevant to the two concepts, but we only focus on freight transportation.

Following Utomo et al. (2018), we categorize the previous ABM applications into real and hypothetical
case studies. Our review shows that most of the recent ABM applications use real case studies such as in
Austria (Fikar et al. 2018; Fikar 2018), Netherlands (Anand et al. 2021; van Duin et al. 2021), Germany
(Trott et al. 2021), Belgium (Mommens et al. 2018; Mommens et al. 2021; Kin et al. 2018), US (Castillo
et al. 2022), UK (Utomo et al. 2021), Singapore (Sakai et al. 2020; Gopalakrishnan et al. 2020) and
Denmark (van Heeswijk et al. 2019). Only Kim et al. (2021) present a hypothetical ABM. Both types of
ABM are important. An ABM using a real case can be used to optimize the system being studied, while
a hypothetical ABM can be used to derive theories that are applicable to many different cases.

Allen et al. (2018) suggested that last-mile delivery sectors can be classified based on the types of
freight being transported i.e., (i) grocery; (ii) parcels; (iii) large white and brown goods; and (iv) ready to
eat meals (takeaways). Our review shows that grocery delivery is the most popular sector in recent ABM
applications (Mommens et al. 2018; Utomo et al. 2021; Kin et al. 2018; Fikar 2018). Parcel delivery is
the second most popular (van Duin et al. 2021; Trott et al. 2021; Castillo et al. 2022), followed by large
white and brown goods (Anand et al. 2021; Kim et al. 2021) and ready to eat meals (Fikar et al. 2018).
Some papers, however, model general freight that may include all of these sectors (Gopalakrishnan et al.
2020; Sakai et al. 2020; van Heeswijk et al. 2019).

Our review shows that the previous ABMs target different problem owners, which in some ABM
applications is the government. For example, Anand et al. (2021) and van Heeswijk et al. (2019) tested
policy concepts to encourage receivers and carriers to use urban consolidation centers instead of direct
delivery. Gopalakrishnan et al. (2020) evaluated the impacts of changing parking supply for HGVs.

Other ABM applications target logistics operators; following Boysen et al. (2021), we classified previous
ABM applications based on the decision problems owned by logistics operators in last-mile delivery into:

* Setup or design of the infrastructure: For example, Mommens et al. (2021) tested whether it is
more beneficial to deliver or collect directly to the customers’ house or to delivery hubs. Kim et al.
(2021) tested the benefits of hyper-connected urban logistics for large-item delivery. Utomo et al.
(2021) evaluated the impacts of charger power installed at a retailer’s stores to the punctuality of
the delivery done using a fleet of EVs.

» Staffing and fleet sizing: This type of problem is called fleet design in this paper. Within this
category, Castillo et al. (2022) have evaluated a hybrid delivery system combining fleets owned
by retail firms and crowdsourcing. Kin et al. (2018) evaluated payload consolidation scenarios to
supply small stores.

* Routing and scheduling: For example, van Duin et al. (2021) presented a payload allocation and
journey construction method based on an auctioning system. Trott et al. (2021) proposed a routing
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heuristic to minimize emissions and delivery duration by considering parking bay availability.
Mommens et al. (2018) evaluated the environmental impacts of night delivery to the supermarket.
Fikar et al. (2018) proposed a method to minimize the total delay and travel distance in restaurant
delivery operation. Fikar (2018) proposed a model to optimize inventory and delivery strategies in
order to reduce food waste.

A variety of vehicle agents have been considered in the previous ABM applications. Van agents
(Mommens et al. 2021; Trott et al. 2021; Utomo et al. 2021; van Duin et al. 2021; Kin et al. 2018) and
truck agents (Mommens et al. 2018; Anand et al. 2021; Gopalakrishnan et al. 2020; Kim et al. 2021; van
Heeswijk et al. 2019) are the most popular vehicle agent type. However small vehicles such as bicycles
have also been considered (van Duin et al. 2021; Fikar et al. 2018). We also noted that most of the
previous studies focus on conventional and diesel vehicles. To our knowledge, research modelling EVs in
last-mile logistics is scarce and few sources are available, e.g.,Utomo et al. (2021). In addition, there is
no previous ABM application that considers the use of AVs in last-mile delivery operation.

