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ABSTRACT

A key factor in maintaining a logistics network in a competitive state is gaining and visualizing knowledge.
The process of gaining knowledge from a given data basis is called knowledge discovery in databases.
Besides gathering observational data, simulation can be used to generate a suitable data basis for the
knowledge discovery known as data farming, which is typically implemented as a study. Conducting
such a study requires a suitable procedure model, describing and structuring the tasks of the process.
However, existing procedure models focus on defense applications, while considerably less work was put
into transferring the approaches to logistics networks. Therefore, the authors developed a procedure model
for conducting a data farming study in logistics networks. In this work, we systematically introduce the
necessary background and discuss existing approaches in the literature. Furthermore, we present a software
framework that is used to support the process in a practical application context.

1 INTRODUCTION

A logistics network (LN) is a complex network containing a multitude of different processes and dependencies.
To maintain such a LN in a good and competitive state, decision makers in supply chain management (SCM)
are confronted with a high number of different logistics tasks. This results in multiple decision-making
situations, which leads to the fact that an SCM must be supported accordingly (Teniwut and Hasyim
2020). One of the key factors to aid decision makers in finding answers to these tasks is gaining and
visualizing knowledge. However, this can no longer be realized manually because of the complexity of
the LN. The process of gaining and visualizing knowledge is known under the term knowledge discovery
in databases (KDD), which is viewed as a procedure model ranging from the phase of collecting data to
the phase of visualization of the results (Fayyad et al. 1996). A procedure model can be described as a
standardized, organizational, and formal way to describe an ideal-typical flow of a process. In short, a
common understanding is to divide the process into a sequential progression of phases. The phases contain
steps, tools and personnel required to produce a result. To perform value-adding KDD requires a given data
basis, which typically consists of observational data. However, observational data often lack data quality
because of missing or out-of-range values (Garcı́a et al. 2015). An alternative to the time-consuming
and costly collecting and preprocessing of observational data is using simulation to generate synthetical
data for the KDD-process, which is known by the term data farming (DF). DF is the process of using a
simulation model combined with targeted experiment planning for the generation of large-scale synthetical
data (Horne and Meyer 2005). In this context, the authors developed a farming for mining approach where
we combine both DF and KDD in one method (Hunker et al. 2021). DF is typically understood as a
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procedure model, structuring the different phases ranging from model development to the analysis of the
results. The field of application of these models is typically in a military context (Horne and Meyer 2016),
although first approaches of a transfer to other domains such as production are presented (Feldkamp et al.
2015). Suitable procedure models are a necessary component to ensure the successful implementation of
a DF study within the context of a decision situation.

Due to the focus on research and application in a military context, most of the existing procedure
models lack relevance in the context of LNs. Specific knowledge is required for decision support in
logistics networks. In order to discover knowledge in a targeted and value-adding manner, input data is
required, which in our case is provided by means of data farming. Existing procedural models of data
farming have essentially been developed in a military application context. However, these models cannot
simply be transferred one-to-one to another application domain. For example, both the tasks and the data
required differ greatly between the different domains. Therefore, this paper deals with the adaptation of
existing models and presents an adapted process model in the context of logistics networks. In particular,
the procedure model takes into account that DF is used in the mentioned context to generate a data basis
that is suitable for the application of KDD.

The paper is structured as follows: Section 2 introduces the relevant background on KDD and DF as
well as a structured literature review on related work regarding DF procedure models. On this basis, Section
3 presents our procedure model for the described context. Section 4 uses the developed procedure model
to support a software implementation. The paper closes in Section 5 with a conclusion and an outlook on
further research.

2 THEORETICAL BACKGROUND

The following sections will introduce the background of this paper. First, we introduce KDD in the context
of our problem domain, LNs. Second, we discuss simulation and DF to generate a suitable synthecial
data basis for the KDD process. The chapter closes with a structured literature review regarding procedure
models for DF.

