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ABSTRACT

In a bidirectional automated guided vehicle (AGV) system, it is essential to allocate routes to AGVs to avoid
deadlocks. However, avoiding deadlocks is more challenging in dynamic environments where AGVs are
continuously assigned tasks and thus operate simultaneously. This paper proposes a deadlock prevention
method for dynamic environments. The proposed method combines the active path reservation method,
which restricts the directions of the paths of some moving AGVs, and the dynamic Dijkstra algorithm,
which finds the shortest route according to the path reservation status. Apart from the Dijkstra algorithm,
the proposed method is compatible with other routing algorithms, such as the Q-learning-based route
algorithm; therefore, the proposed method enables the development of more efficient transport systems that
account for AGV congestion. The efficiency and scalability of the proposed method were verified using
Applied Materials AutoMod (version 14.0) simulation software.

1 INTRODUCTION

Automated guided vehicles (AGVs) have been widely used in plants and warehouses to increase throughput
and reduce operating costs (Zhao et al. 2020). In addition, warehouses have changed their modes of
fulfillment to meet the increased demand arising from E-commerce. A large number of products are stored
in limited warehouse spaces; therefore, the spaces available for AGV transport have become smaller and
narrower. In warehouses, the bidirectional AGV system, in which the path used by the AGV is not fixed,
can be more efficient than the unidirectional AGV system; however, preventing deadlock in the bidirectional
system is more complicated.

As shown in Figurel, two types of deadlocks may occur in the bidirectional AGV system: head-on
deadlock and loop cycle. A head-on deadlock occurs when two AGVs facing each other wait for each
other because their paths are interlocked. A loop cycle occurs when the routes of four or more AGVs form
a cyclical loop.

AGYV routing methods for preventing deadlock and conflict in the bidirectional AGV system have
been studied for decades. The prevention methods can be classified as static routing and dynamic routing,
depending on whether the AGV can change its route while moving. The static routing method, in which
the route determined at the departure time does not change until the vehicle reaches its destination, involves
either of the following processes: (1) Before the AGV departs, a deadlock-free route is determined using
time-window based methods (Kim and Tanchoco 1991; Jia et al. 2017; Zhang et al. 2018; Triwiyatno
and Riyadi 2020; Maza and Castagna 2001) or Petri net (Wu and Zhou 2001; Wu and Zhou 2004; Wu
and Zhou 2007; Fanti 2002); (2) the shortest path from source to destination is first determined, and then
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Figure 1: Two types of deadlock.

deadlock is prevented using another algorithm such as the dynamic resource reservation (DRR) method,
established by Zhao et al. (2020), or the chain of reservation (COR) method, established by Matopolski
(2018).

Time-window-based methods calculate and adjust the time for AGVs to reach their destination following
a deadlock-free route, while Petri net models check whether the transition on the Petri net will cause a
deadlock. However, these methods are not adequate for extensive systems with many AGVs because as
the number of moving AGVs increases, the computational cost to find a deadlock-free route exponentially
increases.

The DRR and COR methods are applicable to large systems because the number of vehicles and the
computational cost of the algorithm is not strongly related. In the DRR method, if the routes of two vehicles
considerably overlap, the AGV with a later start time waits until the other AGV leaves the overlapping
route. In the COR method, once the order of AGVs passing through a node is set, it cannot be changed.
Therefore, lower-priority vehicles must wait even if they can pass first. While the work in (Sharon et al.
2015) deals with multi-agent path finding (MAPF). It presents a conflict-based formalization for MAPF
and a corresponding an algorithm called Conflict Based Search (CBS).

In contrast to static methods, dynamic routing methods (Sun et al. 2018; Yan et al. 2017; Breton et al.
2006; Zhao et al. 2021; Jager and Nebel 2001; Fransen et al. 2020) follow the procedure of deadlock
resolution after deadlock detection, without finding a deadlock-free route in advance. They consider the
possibility of a new deadlock occurrence when a moving AGV deviates from its predetermined route. These
methods are difficult to apply in large fulfillment centers because deadlock resolution must be performed
after deadlock detection, which can result in inefficient AGV transport in narrow spaces.