This literature review shows that most of the previous ABM applications focus on one problem owner
and one type of decision problem. Little attention has been given to EVs and there is no previous attempt
to analyze the benefits of AVs in last-mile delivery operation. The ABM presented in this paper also
focus on one problem owner i.e., a home grocery delivery operator. However, unlike previous ABM
applications, we aim at understanding relationships between infrastructure design and fleet design problems
when implementing EVs and AVs. More specifically, how the number and the location of stores influences
the fleet size and battery profile within the fleet. Since our computational experiments also include the
use of AVs, this model also contributes in understanding the impacts of using AVs in last-mile delivery
operations. At this project phase, we aim at understanding general relationships, hence we chose to develop
a stylized hypothetical model.

3 METHODOLOGY

We structure this section using the Strengthening The Reporting of Empirical Simulation Studies (STRESS)
framework (Monks et al. 2019). The applicability of STRESS for ABM studies has been demonstrated,
for example, by Onggo and Utomo (2021). We start by explaining the objectives of our ABM (subsec-
tion 3.1), followed by the logic or algorithm in our model (subsection 3.2), parameters to setup our model
(subsection 3.3), experimentation (subsection 3.4) and model implementation (subsection 3.5).

3.1 ABM Objectives

Given a set of synthetic orders data, the ABM aims to produce the minimum number of vans required, so
that all of the deliveries can be done punctually. Based on the distance travelled in all journeys done by a
van, the model then decides the size of the battery that is appropriate for that particular vehicle.

3.2 Logic in the ABM

The model in this paper was developed based on the ABM proposed in Utomo et al. (2019) and Utomo
et al. (2021). The main agent in this model is a retailer agent. It represents a home grocery operator in
a hypothetical city. Its objective is to satisfy demand for grocery deliveries from its customers punctually
and with the lowest possible cost. Hence, unlike in our previous works, the delivery time window is treated
as a hard constraint. However, up to this phase of research, we do not estimate the cost in monetary value.
Instead, we use the number of vehicles, the battery size, and the distance travelled as proxies of cost.
The retailer agent owns and operates a number of stores in the city. Each store agent owns and operates
a number of van agents to carry out the delivery. In our previous works, we consider the number of vans
owned by each store as inputs and are fixed throughout the simulation. In this paper, we assume each
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store is initiated with one van agent of a particular battery size, but when needed it can instantly purchase
additional vans. By the end of the simulation a store may own several vans with different battery sizes.

Each day in the simulation starts by randomly generating a number of orders using a Poisson distribution.
The mean of this Poisson distribution is set as an input. For each order, the quantity of product ordered
(crates) is determined by sampling a truncated normal distribution with minimum value of zero and the
result was rounded to the nearest whole number. The mean and standard deviation of this normal distribution
is set as the model’s input. The orders can come from customers who live anywhere in the simulated city
with each cell having an equal chance to be selected. The cx; and cy; coordinate of the cell where the
customer lives is recorded by the retailer agent.

Possible delivery time windows for orders are determined by considering the earliest delivery time
(EDT), the store operational hour (OH) and the time window interval (TWI). All of those variables are
used as model inputs. For instance, if EDT = 7:00 AM, OH is 16 hours and TW1 is 4 hours, then there are
four possible time windows for an order i.e., 7:00 - 11:00 AM, 11:00 AM - 3:00 PM, 3:00 - 7:00 PM and
7:00 - 11:00 PM. The time window for each order is selected randomly from all possible time windows
using a uniform distribution.