2.1 Knowledge Discovery in Logistics Networks

A large amount of data accumulates in large LNs. However, the potential knowledge hidden in the data
must first be made accessible through suitable data analysis procedures, in order to contribute to the value
creation of the companies (Freitag et al. 2015). Many of the procedures are listed in the literature under
the structured procedure models of KDD. Among the best-known models are the Knowledge Discovery in
Databases by Fayyad et al. (1996) and the CRISP data mining model (Cleve and Lämmel 2014). The models
have in common that extensive data preprocessing is usually necessary to successfully apply the essential
step, data mining. Unprocessed data are often unordered, erroneous, incomplete, partially redundant, or
negligible in the context of the knowledge task (Runkler 2010). In addition, most data mining techniques
have specific requirements for the data to be processed, which makes data processing method-dependent.
Many data mining methods require a specific data type, which results in a large number of transformation
options due to the large number of different data types (Aggarwal 2015). In an LN, different data types
can be found, which can generally be assigned to three main categories (Cleve and Lämmel 2014). The
categories include the nominal data type, with which the data can be classified into categories by means
of designation (e.g., warehouse type, transhipment point location). This designation has no mathematical
meaning and does not allow complex arithmetic operations within or between individual categories (Bramer
2016). Ordinal data can be sorted, i.e., they can be arranged in-order. An example from the LN is a sorting
according to warehouse type. A major professional challenge is that there are often several sorting options
for the elements of the LN. ten Hompel and Schmidt (2008), for example, distinguish between more than
20 so-called storage parameters, several of which allow for sorting (e.g., number of storage locations,
number of levels and aisles, optimal height ratios). The third main category comprises metric data. These
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are numerical, discrete, or continuous data to which arithmetic operators can be applied. Data from these
main categories can and often must be transformed during the application of the KDD procedure models.

The individualisation of data processing also becomes clear at the professional level, so that the relevance
of the selected data depends on the application. Therefore, the choice of data must be adapted to the
respective selected analysis method (Aggarwal 2015). Especially in the case of complex logistical issues
such as the detection of bottlenecks in supply chains or the clarification of delays within transport routes,
the selection of relevant data is not possible in advance. In addition, the risk of neglecting interesting data
is disproportionately greater with very small samples.

From these preliminary considerations it becomes clear that pre-processed, relevant data are of great
advantage for the KDD models. Since in practice such conditions cannot be generally assumed, the
consideration turns to synthetical data. These can be generated by means of DF, a simulation-based
technique.

2.2 Simulation and Data Farming

Simulation is a well established process for analyzing complex systems such as LNs and is defined as
the “representation of a system with its dynamic processes in an experimentable model to reach findings,
which are transferable to reality; in particular, the processes are developed over time” (Verein Deutscher
Ingenieure 2014, p. 3). Simulation is an integral part of logistics assistance systems that are used to support
decisions in SCM (Dross and Rabe 2014). Typically, simulation is applied as part of a project in the form
of a simulation study. To conduct such a study in purposeful and targeted manner, procedure models are
used. To address the mentioned flaws of observational data in the KDD process, simulation can be used to
generate a suitable data basis. The process of generating synthetical data by means of simulation is called
DF.

The term DF was coined by Brandstein and Horne (1998) and is used as a metaphor for the targeted
cultivation of synthetical data by using a simulation model (Sanchez 2018). One of the key aspects to
maximize data output based on the used model is design of experiments (DOE). Since simulation models of
LNs are rather complex and contain a vast amount of factors, an appropriate design to systematically vary
factors of interest is necessary. The commonly used ”trial-and-error” or ”one-factor-at-a-time” approaches
are not suitable for designing experiments in an effective and farmable way. Due the curse of dimensionality,
designs such as 2k or mk factorial are only suitable for a small number of factors. Space-filling-designs, for
example, latin hypercubes, have proven to be a suitable design to use in a DOE (Sanchez 2006). With the
use of a high performance computational environment, the experiments are run to generate synthetical data
which can be analyzed, for example, by means of knowledge discovery. Approaches to analyze the data
basis in combination with KDD are presented, for example, by Feldkamp et al. (2015) for manufacturing
simulation and Hunker et al. (2021) in the context of supply chains. Similar to simulation, DF is applied
in form of a study and for a structured, purposeful execution of such a study, procedure models are used.