Research in Fragapane et al. (2021) describes the material handling with autonomous mobile robots
(AMR). However, the work describes in this paper deals with AGV moving on a grid network and therefore,
the autonomous path guidance used in AMR is not applicable.

In this paper, we focus on the routing problem for a multi-AGV bidirectional environment. We propose
a high-performance dynamic routing algorithm that efficiently avoids the deadlock of dozens to hundreds
of continuously working AGVs in a bidirectional environment, making it suitable for real-world fulfillment
centers. The proposed algorithm limits the directions of some paths using the active path reservation
method, and seeks the shortest route using the dynamic Dijkstra algorithm, in which the path weight
is changed in real-time to avoid deadlock. The proposed algorithm can accommodate various types of
routing algorithms and the Dijkstra algorithm. Finally, we discuss the verification of the algorithm using
the simulation software program Applied Materials AutoMod™ (version 14.0).

The contributions of this paper are as follows: First, we propose an algorithm to avoid deadlocks and
loop cycles among moving AGVs. Specifically, the deadlocks and loop cycles avoidance approach proposed
in this paper is decoupled from the path routing algorithm. As a result, any type of path routing algorithm
can be applied on top of the proposed deadlocks and loop cycles avoidance method. This decoupling
provides considerable efficiency in designing AGV based material handling system. Second, we propose
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an algorithm for operating large-scale AGVs in a bidirectional AGV environment in which AGVs are
continuously assigned tasks.

2 DEADLOCK AVOIDANCE ROUTING ALGORITHM
2.1 Working Environment Description

Figure 2 shows the layout of the fulfillment warehouse targeted in this study. The mobile storage unit
(MSU) is a shelf on which various items are stored. According to their roles, the warehouse environment
can be divided into a storage area, aisle area, and station. The MSU is in the storage area. The AGV
transports the MSU from the storage area to the station and back to its original location. After unloading
the MSU, the AGV waits in the storage area for the next task. The aisle area is the path through which the
AGYV transports the MSU to the station. In the aisle areas, AGVs can move in both directions. The aisle
area near the storage area forms a single bidirectional lane path within the limited warehouse space. At
the station, the operator takes the goods from the MSU delivered by the AGV and performs the necessary
tasks, such as packaging.

Moreover, according to the shape, the warehouse environment can be divided into the grid section and
the module section. The grid section is the area between the station and the module section. The module
section comprises several uniformly connected unit modules. In the module section, congestion may occur
among AGVs entering a unit module to retrieve the MSU and those exiting a unit module to deliver the
MSU to the station.
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Figure 2: Components of a fulfillment warehouse environment.

The unit module includes two intersections and two types of camp points: outside intersection (OI),
inside intersection (II), inside camp point (ICP), and outside camp point (OCP). The OI is a point where
two unit modules meet. The II is the area in the unit module through which the AGV must pass when
entering or exiting the storage area. The OCP is the point where the grid section and the module section
come in contact, while the other points in the module section are the ICPs. The number of MSUs in the
unit module does not always have to be six (Figure 2).

2.2 Definitions

Definition 1 A control point (CP) refers to a node responding to the intersection of all unit paths, including
paths in the grid and module sections.
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While on a CP, AGVs make decisions to find their next CP. There are 189 CPs in the environment of
Figure 2.

Definition 2 A Path information (7,;) indicates the direction in which an AGV can move from a CP.

All AGVs share the same path information (PI) value, which is expressed as

)

p.— 1, if AGV can move i direction from CP a
@ 0, otherwise

where a € {CPs}, i € {right, left, up, down}.

As shown in Figure 3, Py rion; and Py . are equal to 1, because the AGV can move leftward and
rightward from the CP A. The PI values, used in the dynamic Dijkstra algorithm to limit path direction,
for the other directions are 0.

C A B

PA, right= 1 :PA, left=1 vPA. upzo:PA. down=0

Figure 3: Path information example for CP A.