For each order, the retailer agent calculates the distance from the customer’s location to each store agent.
In common with van Duin et al. (2021), all of the distance calculations in this paper use the Euclidean
distance formula multiplied by a correction factor of & (Equation 1). In Equation 1, sx; and sy; represent
the x and y coordinate of store j. The & coefficient represents the road network topology (the minimum
value of ¢ is 1 and a road network with many junctions or one way traffic will have bigger « value).

desij = Oc\/(cxi —5x;)%+ (cyi —sy;)? €))

The retailer agent then evaluates whether the order is within the catchment area (CA) of the closest
store agent (store with the smallest dcs;;). If the customer’s location is within the catchment area of the
closest store then the customer can be served, otherwise the customer’s order is excluded. In common with
Delaney-Klinger et al. (2003), if an order can be served, it is then assigned to the closest store agent from
the customer’s location.

A store’s catchment area determines the furthest customer’s location that can be reached by its van
agents and it is calculated using Equation 2. In this equation, DS denotes the driver shift in hours, v denotes
the vehicle speed (km/hour), and MaxR denotes the maximum vehicle range allowed in the system. DS, v
and MaxR are used as the ABM inputs, and they are divided by 2 to take into account the return journey.

DSxv_  MaxR
) (5 @

Each store agent then allocates all of the customers’ orders assigned to it into several vehicle journeys.
The allocation process starts by sorting all of the customers’ orders based on their delivery time windows,
starting from the earliest to the latest. The assignment is then started from the customer with the earliest
delivery time window. If there are more than one customer with the same delivery time window, then the
customer to be evaluated first is selected randomly.

The next process is to calculate the distance and travel time from each van’s last location (vxg,vyy)
to the customer’s location. The van’s last location can be either the van’s home store, or the customer
location previously served by the van. Different from Utomo et al. (2019) and Utomo et al. (2021), there
are two distance and travel time calculations in this paper i.e., direct journey and via-store journey. Direct
journey means the van travels directly from its last location to the customer’s location. The distance of a
direct journey is described in Equation 3. In this equation dd; denotes the total travel distance of a direct
journey, dcvj, denotes the distance between van k’s last location and the customer’s location, and dcs;; is
the distance between the customer and van k’s home store (to take into account the return journey). The
travel time of a direct journey (¢¢dy) is then obtained by dividing dd; with v (Equation 4).

dd, =dcvi —{—dCSl'j (3)

CA = min{(
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ttdy = ddk/v 4

A via-store journey means the van first visits the store before going to the customer’s location. The
total travel distance of a via-store journey (dsy) is described in Equation 5. In this equation dsv j; represents
the distance between the van’s last location and its home store. Similarly, the travel time of the a via-store
journey (¢zsy) is obtained by dividing ds; with v (Equation 6).

dsi =dsvj+2x*dcs;; 5

ttsy = dsy /v (6)

The following criteria are then applied to decide whether a van should serve the customer’s order using
direct or via-store journey.

*  Vehicle capacity: Following Utomo et al. (2019) and Utomo et al. (2021) we assume that the
vans used in home grocery delivery operation can carry up to 108 crates. Hence, if the remaining
capacity of a van is lower than the number of crates ordered by the customer then the van should
use via-store journey. Otherwise, it can use direct journey.

* Total journey time: The driver’s shift constraints the duration of a van’s journey. The typical driver’s
working shift is 8 hours, including 15 minutes breaks every 2 hours. Therefore, if under direct
journey scenario, the additional working time to serve the customer and return to the van’s home
store means the driver’s total shift exceeds 8 hours, then the van should use via-store journey.

e Maximum range: How far a van can travel is also constrained by the maximum vehicle range
allowed in the system (MaxR). Hence, if under direct journey scenario, the additional journey
length to serve the customer and return to the van’s home store means MaxR is violated, then the
van should use via-store journey.