2.3 Procedure Models for Simulation and Data Farming

Following Brinkkemper (1996), a method is a set of directions and rules to perform a project in a systematic
way, containing activities that produce products. Activities in turn can be assigned to individual elements.
Typically, procedure models are an element of methods or frameworks. They are used to structure and
guide the process, e.g., of a simulation study. When analyzing procedure models for the research domain
of simulation and related areas, one can identify different classes of procedure models. These can be
distinguished on the basis of classifiers. For example, the purpose of use and the descriptive means are
typical classifiers with regard to procedure models. A common class of such models are procedure models
for conducting a simulation study. A wide spectrum of this class of procedure models can be identified in
the established literature. The differences concern, for example, the complexity and the application domain
of the models. Table 1 shows an overview of widely used, well established simulation procedure models.
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It should be noted that some procedure models are established for a much longer time than the date of the
exemplary source given.

Table 1: Overview of simulation procedure models.

Source # Phases Relevant phases
Balci (1998) 10 Problem formulation, model formulation and programming, ex-

perimentation, verification and validation (V&V).
Shannon (1998) 12 Problem definition, input data preparation, model formulation

and translation, experimental design, V&V, documentation.
Chew and Sullivan (2000) 6 Requirements, conceptual mode, design, implementation, inte-

gration and test, use.
Rabe et al. (2008) 7 Task definition, model formalization and implementation, exper-

iments and analysis, data collection and preparation.
Banks (2010) 12 Problem formulation, model conceptualization and translation,

experimental design, runs and analysis, documentation and re-
porting.

Law (2015) 10 Problem formulation, study planning, data collection, model
definition and programming, experiment design, production runs
and output analysis.

Stoldt and Putz (2017) 12 Task definition, system analysis, model formalization and im-
plementation, data collection and preparation, experiments and
analysis.

Although different, many identified simulation procedure models contain relevant phases for conducting
a simulation study, for example, initialization, modeling, and V&V (Barton 2020). With regards to V&V,
it can be stated that there are other, specific procedure models for V&V that describe another class of
procedure models. For example, the simulation procedure model by Rabe et al. (2008) describes the
explicit integration of V&V across all phases in the procedure model and, furthermore, introduces a specific
triangle-shaped model to guide the process of V&V. Since the procedure model for simulation by Rabe
et al. (2008) is well established and part of a guideline (Verein Deutscher Ingenieure 2014), it is presented
in Figure 1.

Figure 1: Procedure Model for Simulation according to Rabe et al. (2008).

Furthermore, procedure models for DF are another class of procedure models identified in the literature.
Many of the models in the established literature are particularly characterized by the fact that they are
applied in a military context. In Table 2, an overview of different DF procedure models is presented.
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Table 2: Overview of DF procedure models.

Source # Phases Relevant phases
Lewis et al. (2001) 6 Edit scenario and DF parameters, execute DF space

and scenario, explore results.
Horne and Meyer (2005) 5 Create scenarios, define and prepare data space, sce-

nario execution, analysis and data mining, execute and
examine scenarios.

Choo et al. (2008) 6 Scenario specification, design of experiments, simu-
lation models, DF, regression and clustering.

Kallfass and Schlaak (2012) 5 Scenario definition, model and scenario, design of ex-
periments, high performance computing, data analysis
and visualization.

Horne and Seichter (2014) 5 Model development, rapid scenario prototyping, de-
sign of experiments, high performance computing,
analysis and visualization.

Krol and Kitowski (2014) 4 (+2 additional) Defining simulation, preparing input data, performing
simulation, output data analysis.

Bruvoll et al. (2015) 7 Define objectives, design and develop simulation en-
vironment, execute simulation, analyze data and eval-
uate results.

Feldkamp et al. (2015) 4 Smart experiment design, data mining, visual analytics
for input and output data.

Schubert et al. (2017) 5 Model development and rapid scenario prototyping,
design of experiments, high performance computing,
analysis and visualization with tool support.

Despite differences in structure, complexity, and granularity, overlaps can be found between the DF
procedure models with regard to their main phases. For example, many models include phases for model
development, DOE, experimentation, and analysis. As a reference and example, Figure 2 shows the
established procedure model by Feldkamp et al. (2015), that was developed for the use in a manufacturing
context.