2.3 Assumptions

The proposed algorithms are based on nine assumptions.

* An AGYV can only transport one MSU at a time.

* An AGYV receives only one task at a time.

* An AGYV does not exchange an MSU with other AGVs.

* An AGV waiting for the next task in the storage area does not block the paths of other AGVs.
* An AGV in the storage area does not block the paths of other AGVs.

* An AGV can move upward, downward, leftward, and rightward if there is a unit path.

* AGVs can only move along the unit path, with or without an MSU

e The unit module is uniformly repeated in the environment.

e The number of AGVs is smaller than the number of MSUs in the layout.

2.4 AGV Movement Procedure

Figure 4 shows a basic example of the AGV movement procedure. The “claim” procedure involves an
AGYV securing ownership of a CP. Before an AGV reaches a CP, the claim procedure for the next CP starts.
If multiple AGVs have been waiting for a claim against a CP, the AGV that has waited the longest will
proceed first with the claim process. An AGV that has ownership of a CP returns the ownership when
it passes the CP. All AGVs repeat this movement process until they reach their destinations. Two AGVs
cannot simultaneously claim one CP, which helps to prevent conflict.

2.5 Head-on Deadlock Avoidance

The proposed algorithm simultaneously uses the dynamic Dijkstra algorithm and the active path reservation
method to avoid a head-on deadlock. This section introduces the head-on deadlock prevention process
and details the application of active path reservation for limiting path direction and preventing deadlock.
Finally, the application of the dynamic Dijkstra algorithm for finding the next CP is described.

To prevent a head-on deadlock, a specific direction in a path is reserved for a short period so that the
other AGVs cannot use the path in the opposite direction. For instance, as shown in Figure 5, when AGV
K moves rightward from CP G1, and another AGV enters from the opposite direction through CP G2, a
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Figure 4: Movement procedure of an AGV.

head-on deadlock will occur. Therefore, all paths from CP G1 to CP G2 is reserved for AGV K; here,
the next CP of AGV K is determined as CP A. Reserving the corresponding path implies changing Py /.1,
Py jeft» Fejefr and Pga jef: t0 0. The PI value of the reserved path is one so that the other AGVs can avoid
a head-on deadlock on that route, as guided by the dynamic Dijkstra algorithm. The paths reserved by
AGYV K are initialized; the PI value is changed to 1 when AGV K passes CP G2. The reserved path is
not initialized when AGV K arrives at CP G2, but at the moment, it passes CP G2. Moreover, if AGV
L follows AGV K along the same direction, the time the reserved path is initialized is not when AGV
K passes CP G2 but when AGV L passes CP G2. All AGVs continuously reserve and initialize the path
while moving to prevent a head-on deadlock. This method is called active path reservation.

AGV K |j
i -:;

cfe1 cPA  cPB CPC  CP[G2

Figure 5: Main principle in head-on deadlock prevention.

The principle in the active path reservation method slightly varies with the location and situation of
the AGV in the actual environment layout. AGVs have numerous direction choices within the grid section;
thus, in this section, path reservation and initialization occur on a unit path by unit path basis. For example,
as shown in Figure 6, the moment AGV K claims CP B, it reserves the path from CP A to CP B, and
Pg .: changes to 0, and when the AGV passes CP B, Pp.f; changes to 1.

AGV K
—_—

—

L

CPA CPB

Figure 6: Path reservation on grid section.

In contrast, two or more unit paths are simultaneously reserved or reset to the initial value in the module
section. Figure 7 shows the path reservation process for the four AGV scenarios in the module section.
For all cases, when the AGV claims the blue CP, all unit paths from the current AGV location to the black
CP are simultaneously reserved. Moreover, once the AGV passes the yellow CP, the PI value of the path
previously passed by the AGV is reset to the initial value so that other AGVs can rapidly use the path.
After the AGV arrives at the black CP, the PI value for the remaining paths is simultaneously reset to the
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initial value. For Case 1, to reduce AGV congestion in II, the path to the black CP is reserved. In Case
2, the path the AGV does not pass is reserved to prevent two AGVs from simultaneously leaving the unit
module through two IIs.

o

O/
Case 1 Case 2 Case 3 Case 4

Figure 7: Path reservation on module section.

