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ABSTRACT 

With the increasing demand for energy, wind power as a new energy source has been widely used and 
developed on a large scale. To extend the life of wind turbines, it is necessary but difficult to carry out 
regular inspections in wind farms located in remote areas. This paper studied the clustering and routing 
problem of truck-drone joint inspection of wind farms. An Adaptive Large Neighborhood Search (ALNS) 
algorithm is designed based on the characteristics of this problem. In addition, wind farm instances with 
different sizes and distributions are generated in this paper to simulate realistic scenes and evaluate ALNS. 

Finally, real wind farm instances are tested to demonstrate the inspection time in detail. Computational 
experiments show ALNS can improve significantly inspection time compared with another method. 

1 INTRODUCTION 

Wind power is one of the most popular forms of renewable energy and grows in popularity in recent years. 
It has a smaller impact on the environment than other traditional ways of generating electricity. A wind 
farm usually occupies hundreds of square kilometers and is distributed over remote areas. With damage to 

wind turbines being unavoidable, it is necessary to inspect them regularly. At present, the traditional 
inspecting method is non-destructive testing (NDT), which is usually done manually (Juengert 2008). The 
industrial climber needs to inspect the blades roping from the rotor of a wind turbine. This presents a safety 
concern and requires a long time for manual inspection. Therefore, a lot of costs are incurred. Traditional 
inspecting methods cannot adapt to the development of the times, and it is necessary to find more efficient 
and safe inspecting methods. 

With the development of drone technology, using drones to inspect wind turbines is considered an 
economic and efficient way. SkySpecs, a Michigan-based startup, can use a drone to inspect a wind turbine 
in 15 minutes, covering 17 wind turbines per day (Baik and Valenzuela 2020).  

However, a drone cannot inspect a whole wind farm due to its endurance limit. For this reason, a joint 
inspection system of wind farms using a truck and a drone is proposed. The truck carrying a drone can be 
parked at a certain location. When the truck stops, the drone flies to inspect several wind turbines and then 

returns to the truck. The operator drives the truck to the next parking location until all wind turbines are 
inspected. 

The technical challenges of using drones to inspect wind turbines have been addressed in several papers. 
To overcome the impact of high wind gusts on the drone, Domínguez et al. (2017) proposed an effective 
adaptive speed control method. Wang and Zhang (2017) proposed a data-driven framework to automatically 
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detect wind turbines blade surface cracks based on images taken by a drone. Cao et al. (2019) proposed a 
mobile edge computing (MEC) driven UAV routine inspection system to inspect wind turbines blades. 
However, these papers only consider that a single drone inspects a single wind turbine. 

The combination of a truck and a drone has been used in the logistics field. Murray and Chu (2015) 
were the first to introduce the flying sidekick traveling salesman problem (FSTSP) in which a truck carrying 
a drone delivers parcels to minimize the total operation time. They formulated a MILP model and proposed 
a heuristic that adopts the “truck first, drone second” idea. Many heuristic and meta-heuristic algorithms 
have been proposed for the FSTSP problem so far, there are simulated annealing algorithm (SA) (Ponza 
2016), greedy randomized adaptive search procedure (GRASP) (Ha et al. 2018), hybrid genetic algorithm 

(HGA) (Ha et al. 2019), etc. Traveling salesman problem with drone (TSP-D) is similar to FSTSP and was 
first introduced by Agatz et al. (2018). The difference is that the drone may be launched and returned to the 
same location. The two vehicles (truck and drone) also share the same road network. For the TSP-D and its 
variety, existing studies have focused on exact algorithms (Bouman et al. 2018; Poikonen et al. 2019; 
Roberti and Ruthmair 2021) and heuristic algorithms (Jeong et al. 2019; Marinelli et al. 2018). In most 
parcel delivery problems (e.g. FSTSP), the drone is allowed to visit only one node which is different from 

our research.  
In the field of surveillance, truck and drone jointly used for tasks have also been researched. Savuran 

and Karakaya (2015) considered that given a route of a carrier, a drone is launched from the carrier to visit 
the targets and received at the other point aimed at minimizing the total inspecting time. Luo et al. (2017) 
proposed the two-echelon vehicle cooperative problem in which the truck could not serve the customers 
and worked only as a mobile satellite for the drone. Baik and Valenzuela (2020) provided a routing 

optimization model to reduce the total operation time for inspecting a wind farm. They provided a method 
in which wind turbines were clustered in k-means clustering algorithm and the drone routing was optimized 
in each cluster by solving the TSP. Then they optimized the truck routing by solving the equality generalized 
traveling salesman problem (G-TSP) using an integer linear programming model. 