As a first interim conclusion it can be stated that the literature overview in Table 1 and Table 2 as well
as the following short discussion show similarities among a class of procedure models, but also between
the classes of simulation and DF models. However, the simulation procedure models differ in important
aspects, which is especially considered with respect to V&V. Moreover, it shows that most of the models
are not specifically designed for the application in LN. Considering procedure models for DF, the literature
shows that most of the models are designed for the application in military studies. Although DF procedure
models have been introduced for DF in other domains, e.g., manufacturing, the authors of this paper are
convinced that the models must consider the whole process of a DF study in a project context in LNs.

3 A DATA FARMING PROCEDURE MODEL

In the context of a farming for mining study for LNs, procedure models are an essential element of a method
for a structured and targeted implementation. The related work presented and discussed in Section 2 shows
a discrepancy between DF procedure models and established simulation procedure models. The goal of the
new DF procedure model to be developed is to resolve the discrepancy between both classes of procedure
models and to integrate and expand the DF procedure models into the established simulation standard. In
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Figure 2: Process of knowledge discovery in simulation data according to Feldkamp et al. (2015).

order to determine the position of the procedure model within the farming for mining methodology, an
overview of the method is shown in Figure 3.

Figure 3: Overview of the Farming-for-Mining methodology.

The method consists of four main elements as shown in the figure. The first element is the initialization.
We kindly refer the reader to Hunker et al. (2021) for a more in-depth discussion about the initialization
and the connection between DF and KDD. DF is the second element of the method and describes the
process of generating synthetical data by means of simulation. The third element of the method is the
solution space, which includes a database system to manage the synthetical data that are generated by the
DF. This concerns, for example, means to describe the structure of the synthetical data and storing and
retrieving data in a purposeful way for the following KDD process. The process of knowledge discovery
describes the fourth element of the methodology, which is concerned with data mining and the presentation
and visualization of discovered correlations. The method provides the option of a cyclic approach to reuse
insights gained during execution. We refer to this in our framework as the global cycle, because it takes
place at the method level. As described above, procedure models are often part of a method. The new DF
procedure model details the DF element as shown in Figure 3. To develop a new DF procedure model,
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we selected one model from each class of procedure models, simulation and DF, as a reference. First, we
chose the simulation procedure model by Rabe et al. (2008) as reference model A (RMA), since it is well
established and part of a guideline. The model is shown in Figure 1. Second, we chose the DF procedure
model introduced by Feldkamp et al. (2015) as reference model B (RMB). The model is shown in Figure 2.
This procedure model has, compared to other procedure models discussed before, with its focus a different
application domain than military.

From both Section 2 and the introduction to Section 3, we can derive the following requirements and
constraints for which our research shows that these are viable to derive a new DF procedure model. This
concerns, for example, the following requirements:

• Project in LNs: DF is applied in form of a farming for mining project in LNs. A procedure model
needs to include typical phases in form of initialization and evaluation.

• Granularity: DF as a process needs to be divided into an adequate number of phases. This is in
particular relevant for the practical use of the model within LNs.

• System formalization: Integration of phases that have the goal of creating and deriving an
appropriately formalized, executable simulation model or adapt an existing model.

• DOE: The experiment design is one of the main components of DF. A procedure model for DF
must explicitly take this into account and integrate it accordingly as a phase, since a targeted DOE
is indispensable for large-scale simulation experiments.

• Data handling: Since the procedure model is used to generate vast amounts of data based on a
simulation model, relevant phases need to be included accordingly to manage the input and output
data.

• V&V: A thorough and systematic V&V across all phase results is indispensable in the context of
LNs.

• Practical relevance: This concerns, for example, the accompanying documentation of procedure
models and the clear labeling of phases in terms of task and objective.