The dynamic Dijkstra algorithm finds and updates the new route from the current location to the
destination, considering the PI values updated according to the active path reservation method. The
dynamic Dijkstra algorithm may find a route to the destination but often fails. If the algorithm cannot find
a route (a state referred to as “Dijkstra fail”), the next CP is found according to the AGV location and the
situation in the surroundings. The algorithm’s process for finding the next CP is detailed in Appendix 1.

3 LOOP CYCLE AVOIDANCE

Even if the PI value is dynamically modified through active path reservation, the loop cycle problem can still
occur. Because the loop cycle is a situation where the routes of four or more AGVs are rotationally oriented
instead of approaching face to face, it cannot be prevented through PI value adjustment. Consequently,
loop cycles often occur in grid sections. The proposed algorithm simultaneously applies the loop cycle
direction avoidance and stopped vehicle avoidance methods to prevent the loop cycle problem.

3.1 Loop Cycle Direction Avoidance

The loop cycle direction avoidance method ensures that the last AGV that can form a loop cycle avoids
the direction that would result in a loop cycle. For instance, in the left panel of Figure 8, if the yellow
AGYV moves upward, a loop cycle would occur. The algorithm detects and limits the loop cycle direction
and directs the AGV to move rightward instead, where a loop cycle cannot form.

—> : Direction of approaching AGV
==) : Direction to avoid loop cycle formation

: Direction in which the loop cycle is
formed

000 [ oo

Figure 8: Examples of Loop cycle direction avoidance in grid section and module section.

3.2 Stopped Vehicle Avoidance Method

However, in an environment where a dozen or more AGVs are moving in real-time, an AGV may be
unable to deviate to avoid a loop cycle, as the loop-free route may be occupied by another approaching
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AGYV (Figure 9). As shown in the grid section in Figure 9, the yellow AGV can only return to its origin.
Moreover, in the module section, there are situations in which a deadlock cannot be avoided only by loop
cycle direction avoidance. If multiple AGVs stop simultaneously, the probability of a loop cycle occurrence
increases (Figure 9). Therefore, the AGV needs to avoid the other stopped AGVs. The stopped vehicle
avoidance method works differently in the grid and module sections. First, in the grid section, the strong
path information reservation method directs AGVs to avoid a CP that another AGV is currently waiting to
claim. The method is as follows:

Define the Strong Path Information value (SPI) to be same as the PI value.

. Change the SPI value according to the modification of the PI value.

3. If an AGV is waiting to claim the next CP (CP N), change the SPI values in all directions from
the adjacent CP of the current AGV location (CP C) to 0.

4. Reset the SPI value to 1 when an AGV starts moving after the claim process.

First find the routes of all AGVs using the dynamic Dijkstra algorithm and only the direction of

the path with an SPI value of 1.

6. If the dynamic Dijkstra algorithm fails to find a route using the SPI value, then repeat the process

using the PI value instead.

N —

b

—> : Direction of approaching AGV
—p

: Inefficient situation in which an AGV
has to return to its origin

: Direction in which the loop cycle is
formed

Deadlock situation in which AGVs
cannot move in any direction

Figure 9: Examples of inefficient and inevitable scenarios in loop cycle formation.

However, because the strong path information reservation method is naive and does not consider
securing the routes of other AGVs, the dynamic Dijkstra algorithm often cannot find the route of the AGV
of interest. Given that the dynamic Dijkstra algorithm using the SPI value can avoid the CP in which the
AGYV stops only by finding a route, layout tuning is required to minimize route determination failure.

The strong path information value is not modified in the module section even if an AGV stops and waits.
Because the unit module section is in the form of a single road, when the strong path information value is
changed to 0, Dijkstra fail always occurs. In the CP within the black circle in Figure 10, the strong path
information value is not modified to avoid Dijkstra fail. To prevent congestion between the station entrance
and the exits of other stations, some paths near the station are made unidirectional. Unidirectionalization
means that although AGVs can move in both directions, modification of the dynamic Dijkstra algorithm
cost causes the AGVs to move in the desired direction in as many instances as possible.

