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ABSTRACT 

Previous research has shown that Deep Reinforcement Learning (DRL) can be applied to the planning of 

Vendor-Managed Inventory (VMI) for semiconductors. This study extends the research in this direction by 
overcoming the limitations of existing work and evaluating the approach through a case study at a 
semiconductor supplier. The results strengthen the potential of DRL for VMI planning. Moreover, the 
developed framework can be deployed with other advanced DRL algorithms. 

1 INTRODUCTION 

Compared to other supply chains, the semiconductor industry suffers from more intense and longer-lasting 

disturbances in demand and supply due to its unique feature of long production lead times. This challenge 
has been laid bare by the global shortage of microchips in the wake of the Covid-19 outbreak. One strategy 
to mitigate these disturbances is Vendor-Managed Inventory (VMI), which works like a minibar in a hotel 
room: suppliers maintain a suitable level of inventory, and customers can pull from it as desired. In the 
semiconductor industry, suppliers rely on customer demand forecasts for VMI planning due to long lead 
times. Therefore, collaboration between the two sides is necessary for functioning of VMI. A step towards 

enhancing customers’ trust in VMI is optimizing VMI planning at the suppliers’ side, which is largely 
human-based. A potential method to improve VMI planning is reinforcement learning (RL), since RL can 
be applied on the VMI model and has seen tremendous development in recent years. Afridi et al. (2020) 
demonstrate this potential by using Deep Q-Network (DQN), a deep reinforcement learning (DRL) 
algorithm. Nonetheless, Afridi et al. (2020)’s work has limitations: Their approach requires long training 
times, generates an increased number of replenishments and lacks a framework for hyperparameter tuning. 

This work builds on Afridi et al. (2020) by developing a heuristic for consolidating the replenishments and 
an approach for tuning the hyperparameters. It also compares DRL with two myopic policies and presents 
an industrial case study. 

2 METHODOLOGY 

For the application of DRL, the definitions of state, action and reward of VMI from Afridi et al. (2020) are 
employed. Unlike Afridi et al. (2020), the DQN algorithm is programmed using PyTorch and trained using 

an NVIDIA Tesla P4 GPU to reduce the training duration. The trained algorithm is used in the testing phase 
to make the best possible replenishment decisions. A simple heuristic that assumes that some days in a 
week are restricted for replenishment is applied to control the increased number of replenishments. In the 
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first step, the replenishments are planned by DRL, ignoring the restricted days. Next, the replenishments 
are consolidated based on the heuristic that holds shipments on restricted days and dispatches them 
combined on the next available unrestricted day. 

 Following Gijsbrechts et al. (2022), an approach to tune the hyperparameters of DQN is designed. This 
approach involves selecting some hyperparameters to tune and defining a suitable domain for each of them. 
Then, these hyperparameters are tuned by running several training trials of DQN with the aim to optimize 
the action-values. For each trial, hyperparameter values are chosen by a Bayesian optimization algorithm 
called Tree-Structured Parzen Estimator by Bergstra et al. (2011). This algorithm selects the values using 
a simulated model of the action-values, which is sequentially improved during an experiment. Finally, the 

DRL approach is compared with two myopic policies for VMI planning. The first policy replenishes VMI 
to the mean level if the inventory level is forecasted to be equal to or below it. The second policy is a 
variation of the first one and has the VMI minimum limit as the reorder point. 

3 CASE STUDY AND RESULTS 

The methodology is applied to three products (A, B, and C) of a semiconductor supplier. Product A is also 
used by Afridi et al. (2020), and following them, a lead time of 4 weeks is assumed. A horizon of 847 and 

280 days is employed for training and testing, respectively. The performance is analyzed using percentage 
no-violation (PNV), which is the percentage of days when VMI is within the pre-defined limits. 
 This implementation reduces training duration to around 25 minutes per run, while Afridi et al. (2020) 
need almost 24 hours. In terms of performance, this study outperforms not only Afridi et al. (2020) but also 
the Existing Practices (EP) at the supplier for A. Using the heuristic for consolidating replenishments, this 
work achieves comparable PNV (59%) with less than half the shipments as Afridi et al. (2020). DRL also 

gives improved performance than EP with B and C. For C, DRL gives PNV of 60%, which is 25% better 
than EP. However, DRL needs more replenishments due to this product’s exceptionally high demand 
volumes. Hyperparameter tuning helps improve the performance of DRL, for example, it increases PNV 
from 55% to 59% for B. Regarding comparison with the myopic policies, DRL performs inferior for A but 
outperforms the policies for the other two products. With A, which has stable demand, myopic policies 
achieve PNV of above 70% with fewer replenishments than DRL, which gives PNV of 59%. However, for 

B and C with volatile demand, DRL surpasses the first policy in terms of both PNV (59% vs. 55% for B 
and 60% vs. 40% for C) and replenishments (84 vs. 133 for B and 120 vs. 195 for C). DRL also outperforms 
the second policy in terms of PNV (59% vs. 39% for B and 60% vs. 51% for C). 

4 CONCLUSION AND MANAGERIAL INSIGHTS 

The findings show that DRL surpasses human-based practices for VMI planning. Nonetheless, myopic 
policies might be more suitable for some products. Hence, a comparison should be performed for a product 

before implementation of DRL. The developed framework should work with other DRL algorithms and 
help exploit the ever-growing realm of RL methods. With a VMI measurement method, DRL can help 
enhance collaboration between suppliers and customers in the semiconductor industry. 
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