The next step is to evaluate the eligibility of the vans. A van is considered to be eligible if it can
arrive at the customer’s location before the customer’s delivery time window ends. The estimated time of
arrival at the customer’s location (arr) is calculated using Equation 7 if the van can use direct journey,
and Equation 8, if the van should use via-store journey. In those equations dep represents the time when
the van can depart form its last location. The #l/c denotes the time required for reloading and charging. In
diesel case the #lc value is 30 minutes. In electric vehicle case the t/c value is 1 hour (assuming that the
van can be fully charged in 1 hour (known as the 1C rule)). If there is no eligible van, then a new van is
instantaneously spawned by the store agent without any associated cost.

arr =dep +ttdy (7

arr =dep +tts;+tlc (8)

A total score is then assigned for each van. A total score of zero is assigned to ineligible vans. While,
for all eligible vans, the total score is obtained by averaging the score from three factors:

e Punctuality: A vehicle gets a score of 100 if it can arrive within the customer’s delivery time
window and gets score of zero if it arrives too early. This is because we assume that a delivery
can only be made after the customer’s delivery time window starts, hence it must wait if it arrives
too early.

e Distance: The distance from the vehicle’s last location to the customer’s location, either dd;, or ds.
The closest vehicle to the customer’s location gets a score of 100 while the furthest vehicle gets
a score of 0. The score for all other eligible vehicles is assigned between 0 and 100 using linear
function.
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Maximum historical distance travelled: Distance travelled in this paper represents the journey length
(in kilometers). This factor aims to prioritise the use of older vehicles and to keep the distance
travelled of newly spawned vehicles low. The maximum historical distance travelled is obtained
by taking the maximum value of distance travelled from all previous journeys that have been done
by the vehicle. Vehicle with the longest distance travelled gets a score of 100 while vehicle with
the lowest distance travelled gets a score of 0. The score for all other eligible vehicles is assigned
linearly between 0 and 100. With regards to EVs, smaller battery pack can be assigned to vehicle
agents with lower maximum historical distance travelled, and hence this factor can reduce the
number of EVs with big battery.

Vehicle with the highest total score is selected to deliver the customer’s order. There are two possible
scenarios when incorporating the order into the vehicle’s destination list:

The selected vehicle can deliver the customer’s order using direct journey: In this case the customer’s
order can be directly incorporated into the selected vehicle’s destination list. The remaining capacity
of the selected vehicle is then reduced by the quantity ordered by the customer. The remaining
driver’s shift is reduced by t¢d; (see Equation 4), and the remaining vehicle’s range is reduced by
ddy (see Equation 3).

The selected vehicle should deliver the customer’s order using via-store journey: In this case the
selected vehicle must first return to the store, and start a new journey. Its remaining capacity,
driver’s shift and remaining range are reset to their initial values. After that the customer’s order is
incorporated into the selected vehicle’s destination list, and procedures in the direct journey case
can be followed.

These steps are repeated until all orders in a day are served. The vehicle agents then deliver the
customers’ orders following their destination list. In this model we assume that there is no interaction
between vehicles and traffic conditions. Hence the vehicle will always arrive at each destination as planned.

By the end of the simulation, the model assigns the battery size appropriate for each vehicle. This is
done by evaluating the longest journey that was completed by a vehicle. For instance, even if we allow
the vehicles in the system to travel up to 100 km (MaxR = 100 km), but if historically the longest journey
carried out by a particular vehicle is 75 km, then it can complete all of its journeys using 50 kWh battery.

3.3 Data

In addition to the values explained in subsection 3.2, our ABM uses several inputs, i.e.:

City area: The size of the hypothetical city. The value is set to be 50km x 50km. This is representative
for big cities in Europe such as, Paris, Moscow, Diisseldorf etc (Globalgeografia 2021).

Number of stores: The number of stores owned by the retailer agent (used as scenario).

Store location: The spatial distribution of the stores. There are two values for this parameter i.e.,
random and cluster. Random means the stores are located randomly in the city. Cluster means the
stores are located so that they become the center of the customer clusters. This parameter is also
used as scenario.

Average orders per day: The average number of orders received by the retailer agent (demand).
This parameter is used as a scenario in the experiment.