T@.— 0o@-—0 (}m.—{

Figure 10: Layout tuning in the strong path information reservation method.
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Furthermore, to direct the AGV to move outside a highly congested path when multiple consecutive
AGVs are waiting for more than a certain number of AGVs in the module section, increase the dynamic
Dijkstra algorithm cost of the congested path. After the AGV departs, the dynamic Dijkstra algorithm
cost of the corresponding path should be reset to the initial value. The stopped vehicle avoidance method
can solve the AGV congestion problem, thereby preventing a loop cycle and minimizing the number of
instances in which the AGV has to return to its origin.

4 RESULTS AND DISCUSSION
4.1 Simulation Assumptions

The assumptions used in the simulation of the proposed algorithm are as follows: First, an AGV can
immediately start and stop. Second, the processing time of the workers at the station is 8 seconds. Third,
the time it takes for the AGV to pass through one unit path is 2.5 seconds. Forth, the MSU loading time
is 2 seconds. Fifth, an AGV’s speed is constant regardless of the presence or absence of an MSU. The
dynamic Dijkstra algorithm finds a route that maximally reduces direction deviation by modifying the path
cost.

4.2 Performance Test

The DRR method (Zhao et al. 2020) has the main disadvantage: the AGV has to wait until no AGV remains
on an overlapping node set between each shortest route. Therefore, we compared the performance of the
proposed algorithm with those of three methods: the modified DRR method, the bidirectional infeasible
lower-bound (ghost mode) method, and the unidirectional infeasible lower-bound (ghost mode) method.

The modified DRR method is based on the Dijkstra algorithm, which considers the waiting time in the
cost, making it possible to choose between waiting until another AGV passes and detouring. Moreover, the
modified DRR method is a static routing algorithm that directs the AGV to move from origin to destination
through a route determined at the origin.

In the infeasible lower-bound method, AGVs can pass each other without physical collision, and only
the station and MSU capacity constraints exist. Therefore, an AGV only moves along the shortest route.
The infeasible lower-bound method is implemented in the bidirectional and unidirectional layouts.

The modified DRR method is an ineffective benchmark for the proposed algorithm because a node
on the intended route of an AGV cannot be early passed by another AGV that chooses the route later.
Therefore, we experimentally compared the proposed algorithm with the infeasible lower-bound (ghost
mode) method.

Figure 11 shows the layouts for the performance test. 20 AGVs were used, corresponding to a 5%
density level with respect to the total number of CPs. The density is calculated as follows:

T he number of AGV's
The number of CPs inthe layout”

Density =

In the modified DRR method experiment, ten sets were used, in which 20000 tasks were randomly
stored. The experiment was conducted over a simulation time of 2 days. Moreover, we conducted ten
experiments with infeasible lower bounds over a simulation time of 25 hours by increasing the load factor.

Figure 12 compares the performance of the proposed algorithm and the modified DRR algorithm. In
all ten runs of the experiment, the AGV system based on the proposed algorithm completes all 20,000
tasks within two days, without deadlock, and processes 46% more tasks than the system based on the
modified DRR method. In contrast, the system based on the modified DRR method enters deadlock five
times, even under the 5% density level. Figure 13 compares the proposed algorithm and the infeasible
lower-bound (ghost mode). The AGV system based on the proposed algorithm completes 9.7% fewer
tasks than the system based on the bidirectional infeasible lower-bound method. Moreover, the proposed
algorithm completes 10% more tasks than the unidirectional infeasible lower-bound method.
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Figure 11: Layout for performance test.

Comparison with modified DRR test
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Figure 12: Performance of the proposed algorithm and the modified DRR method.