From the theoretical perspective, similar research has been conducted to solve the truck and trailer 
routing problem (TTRP). In TTRP, vehicle composed of a truck with a detachable trailer serves the demand 

of a set of customers reachable by truck and trailer or only by the truck. A “matheuristic” approach (Villegas 
et al. 2011) and a branch-and-cut algorithm (Drexl et al. 2014) have been proposed to solve the problem. 
The difference between TTRP and this study is that all points can be accessed by the truck or the drone, 
while the truck with a trailer cannot serve customers reachable only by the truck in TTRP. 

This study studies the optimization problem of the truck-drone joint inspection system and the 
simulation of wind farms. We design an adaptive large neighborhood search (ALNS) algorithm to solve the 

truck-drone joint inspection problem. Moreover, we test ALNS on the generated instance and compared it 
with the method proposed by Baik and Valenzuela (2020). The generated instances consider the distribution 
and size to simulate the realistic scene. Three real wind farms are also tested to show the detailed results of 
ALNS. 

2 PROBLEM DESCRIPTION 

The truck-drone joint inspection system includes a truck and a drone. The truck with a drone departs from 

a depot at a constant speed Vtruck and finally returns to the depot when all inspection tasks are over. When 
the truck arrives at a stop location, the operator remotely controls a drone to conduct an inspection task. 
The drone can fly at a constant speed Vdrone to inspect wind turbines around the stop location and finally 
return to where it is launched within the endurance Dmax. The inspection time for each wind turbine lasts I 
minutes. Here the stop location is where a wind turbine locates. The time for pre-and post-flight procedures 
is P minutes. The goal is to minimize the return time of the truck after the drone inspects all wind turbines. 

Figure 1 shows the joint inspection system. According to the problem description, the truck-drone joint 
inspection system has the following features: 

 
• If a drone is launched from point i, it must return to the same point i after its inspection. 
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• The drone cannot return to the truck multiple times when the truck stops. 
• The truck shares the same road network as the drone. 
• The drone can inspect only the wind turbine i and return to the truck without inspecting other wind 

turbines when the truck stops at i. 
 

 

Figure 1: The Truck-drone Joint Inspection System. 

Model notations are summarized in Table 1: 

Table 1: Model notations. 

Sets and Indices  

N  Set of wind turbines, {1,2,... }N n=  

N +
 Set of wind turbines and depot, {0}N N+ =  

K  Set of clusters, {1,2,... }K k=  

Parameters  

ijd  The distance between node i  to j  
t

ijC  The time for the truck to travel from i  to j , /t

ij ij truckC d V=  
d

ijC  The time for the drone to travel from i  to j , /d

ij ij droneC d V=  

P  Time for conducting pre-and post-flight procedures 

I  Time for inspecting one wind turbine 

maxD  Drone endurance 

M  A large positive number 

Decision Variables  
k

ijx  Binary. k

ijx  equals 1 if the drone in cluster k  travels from i  to j  

ijy  Binary. ijy  equals 1 if the truck travels from i  to j  
k

iz  Binary. k

iz  quals 1 if node i  in cluster k  is selected as a truck stop 

In order to describe the problem, we can formulate the MIP model as follow: 
 

 
, ,

min  d k t k

total ij ij ij ij i

i N j N i j k K i N j N i j k K i N

T C x C y P z I n
        

=  +  +  +        (1) 

 
Subject to: 

 1,k

ij

i N k K

x j N
 

=    (2) 

 
, ,

0, ,k k

ip pj

i N i p j N j p

x x p N k K
   

− =       (3) 

Depot

Drone route

Truck route

Truck

Drone

Wind turbine
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z k K

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 

− +   − +      (7) 

 0 0 1i i

i N i N

y y
 

= =   (8) 

 
,

,k

ij i

k Kj N i j

y z i N
+

+

 