Mean and standard deviation of customer’s order size (crates): For all scenarios the mean value is
4.82 and the standard deviation is 0.8 (Utomo et al. 2021).

Driver shift: How long the vehicles can travel. For diesel and EV vans, the driver shift is set to be
8 hours. Assuming that AVs can travel as long as the store is open, the driver shift for AV vans is
set to be 16 hours.

Van speed: The speed of the vehicle. It is set to be 40 km/hour in all scenarios (Utomo et al. 2021).
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* Dispatch time: The earliest time when the vans can leave the store (6:00 AM in all scenarios).

*  Operational hour (OH): How long the store agents are operational in a day (16 hours in all scenarios).

* Earliest delivery time (EDT): The starting time of the earliest delivery time window (7:00 AM in
all scenarios).

e Delivery time window: The duration of the delivery time window (used as scenario).

e  Maximum range: The maximum range of the vehicles in the retailer agent’s fleet. The value is set
to be 500 km if the retailer agent uses diesel vehicles, 240 km for 120 kWh battery, 198 km for 99
kWh battery, 160 km for 80 kWh battery, and 100 km for 50 kWh battery (assuming the range per
kWh is 2.5 km) (Watrébski et al. 2017). Please note that the final battery size for each vehicle is
assigned based on its historical journeys. Hence even if the maximum range is set to be 240 km,
the retailer agent may end up having several vehicles with 99 kWh, 80 kWh or 50 kWh.

Using these input data, the ABM produces several outputs i.e., the number of customers that can be
served, the fleet size, the total distance travelled (in km), and the battery size for each vehicle.

3.4 Experimentation

Experimentation using the ABM employs full a factorial design. Table 1 describes the factors and the
corresponding levels explored in the experiments. In total there are 720 scenarios in one experiment set.
Each scenario is run for 100 simulation days (initial runs showed that the system reach steady state after
about 80 days) and replicated three times. The random seed was controlled so that scenarios in a replication
used the same random seed, and hence serving exactly the same order set.

Table 1: Experiment table.

Factors Levels

Number of stores 1,4, 16

Store location random, cluster

Average order per day 50, 100, 200, 400

Time window 1,2, 3

Driver shift 8 hours including breaks (for Diesel and EVs), 16 hours (for AVs)
Maximum range 500, 240, 198, 160, 100

3.5 Implementation

The ABM is implemented in NetLogo 6.2.0. Its BehaviorSpace tool enables process parallelization that
is useful for our experiment. The ABM uses fixed time steps of 10 minutes and all randomization in the
model was handled using NetLogo built-in functions. In addition, NetLogo also randomizes the sequence
of agents activation in each step to avoid bias. The experimentation was done on Intel(R) i5-8350U CPU
@ 1.70GHz with 16 GB of physical memory.

4 EXPERIMENT RESULTS AND ANALYSIS

First we analyze the impacts of the number of stores and their location on the percentage of orders that can
be served by the retailer agent. The experiment results show that regardless of the number and location of
stores, the number of orders per day, and the time window, diesel vehicles can serve all orders received
by the retailer agent. A fleet of EVs or AVs can also serve 100% of the orders if they are allowed to have
120, 99 or 80 kWh batteries.

However, this is not the case if the retailer agent limits the battery size of EVs and AVs fleet to S0OKWh.
Figure 1 shows how the average percentage of order that can be served change as the number of stores in
the simulation increase. This figure shows that both EVs or AVs fleet can only serve 80.5 % of all incoming
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orders when the retailer agent only operates one store and is randomly placed in the hypothetical city. The
percentage of orders that can be served can be increased to 98.5 % if the store is strategically located at
the center of the customer cluster. However, if the retailer agent wants to serve all of the incoming orders,
then it must operate more stores. This happens because the catchment area of the stores shrinks when the
battery size is reduced (a consequence of Equation 2).