4.3 Computational Complexity of the Proposed Algorithm

Let N be the total number of CPs in the layout, n the number of CPs in a route from origin to destination,
E the total number of unit path in the layout, and v the total number of AGVs; then the computational
complexity required for an AGV to process one task according to the proposed algorithm is as follows:

*  Path reservation for 1 AGV
= O(n))
e Dynamic Dijkstra algorithm for 1 AGV
= O(|nl|E| +[n||E|log|E|)
e Loop cycle avoidance for 1 AGV
= O(|n[|E| + |n||E|log|E])
* Total
= O(|v[[n|[D])
where O(D) = O(|E| + |E|log|E|), O(D) : Computational complexity of Dijkstra algorithm

The computational complexity of the proposed algorithm is highly dependent on that of the Dijkstra
algorithm. The proposed algorithm is not significantly affected by the increase in the number of AGVs.

4.4 Performance Analysis

The reasons for the excellent performance of the algorithm are as follows: First, the algorithm minimizes
the traffic congestion caused by the prolonged stop of an AGV on a narrow path. Second, the algorithm
effectively avoids deadlock by reserving the minimum path length. Third, the dynamic Dijkstra algorithm
continuously updates the efficient routes.
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Comparison with infeasible lower bound (Ghost mode)
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B Uni-directional Infeasible lower bound Proposed algorithm Bi-directional Infeasible lower bound

Figure 13: Performance of the proposed algorithm and the infeasible lower-bound (ghost mode) method.

S CONCLUSION

This paper proposes an algorithm to avoid deadlock in a fulfillment warehouse environment in which dozens
to hundreds of AGVs are continuously assigned tasks. The system based on the proposed algorithm completes
approximately 9.7% fewer tasks per unit time than the system based on the bidirectional infeasible lower-
bound (ghost mode) method. Furthermore, the proposed algorithm can be applied to routing algorithms
other than the Dijkstra algorithm. The computational cost can be considerably reduced depending on
the applied routing algorithm. Also, a better bidirectional AGV system can be achieved using a routing
algorithm that more efficiently considers AGV congestion.

However, the proposed algorithm is not extensible to layouts other than those examined in this study.
The study’s layout is characterized by a highway that can reduce AGV congestion among the unit modules.
An additional consideration is required in situations lacking such a highway. In the future, we will modify
the algorithm so that it can be applied to a Kiva robot. A Kiva robot can also use the storage area as a path
when an MSU is not being transported. Finally, although the proposed algorithm avoids deadlock as much
as possible, deadlocks may nevertheless occur if the number of AGVs is large. The proposed algorithm
performs optimally under appropriate numbers of AGVs and density levels in a vast fulfillment center.
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A Method to find next CP

Algorithm 1 Method to find next CP.
Require: Set H to heading location (moving) or current location (stopped), Set B to previous location, Set
D to destination
1: if H is ICP then

do dynamic Dijkstra algorithm from H to D
if dynamic Dijkstra algorithm return route then
set N to first element of route

2:  if AGV has saved route then

3: finalize next CP to first element of saved route
4:  else

5: go to line 7

6: else

7

8:

9:
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10 if loop cycle occur if AGV goes to N then

11: change Py niondirection to O temporary and go to line 7

12: else

13: finalize next CP to N and initialize any temporary modified P/ value
14:  else

15: if H is one of storage area then

16: wait until dynamic Dijkstra algorithm find the route

17: else if H is OI then

18: if AGV has saved route then

19: set next CP N to first element of saved route

20: if PH,HtoNdirection =1 then

21: while N is not Intersection do

22: if PH,HtoNdirection =1 then

23: set H to N, set N to next CP of N on the same direction
24: go to line 21

25: else

26: remove the saved route, change Py xiondirection 10 0 temporary
27: go to line 33

28: if B is ICP connected to the storage area then

29: go to line 13

30: else

31: go to line 33

32: else

33: Set N be a closest CP to the destination among the CPs attached to H.
34: go to line 21

35: else if H is II then

36: wait until Dijkstra algorithm find the route

37: else if B is ICP connected to the OI then

38: go to line 21

39: else

40: go to line 33

41: else

42: go to line 18
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