=     (9) 

 
, ,

0,ip pj

i N i p j N j p

y y p N
+ +   

− =     (10) 

 ( )1 , , ,i j ijv v n y n i j N i j− + +       (11) 

 0 1, ,i iu n u Z i N  +     (12) 

 0 1, ,i iv n v Z i N  +     (13) 

  0,1 , , ,k

ijx i j N k K      (14) 

  0,1 , ,ijy i j N    (15) 

  0,1 , ,k

iz i N k K      (16) 

 
Objective (1) is to minimize the total operation time departing from and returning to the depot. Here 

the total operation time (Ttotal) includes 3 parts: the total flight time for a drone (Tdrone):

,

d k

drone ij iji N j N i j k K
T C x I n

   
=  +    ; the total time for conducting pre-and post-flight procedures (Tpre):

k

pre ik K i N
T P z

 
=   ; and the moving time for the truck: 

,

t

truck ij iji N j N i j
T C y

  
=   . 

Constraints (2) and (3) ensure that the drone can reach and leave the nodes exactly once. Constraint (4) 

indicates that if the node is selected as a parking point, the drone must arrive at the node. Constraint (5) 
ensures that at most one node can be selected as a parking point in one cluster. Constraint (6) enforces that 
the operating time of the drone in each cluster shall not exceed the endurance. Constraint (7) excludes 
subtours among wind turbines in each cluster. Constraint (8) ensures that the truck departs from and returns 
to the depot exactly once. Constraint (9) forces the relationship between ijy  and k

iz . Constraint (10) is the 
flow conservation constraint that ensures once the truck visits a stop, it must also depart from the same stop. 

Constraint (11) excludes subtours among clusters and a depot. Constraints (12) and (13) indicate that 
iv  

and 
iu  are integer variables. Constraints (14)-(16) indicate that k

ijx , ijy , and k

iz  are binary variables. 
To minimize Ttotal, we need to cluster wind turbines, route the drone and the truck. In each cluster, the 

routing of the drone is a traveling salesman problem (TSP). Moreover, the routing of the truck in different 
clusters is a generalized traveling salesman problem (GTSP). The two basic problems are both NP-hard 
problems. It is well known that the problem is very difficult to solve in a short time. Thus, we propose an 

ALNS algorithm for this problem. 

3 ALNS ALGORITHM 

The ALNS framework presented by Ropke and Pisinger (2006) is an extension of LNS, which presents 
many destroy and repair methods that are statistically chosen according to the performance achieved during 
the search. Destroy methods can “destroy” the structure of the current solution, while repair methods rebuild 
the uncompleted solution. ALNS has been applied in many fields such as scheduling, vehicle routing 

problem, and its variant. The pseudo-code is shown as follows: 
 
Input: S: Initial solution; RO: Removal set; IO: Insertion set; 
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  Tinit: Initial temperature; Tend: Termination temperature; 

Sbest ←S, T ←Tinit. 

While stop-criterion not met do 

 S’ ←S; 

 Choose a destroy method io() and a repair method ro() from IO and RO; 

  S’ ←io(ro(S’)); 

 if f(S’)<f(Sbest) then 

  Sbest ←S ←S’; 

 else if f(S’)<f(S) then 

  S ←S’; 

 else if random(0,1)<exp((f(S)-f(S’))/T) then 

  S ←S’; 

 end if 

  T ←T*c; 

 If T<Tend then 

  T ←Tinit; 

  Update weight of ro() and io() by scores; 

end while. 

 

3.1 Initialization and Solution Representation 

In this paper, a feasible solution can be represented as a two-dimensional array ij , where row 
i  is a 

sequence of nodes, each node in the order it is visited by a drone. Then the first position 
0i  of 

i  is the 
launch point of the drone (truck stop location), which comprises the order visited by a truck. Note that the 

number of turbines is not necessarily equal in each row. 
Considering the case of nine turbines and a depot. As is shown in Figure 2, the depot number is 0 and 

the turbine numbers are 1-9. The feasible solution consists of three one-dimensional arrays. Wind turbines 
1, 2, and 3 are assigned to one cluster, wind turbines 6, 7, 5, and 4 are assigned to one cluster and wind 
turbines 8 and 9 are assigned to one cluster. The truck visits 1, 6, and 8 in sequence. 