This experiment highlights the importance of understanding the relationship between infrastructure and
fleet design. In a big city, when the number of stores is low, adding more vans might not be sufficient to
serve all of the incoming orders. Hence it is better for the retailer agent to use vans with bigger battery.
This is because the price of vehicles with big battery is generally cheaper than operating more stores.

EV 50 kWh AV 50 kWh
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Figure 1: Percentage of order that can be satisfied using EVs and AVs with 50 kWh battery.

Next, we analyze the impact of the number of orders received on the size of the fleet required to
serve all of these orders punctually. Figure 2 shows average fleet size required under a variety of demand
scenarios. In this figure, EV120 represents scenarios in which the retailer agent allows the vehicles in its
fleet to have battery with 120 kWh capacity at maximum. Similarly, AV 120 represents scenarios in which
the retailer agent uses autonomous vehicles with maximum battery size of 120 kWh. As a baseline, a line
representing scenarios involving 100 % conventional diesel vehicles is also shown in Figure 2.

Figure 2 shows that regardless of the number of stores operated by the retailer agent, the average
number of vehicles required increases as the number of orders increases. When the average order is 50 per
day, the difference in fleet size across all vehicle type scenarios is not observable. But, when the number
of orders is high (400 orders per day on average) the difference starts to become significant. The highest
average fleet-size of 26.77 vans occurs when the retailer agent uses a homogeneous fleet with 50 kWh
battery. The fleet size can be reduced if the retailer agent uses vehicles with bigger battery sizes.

Figure 2 also shows that both EVs and AVs scenarios produce exactly the same fleet size. However,
we can still expect some savings from using AVs. This is because the retailer agent does not need to pay
the driver’s salary when it uses AVs.

We then analyze the total distance travelled from 100 simulation days. Figure 3 shows the total
distance travelled under a variety of order levels, including from the baseline scenarios that involve 100%
conventional diesel vehicles. This figure shows that the total distance travelled increases as the number of
orders per day increases. However, Figure 3 also shows that the total distance travelled tends to decrease
if the retailer agent deploys vans with bigger battery. This is because vans with bigger battery need to be
charged less frequently. Hence reducing the distance of the return journey to the home store.

The saving from using AVs is not apparent in Figure 3. Table 2 shows that the savings from using AVs
only occurs when the maximum battery size is 120 kWh and the average number of orders is 100 per day
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Figure 2: Impacts of the number of orders to fleet size.
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Figure 3: Impacts of battery size on the total distance travelled.

or higher. Table 2 indicates that when the number of order or the vehicle range is low, the driver’s shift
constraint is not fully utilized. Hence, relaxing it does not produce any effect. But when the order level
and vehicle range are sufficiently high, using AV might reduce the need for the vehicles to return to the
store to change driver.

Even though Figure 1, Figure 2, Figure 3 and Table 2 support the use of vehicles with big battery, it
is not necessary for the retailer agent to operate a homogeneous fleet with big battery. Table 3 shows the
average frequency of battery size from all scenarios with order level of 400 and maximum battery size of
120 kWh. This table shows that some of the vehicles can have battery smaller than 120 kWh. At the present
time the price of the battery accounts for about 40% of the vehicle’s price (Konig et al. 2021). Hence,
deploying a mixed-fleet (i.e., many large battery-sized vehicles and several small battery-sized vehicles)
may reduce the initial investment required to purchase the vehicles. Furthermore, vehicles with smaller
battery can be charged with less powerful chargers that are also cheaper to be installed.

Table 3 also show additional potential saving from using AVs. This table shows that AV fleet uses
fewer vehicles with 120 kWh battery and more vehicles with 90 kWh and 80 kWh battery. One of the
possible explanations is because relaxing the driver’s constraint will allow the vans with 120 kWh battery

1409



Utomo, Gripton, and Greening

Table 2: Distance travelled by EVs and AVs fleet in scenarios with maximum battery capacity of 120 kWh.

avg. order per day | Km travelled EV Km travelled AV EV — AV
50 117,893.32 117,893.32 0

100 209,322.83 209,318.26 4.58

200 373,253.51 373,223.5 30.02
400 655,156.89 654,943.35 213.54

Table 3: Distribution of battery size of EVs and AVs fleet in scenarios with order level of 400 and maximum
battery size of 120 kWh.