A first analysis shows that neither RMA nor RMB satisfy all requirements. However, the established
procedure models provide an excellent basis for deriving synergies and we, therefore, combine and adapt
them in order to benefit from their respective strengths. At this point, it should be noted that the following
argumentation can be applied in wide parts to all of the above-mentioned procedure models. The requirements
of a project in LNs can be fulfilled in the procedure models, for example, via suitable phases of initialization
and evaluation. If both references are considered, this is partially fulfilled by RMA but not by RMB. RMA
shows a phase for task definition with the result of a task specification based on sponsor needs, but is
missing an evaluation phase in the later stages of the procedure model. RMB starts directly with the phase
of smart experiment design and, therefore, does not consider any phases for a project initialization and,
furthermore, no phase for an evaluation of results. Since DF requires an executable model, the procedure
model needs to include phases for the development or adaptation of a simulation model. RMA differentiates
three detailed phases from the conceptualization to the formalization to the implementation of a executable
model. RMB does not include phases for a model development, since it is assumed that a simulation
model is already available at the start of the procedure model. The requirement of including a DOE can be
included by phases considering factor analysis, appropriate choice of an experiment design and creating a
design matrix. This requirement is not met by RMA. In contrast, RMB includes specific phases for a DOE.
The purpose of DF is to generate a vast amount of synthetical data, which can be analyzed accordingly.
This has two implications. On the one hand, input data are necessary to create or adapt a simulation
model. For a targeted DOE, they have to be gathered from different data sources of an LN. On the other
hand, the structure and the amount of result data have to be stored appropriately in order to make them
available to an analysis process of knowledge discovery. This must be ensured via suitable phases of data
preprocessing and data postprocessing in the procedure models. This is partially the case in RMA, which
includes phases to manage input data, whereas RMB includes phases (and respective tools) concerning the
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storage of synthetical data. V&V is of utmost importance in the domain of LNs, since a decision can include
high risks that cannot be anticipated directly. It follows that wrong decisions based on wrong simulation
results can lead to incalculable costs that exceed the cost of adequate V&V in a DF study. Therefore, a
systematic approach is necessary, which is included across all phase results in RMA, whereas RMB does
not include specific phases for a structured V&V. The final requirement concerning practical relevance is
fulfilled by RMA and partially by RMB. Both procedure models are, although specific, well documented.
With regards to labeling phases, the clear designation of phases is sometimes too unspecific in RMB, for
example, concerning a phase called ”smart” experiment design. As a conclusion from the analysis of both
reference models, it can be stated that both procedure models offer an excellent basis for deriving a new
procedure model specifically geared to the DF in LNs and, thus, compensating for the weaknesses in the
aforementioned context.

In the following, we systematically present the structural expansion from RMA and RMB. Figure 4
shows our proposed new DF procedure model in the context of LNs.

Figure 4: New DF procedure model.

Starting from the initialization method element, the DF starts with a task definition phase. The procedure
model can be roughly divided into two parts, data management as well as modeling and experiments. These
parts are interrelated and in part also take place in parallel, for example, with regard to experiments and
output data management. In principle, the procedure model adopts the structural setup of RMA, i.e., phases
and associated phase results are defined. All phase results are subjected to systematic V&V, meeting the
requirement that comprehensive V&V should be carried out during all phases of the procedure model,
which refers to the results of the phases due to the implicit test requirement. In view of a project-based
implementation of a DF study, a task definition has to develop a common understanding of the DF task.
This phase takes the results from the initialization to detail and process them in view of further phases,
model development and input data management, resulting in a task specification that includes information
on required system properties and boundary conditions. The phase of input data management contains
activities to select and collect observational data from multiple sources of a LN and to process them for use
as valid input data for the model development and DOE. The prerequisite for this is an initial investigation
of the LN’s data landscape, in particular to uncover logical relationships. A further activity in this phase
is an initial concretization of possible result data, for example with regard to structure, granularity, and
storage. The model development summarizes the three phases of model development from RMA: system
analysis, model formalization, and implementation. Due to the close proximity of the three reference phases
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in terms of content and expertise, they are combined in the new procedure model as individual activities
in one phase. The result of the new phase is a farmable model implemented in a simulation software. The
following phase deals with the DOE. This includes activities for identifying relevant factors, choosing an
appropriate design, and necessary steps to generate a design matrix in a suitable format. This phase results
in a design matrix, which in the following phase is used to conduct the experiments using the simulation
model. Activities in this phase include planning the runs and replications, setting a seed, determination of
the number of replications, setting up the transient phase (in non-terminating systems), and exection of the
experiments. This results in a large amount of synthetical data as a phase result, which in turn have to be
stored adequately. To guide the activities for handling the results of the simulation experiments, a phase
for output data management has been integrated in the procedure model. Activities include plausibility
checks, structuring, and processing of result data. Ultimately, the generated synthetical data will be stored
persistently, e.g., in a database. This is the basis for a final phase of evaluation. The activities in this
phase include planning and execution of statistical tests, e.g., a chi-squared test or using metamodeling
to analyze input-output-behaviour. This provides a final assessment of the DF process and results before
the synthetical data are used as input for the following knowledge discovery process. The DF procedure
model does not provide a separate phase for further analysis. This is outsourced to a subsequent process
of knowledge discovery. The procedure model also provides a local cycle, which allows for a repetition
of the phase in case of a negative evaluation result.