 

Figure 2: Initial solution and its representation. 

An initial solution needs to be generated in such a way that it is feasible and more efficient in the 
algorithm. For this reason, we generate the initial solution as follows: all wind turbines are randomly 
permutated, which is used to be partitioned in multiple clusters by criteria of drone endurance. In the case 
of Figure 2, an initial permutation randomly generated is 1-3-2-6-7-5-4-8-9 and then three clusters are 
generated. The first two clusters have reached the limit of the number of wind turbines that can be accessed. 

Noticed that the number of clusters obtained here is not fixed and can be adjusted in ALNS. 

1 3 2
1 =

6 7 5 4

3 = 8 9

2

3

1

4

5

7
6

8

9

0

Depot Wind turbine Truck route Drone route

2 =
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3.2 Penalty Functions 

Infeasible solutions are also possible in ALNS because of the drone endurance. Therefore, penalty terms 
for endurance violation need to be added to the cost function TW(S). Since a solution S is defined by a set 

of clusters (
1 2 3{ , , ... }kS    = ), the overall penalty p(S) is calculated by summarizing cluster penalties for 

all clusters, which is given by Equation (17). 
 

 
1 1

( ) ( ) ( )
k k

i i

i i

p S p TW  
= =

= =    (17) 

 
For each cluster 

i , 
i

dT  represents flight time of the drone in cluster 
i . The endurance penalty for a 

cluster 
i  is calculated by ( ) max{ ,0}

i

d

i maxTW T D = − .   is a weighting factor that is used to adjust the 
penalty term and set to 20 in this paper. ALNS uses a cost function ( ) ( )f S p S+ to evaluate the solution S.  

3.3 Destroy and Repair Method 

In ALNS, the design of destroy and repair methods is the key to the effectiveness of the algorithm. In this 
paper, five destroy methods and three repair methods are designed which adapt to the problem. Note that 
the number of wind turbines need to be removed (q) is 3. The destroy methods are designed as follows: 

 
1. Random removal: The random removal method simply selects q wind turbines at random and 

removes them from the solution.  
2. Worst removal: We define the cost of the wind turbine i as cost(i)=di-1, j + di, j+1 - di,j where di,j is the 

distance between wind turbine i and wind turbine j. This method removes the q wind turbines with 
the highest cost(i). The worst removal is commonly used and effective for many other problems. 

3. Shaw removal: The method was proposed by Shaw (1997). It employs a relatedness measure R(i,j) 
to describe the similarity between two vertices. In this study, R(i,j) is measured in distance between 
two wind turbines, such that removing the wind turbines that are close to each other enables 
repositioning them to a better one. We first select one wind turbine i and calculate other wind 
turbines’ relatedness R(i,j). Then q wind turbines with the highest R(i,j) are removed. 

4. Maximum distance removal: For each cluster, calculate the distances between wind turbines and 

the truck stop and sort them in descending order. We select the q wind turbines to remove. The 
method can minimize the range of a cluster as far as possible so that the cluster can include more 
wind turbines. 

5. Endurance limit removal: For each cluster, if the drone flying time exceeds the drone endurance, 
we traverse forward the cluster which is violated the constraint, and remove the wind turbine until 
it is feasible. Experiments show that this method is very effective in finding better solutions. 

 
The repair methods are designed as follows: 
 
1. Random insertion: The random insertion method is similar to the random destroy method. It simply 

selects the positions of permutation at random and inserts the removed wind turbines into them.  
2. Closest insertion: This simple construction heuristic corresponds to the Worst removal method. Let 

( ) 1, , 1 , 1, i t t i i ii t d d d− + + = + −  denotes the change of total distance in the solution if we insert the wind 
turbine t into position i. For each wind turbine t that needs to be inserted, calculate the ( ),i t and 
insert it into position with the lowest ( ),i t . 

3. Greedy insertion: For each moved wind turbine, it traverses all positions and inserts it with the 
lowest reduction of total operation time ( )f s . 
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3.4 Adaptive Weight Adjustment and Acceptance 

In this paper, the entire search of ALNS is divided into several segments. A segment is several iterations of 
the ALNS. Here we reference the simulated annealing algorithm idea to finish a segment. The segment 

starts initially with temperature T0 which is set to a high value, and then it is decreased at each step with the 
annealing rate c and ends with the termination temperature Tend. 