Fleet type 120 kWh 99 kWh 80 kWh 50 kWh
EVs 19.22 0.88 0.5 4.66
AVs 19.11 0.94 0.6 4.61

to utilize their range constraint more and incorporate more destinations into their journey. This makes the
distance of the remaining journeys shorter and can be completed by vehicles with small batteries.

5 CONCLUSIONS, LIMITATIONS AND FURTHER RESEARCH
5.1 Conclusions

This study has proposed an ABM that can help to understand the relationships between infrastructure and
fleet design problem when implementing EVs and AVs. We have also evaluated the benefits of mixed fleet
and the use of AVs in home grocery delivery operations.

We have demonstrated that it is important to consider the battery sizing and store number as well as
their spatial distribution together to optimize the fleet design. Providing that the design is robust and stress
tested against randomly generated orders, a heterogeneous fleet consisting of vehicles with big and small
battery is better than a homogeneous fleet design.

Introducing AVs into the fleet may yield some benefits. Firstly, AVs may reduce the operational cost
by removing the driver. Secondly, AVs might increase the efficiency of the operation by reducing total
distance travelled. This happens especially when some slack remains in the range constraint, while the
shift constraint has been fully utilized using ordinary EVs. Thirdly, using AVs may reduce battery size for
some vehicles in the fleet. This is beneficial because vehicles with smaller battery are generally cheaper
and can be charged with less powerful chargers. Hence this may reduce the amount of investment required.

5.2 Limitations and Further Research

One of the limitations of this study is that we have not analyzed the financial impacts of the various design
fleet produced by the experiment. To do this, we need to develop a cost model that is representative for
the various types of EVs, AVs and chargers. Furthermore, even though in subsection 5.1 we mentioned
that the cost to operate AVs might be cheaper because we can eliminate the driver’s salary, AVs operations
might involve other cost such as, e.g., control system to manage the AV fleet. Unfortunately, information
to estimate the cost structure for AVs is somewhat limited at present.

We assume the vehicles can only be charged at their home store and neglect the possibility of opportunistic
charging; this capability could be very important in the future because vehicles that do not need to constantly
return to their home store may incorporate more orders into their journey.

Six experimental design factors have been presented in this paper. Unfortunately, some have not
been fully explored, for example, the number and location of the stores and the impact of different time
windows. Having wider time windows for instance, may give the vehicles more opportunity to serve the
orders punctually and may bring further reduction to the fleet size. Other factors that can also be explored
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in the future are such as, different speed, and different unloading time due to the fact that a customer would
need to unload groceries from an AV themselves. Exploring the time required by a customer to unload
his/her grocery or to understand their attitude and behavior toward AV delivery is also important. For this
purpose, behaviour elicitation techniques such as scenario-based questionnaire (Utomo et al. 2022) or role
playing game (Utomo et al. 2021) can be used. It is also important to explore the impact of the weights
assigned to the three scoring factors in the heuristics. At present, those parameters are assumed to have
equal weight. However, these weights can be optimised further, for example by using sensitivity analysis,
to minimise the total cost or the total GHG emission.

The shortcomings from the modelling and simulation perspective might be the absence of the statistical
analysis of the experiment outputs. To be able to do this, first we will ensure that we have sufficient
replications from our experiments, for example, by applying convergent criteria (Hoad et al. 2010). Once
sufficient experiment replications are obtained, confidence intervals of the experiment outputs can be
established to generalize the results of this study. In addition to the confidence intervals, meta models of
our experiment outputs can be developed to explore the impacts of independent factors e.g., driver shift
and loading time, toward the system performance e.g., distance travelled. All of this process will be carried
out at the later phase of this project.
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