4 SOFTWARE IMPLEMENTATION

Since the process of DF cannot be done manually and automation to run the experiments is a key element, we
have developed and implemented a software concept to control the process of DF for knowledge discovery.
The software helps decision makers in LNs by guiding the process of setting up a DF study with our
proposed procedure model as part of the farming for mining method. The respective architecture for the
software is shown in Figure 5.

Figure 5: Architecture for the farming for mining software.
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Different data sources of the data lake in the corresponding exemplary LN are shown on the left side.
Furthermore, various elements for the existing data analysis processes in the LN are shown, with a data
warehouse and specific data marts. The central part of the software architecture is the DF controller, which
is a software written in Java. It contains a cockpit, which provides a surface for the decision maker and is,
for example, responsible for the visualization of results. The core unit is positioned below the surface and
centrally manages all control activities. It handles the design of experiments, offering different designs and
a selection guide out of the box for the end user based on the different factors that are loaded from the
simulation model. The simulation environment is another software element in the architecture. It consists
of a database that is connected to a simulation model. The data stored in the database are observational
data from the LN and used via extract, tranform, and load to instantiate the simulation model. In our
case, the simulation tool we use for the experimentation with the software framework is Plant Simulation
(Bangsow 2020). Furthermore, the core of the farming controller manages the experiments, which are run
with the simulation model. Result data are stored in a central results database via a specific data handler.
This is located in a software that is called solution space. This is the basis for the final element of the
architecture, the knowledge discovery software. In our case, we use the established software RapidMiner
(Kotu 2015). The synthetical data are loaded via a database connector into the software. After running
data mining, the gained patterns are exported into files using the standard export features of RapidMiner.
Result patterns (e.g., rules, trees, graphs, functional relations) are in the following process visualized in
the cockpit, allowing for filtering of different patterns (e.g., based on their value of interestingness) and
supporting intepretation and evaluation by the decision makers.

5 CONCLUSION AND OUTLOOK

After discussing the basics of knowledge discovery and data generation, the current state of the literature
regarding procedure models from the areas of simulation and DF was examined. It has been found that
the processes of simulation and DF are represented by two different classes of procedure models, which
are, however, essentially based on congruent approaches. Thereupon, a well-structured procedure model
was derived specifically for the domain of DF in LNs. This was adapted on the basis of two established,
suitable procedure models from the respective classes. In this way, the separation of the two procedure
model classes, which in our view does not lead to the desired results, is eliminated in order to combine the
strengths of the respective procedure models as a synergy. This is, for example, shown in the emphasis
and integration of two core elements from each class of procedure models for

a) V&V, since it is important to detect possible invalid phase results in a DF study as soon as possible
to prohibit wrong inputs for the KDD process and subsequently invalid conclusions and decisions
for a LN, and

b) DOE, as the complexity for LNs is reflected in the factors and is, thus, indispensable for a targeted
DF study, especially with regard to the knowledge discovery process.

The integration and use of the procedure model in our framework proved to be very promising in
theoretical and practical application. Furthermore, the refinement and balancing of the phases based on
practical feedback from experts is an important part of further research, as especially the phases of data
management are characterized by a multitude of complex steps. The software will be further developed
to support decicison makers in LNs. This concerns for example the automation of V&V techniques, since
manual V&V is not purposeful due to the complexity. In order to demonstrate the practical application
possibilities, case studies using the developed procedure model as part of the overall methodology are a
further research step. These will be worked on for a straightforward and targeted practical applicability in
the context of a farming for mining approach in LNs.
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