The basic idea of adaptive weight is that ALNS can adjust the methods’ weight in each iteration 
according to its performance in the last iteration. In the beginning, the initial weight 0

i  of every method i 
is set to be equal. In each iteration t, we use a roulette wheel selection principle to select a destroy method 
(

iro RO )and a repair method (
iio IO ). The weight of each method is calculated by /

i i

t t

i O
 

 , where 

,  or ,i ii ro O RO i io O IO= = = = . After applying the destroy method 
iro  and repair method 

iio , the scores 
for methods are updated by adding 

i . If a global optimal solution is found, the scores for 
iro  and 

iio  
increase 

1 ; When a solution that is better than the current solution is found, the scores for 
iro  and 

iio  
increase 

2 ; If the solution is not better than the current one but is accepted by the simulated annealing 
accept criterion, the scores for 

iro  and 
iio  increase 

3 (
1 2 3    ). The criterion accepts a current 

solution 'S with probability ( ) ( )exp( ( ) / )iterf S' f S T− −  where Titer is the temperature of the current iteration 

iter. At the end of each segment, we calculate the new weight according to the new scores. Let 
,i jw be the 

weight of the method i used in segment j. Then the weight for all methods to be used in segment j+1 is 
calculated by ( ), 1 , 1 /i j i j i iw b w b  + =  + − . 

i  is the number of times that method i is selected in the segment 
and b is the reaction factor that adjusts the 

,i jw . When the maximum number of iterations is reached, ALNS 
terminates and outputs the optimal solution.  

In this paper, we choose the ALNS parameters as follows: the maximum number of iterations (Iter) is 

20, initial temperature (T0) is 5000, termination temperature (Tend) is 1e-8, annealing rate (c) is 0.5, and 
reaction factor (b) is 0.5. 

4 COMPUTATIONAL EXPERIMENT 

In this section, we generate new instances to simulate the real wind farms and test ALNS. Then, 3 real wind 
farms in the United States are also introduced to evaluate the performance of ALNS. All experiments which 
include instance generation and ALNS are coded in C++ on a personal computer with an AMD Ryzen 7 

4800H (2.90 GHz) processor with 16 GB of RAM. 

4.1 Simulation of Wind Farm Inspection Cases 

To simulate the real inspection scenario, we set the parameters of the truck and drone according to the actual 
situation. Here the flight speed of the drone (Vdrone) is 64 km/h, the truck moving speed (Vtruck) is 32 km/h, 
the endurance of the drone (Dmax) is 50 min, the time for pre-and post-flight procedures (P) is 5 min, and 
the inspection time for each wind turbine (I) is 5 min. 

To fit the reality, the distance between two turbines needs to be considered when generating the 
instances. The minimum distance between two wind turbines depends on how large the rotor diameter is. 
Generally, the wind turbines themselves need to be around ‘5 rotor diameters’ apart so that they don’t affect 
each other. The rotor diameter of a large turbine is around 50-100 meters (Tasneem et al. 2020). 80m is 
chosen as the turbine blade diameter and the minimum distance between two wind turbines is 0.4 km. If the 
minimum distance between the new point and other existing points exceeds the limit, the new point is 

removed otherwise it keeps. To evaluate the performance of the algorithm in different geographical data 
distributions, we design the random instances, clustered instances, and instances with random and clustered 
structures. 

For all instances generated, the central depot is always located at coordinates (0,0), while the wind 
turbines’ geographical data are generated in a grid of dimensions 2dx2d around the depot. Every instance 
is named as (n,m,l), where n is the number of wind turbines in the scenario, m is the dimension of the grid 

(m=2d) and l is the label of the scenario. Since wind farms cover an area of about 10 km2 to 100 km2, the 
number of turbines varies from tens to hundreds. For different size instances, n and m are set as in Table 2. 
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As an example, (50.10.c) represents 50 wind turbines are generated in the grid of dimensions 10x10 with 
clustered structures. 

Table 2: Parameter of instances generation. 

Size n m 

small 25 5 
medium 50 10 

large 100 16 

4.1.1 Random Instances Generation 

For each instance, we generated n wind turbines with coordinates following a uniform distribution U(-d, 
d). The label of random instances is “r”. Figure 3 shows the location of three random instances. 

 

Figure 3: The picture on the left is the geographical distribution in (25.5.r), the middle is the geographical 
distribution in (50.10.r) and the right is (100.16.r). 

4.1.2 Clustered Instances Generation 

For each instance, we will generate   focal points around the grid and the distance between two focal points 
over d/4.  is the number of focal points which can be calculated as 0, 2/ ( ) = +  n x rand , where x is 
the maximum number of wind turbines the drone can visit in a cluster and 0, 2)(rand represents the integer 
generated randomly from 0 to 2. The maximum number of wind turbines in a cluster can also be estimated 
by / maxx D I . Then each wind turbine is randomly assigned to a focal point where the wind turbine’s 
location follows a normal distribution centered on the focal point and with a standard deviation of 0.4 km. 

The label of random instances is “c”. Figure 4 shows the location of three clustered instances. 

 

Figure 4: The picture on the left is the geographical distribution in (25.5.c), the middle is the geographical 
distribution in (50.10.c) and the right is (100.16.c). 

4.1.3 Mixed Instances Generation 

Mixed instances are generated by the way combined with the above two generating methods. For each 
instance, 50% of wind turbines follow the uniform distribution U(-d, d) while 50% are in the clustered 
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structure. The label of mixed instances is “rc”. Figure 5 shows the location of three instances in a mixed 
structure. 

 

Figure 5: The picture on the left is the geographical distribution in (25.5.rc), the middle is the geographical 
distribution in (50.10.rc) and the right is (100.16.rc). 

4.2 Experimental Results with Generated Instances  

In this section, the method of "clustering first-routing second" proposed by Baik and Valenzuela (2020) is 
compared with ALNS. The method is named C&R. C&R was run on the same computer using C++ 
programming, where the TSP and G-tsp models were solved using a CPLEX 12.9.0 solver. Set the solution 
time of the two models to 1800 seconds. To verify the performance of ALNS and C&R, the study also uses 
CPLEX 12.9.0 to solve the mixed integer programming model of the problem with an 1800 seconds limit. 

Table 3 shows the specific results, where C&R and ALNS were run 10 times. In the columns C&R and 
ALNS, AvgObj is the average result for 10 runs, MinObj is the best result of the 10 runs, and Time is the 
average execution time for the 10 runs.  

Table 3: Performance of different methods on generated instances. 

case CPLEX C&R ALNS 

Obj 
(min) 

Time 
(s) 

AvgObj 
(min) 

MinObj 
(min) 

Time 
(s) 

AvgObj 
(min) 

MinObj 
(min) 

Time 
(s) 

(25.5.r) 172.11 1800 173.45 171.23 1.63 173.59 171.22 0.24 

(50.10.r) 408.34 1800 380.80 369.60 6.55 370.45 364.25 0.88 

(100.16.r) - 1800 815.62 800.28 1152.98 809.46 786.84 5.36 

(25.5.c) 168.59 1800 180.64 174.14 1.31 171.78 168.88 0.25 

(50.10.c) 388.66 1800 389.69 374.52 497.37 371.78 366.59 1.02 

(100.16.c) - 1800 773.35 758.51 1800.00 750.06 729.63 7.62 

(25.5.rc) 171.66 1800 184.09 174.62 2.54 175.34 172.84 0.24 

(50.10.rc) 394.01 1800 379.95 371.34 3.80 362.76 360.01 0.86 

(100.16.rc) - 1800 798.24 773.29 1120.09 780.83 764.11 8.81 

As is shown in Table 3, ALNS significantly outperforms CPLEX and C&R in terms of execution time. 
The time consumed by C&R increases significantly with the size of the problem. In particular, the method 
takes a long time to solve up to 100 turbines. The time taken by C&R varies considerably depending on the 
geographical distribution of the turbines, even for the same size case. The ALNS algorithm takes less than 

10s for all instances on average. 
For all instances, CPLEX cannot find the optimal solution in 1800 s and up bounds can be obtained for 

small and medium instances. ALNS provides the lowest objective except for (25.5.c) and (25.5.rc). The 
average objective using ALNS is lower than C&R in all instances except for (25.5.r). It can be concluded 
that ALNS seems well suited to solve instances with different sizes and geographic distribution in a 
reasonable time at a good quality. 
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4.3 Experiments with Real Wind Farms 

Since the generated instances may not reflect the effectiveness of the algorithm in the actual situation, we 
select 3 real cases with different sizes. The cases are real wind farms in the United States and are provided 

by Baik and Valenzuela (2020). The small-size case is Golden Spread Panhandle Wind Project which 
comprises 34 wind turbines. The medium-size case is Hackberry Wind Project which comprises 72 wind 
turbines. 100 wind turbines are comprised in the Langford Wind Project which represents a large-size case. 
Detailed data can be found in Baik and Valenzuela (2020). Note that the depots are located at the mass 
center of the wind turbines. 

The experimental results are shown in Table 4. We study the effect of total operation time under the 

cases. Three parts of total operation time were compared in ALNS and C&R. The columns labeled gap is 
formulated as  

 
&

&

C R ALNS

total total

C R

total

T T
gap

T

−
= . 

 
It indicates the percentage deviation in the total operating time obtained by the ALNS and C&R 

algorithm. 
From the results, we observe that ALNS outperforms C&R for the three wind farm sizes. ALNS 

improves total inspecting time as the wind farm sizes increases. In the small-size case Golden, although the 
solution in ALNS and C&R have the same number of clusters, the total operation time obtained by ALNS 

is shortened by 0.43% compared with C&R because of the reduction of truck moving time. In the medium-
size case Hackberry, the reduction of cluster number leads to a significant reduction in pre-and post-flight 
procedure time and truck moving time, which decreases by 2.31% compared with C&R in total time. In the 
large-size case Langford, the number of ALNS clusters is reduced by 9 compared with C&R, the pre-and 
post-flight procedure time is shortened by 45 minutes, and the truck moving time is reduced by about 12 
minutes. Although the flight time increases, the total time of ALNS is reduced by 3.84%. 

Taking a medium-scale case as an example, Figure 6 shows the truck-drone inspecting route of ALNS 
algorithm while Figure 7 shows the truck-drone inspecting route of C&R. It can be seen that the number of 
clusters in ALNS is smaller than C&R. The limitations of K-means algorithm are also shown in Figure 7: 
poor recognition of non-convex shapes. The geographic distribution of the wind turbines in each cluster is 
a kind of circular or circular-like shape in Figure 7, which shows that the C&R could easily fall into local 
optimal. The ALNS algorithm has a better performance by searching the solution globally. 

 

 

Figure 6: Medium-sized wind farm routing solution of the drone and truck by ALNS. 
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Figure 7: Medium-sized wind farm routing solution of the drone and truck by C&R. 

Table 4: Comparative results of total operation time. 

 case C&R ALNS Gap 
(%) Tdrone 

(min) 
Tpre 

(min) 
Ttruck 

(min) 
Ttotal 

(min) 
Tdrone 

(min) 
Tpre 

(min) 
Ttruck 

(min) 
Ttotal 

(min) 

Small 190.94 25 21.93 237.87 193.16 25 18.67 236.83 0.43 

Medium 400.33 65 36.17 501.50 406.29 45 38.63 489.91 2.31 

Large 553.59 110 75.65 739.24 582.43 65 63.39 710.83 3.84 

5 CONCLUSION 

In this paper, a joint inspection system with a truck and drone is introduced. An adaptive large neighborhood 
search (ALNS) algorithm was provided to solve the problem. We created instances of various sizes and 

distributions by simulating real wind farms to test ALNS. The results showed that ALNS proposed by this 
paper outperforms the method proposed by predecessors in both solution quality and execution time. In 
addition, results in real wind farms showed that the total operation time in ALNS is shorter than that in 
another method, which comes from the reduction of truck moving time and pre-and post-flight procedure 
time. 

In future research, using multiple drones in this inspection system can be explored and the stop location 

of the truck can be considered instead of the location of wind turbines. Also, due to the wind conditions, 
the flight time between two wind turbines may not be known with certainty. The uncertain amount of flight 
time can be considered in the future. 
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