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ABSTRACT

A collaborative order picking system (COPS) enables human-robot collaboration by using order pickers
for picking and autonomous mobile robots (AMRs) for transporting load carriers. Owing to the potential
performance enhancement compared to a traditional manual order picking system, COPSs are gaining
momentum in the retail warehousing sector. This paper proposes order release strategies based on priority
and dispatching rules to achieve the best pick rate performance per AMR. A discrete event simulation model
is developed to facilitate the evaluation of the proposed strategies. Their effectiveness is demonstrated with
the use of real-world data from a case study warehouse. Our computational results show that a COPS using
proposed strategies significantly improves the pick rate performance compared to the current practice.

1 INTRODUCTION

In today’s constantly changing global supply chains, demands for products and services are ever-increasing.
Both customers and companies have higher expectations in terms of the availability of products. Con-
sequently, warehousing plays a more vital role in companies’ supply chain networks. A major activity
in warehouse operations is order picking (Bartholdi and Hackman 2019). Order picking, the process of
retrieving items from their storage locations, has both important labor-intensive and cost-intensive aspects
(Ho et al. 2008; de Koster et al. 2007). de Koster et al. (2007) report that over 80 % of all orders processed
by warehouses worldwide are picked manually. Due to the flexibility and agility of human order pickers,
manual order picking is still often preferred above full automation. However, traditional picker-to-parts
order picking systems are relatively inefficient since order pickers only spend approximately 15 % of their
time on picking. In comparison, around 50 % of the time is spent on traveling (Tompkins et al. 2003). As
human order pickers are especially of added value during picking and not during other processes, alterna-
tives employing automated equipment are introduced to optimize the system. Traditionally, automation in
warehousing only included automated storage and retrieval systems, carousels, or shuttle systems (Azadeh
et al. 2019). More recently, automated guided vehicles (AGV) are being used to automate transportation
tasks, such as repetitive movement of racks in a parts-to-picker system, in highly structured and static
warehouses (Azadeh et al. 2019). However, a more technologically sophisticated approach is needed to
deploy such automation in collaboration with human order pickers in a picker-to-part system (Azadeh et al.
2019; Boysen et al. 2019). The recent design of a more dynamic vehicle, the autonomous mobile robot
(AMR), has opened up opportunities for collaborative order picking systems (Meller et al. 2018).

Collaborative order picking systems (COPS) are picker-to-part systems enabling human-robot collabo-
ration by using human order pickers for picking and AMRs to transport load carriers. This system enables
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order pickers to exclusively focus on picking cases, while AMRs take care of all the transportation activities.
This system may significantly increase picker productivity by decreasing the picker traveling distance and
handling time. Although AMRs allow for flexible deployment without significant changes to the existing
warehouse infrastructure, especially for traditional manual order picking systems, employing AMRs in a
warehousing environment creates new design and control challenges.

One of the difficulties faced when implementing such a human-robot system is efficiently controlling the
collaborative order picking that consists of order batching and batch sequencing (releasing) decisions (Žulj,
Salewski, Goeke, and Schneider 2022). The three types of human-robot collaborative systems, introduced
by Azadeh et al. (2020), illustrate that different operational policies can be adopted since system behavior
can be dynamically adjusted, making these systems very flexible. To show the flexibility of the system,
Azadeh et al. (2020) provide a model to analyze the effect of dynamic zoning strategies in a human-robot
collaborative picking environment, using queuing models and Markov Decision Processes. Ghelichi and
Kilaru (2021) provide analytical models to analyze last-mile delivery and meet-in-aisle concepts using
AMRs. Fragapane et al. (2021) provide a review and research agenda for planning and control of AMRs
in intralogistics. Recently, Žulj et al. (2022) propose a two-stage heuristic to deal with order batching
and sequencing on an AMR-assisted picking system. Nevertheless, their paper considers a deterministic
and static system, with specific handover points where order pickers put picked items in AMRs, which
differs from our COPS. Although human-robot collaborative order picking systems are gaining momentum,
the literature in this domain is still very scarce. It is widely discussed that employing robot solutions in
warehouse order picking offers multiple advantages. Nevertheless, there is still a lack of research on its
applicability in traditional warehousing concepts. Hence, this paper considers a COPS in a retail warehouse
domain, focusing on the batching and releasing decisions in the system.

In this paper, the following contributions are made: (i) we introduce various order release strategies
that outperform the current practice; (ii) we develop a simulation model of a COPS for testing the proposed
strategies; (iii) we provide managerial insights for practitioners based on results of a real-world case study;
(iv) we provide data for the real-world case study used for the experiments in this paper. This research
is conducted in close collaboration with our industry partner, Vanderlande Industries B.V., a company
located in the Netherlands. Vanderlande is the global market leader for end-to-end value-added logistic
process automation. The remainder of the paper is organized as follows. Section 2 provides a problem
description. Next, order release strategies are presented in Section 3, while a simulation model of a COPS
is developed in Section 4. Experimental results are given in Section 5. Finally, conclusions and interesting
future research directions are discussed in Section 6.

2 PROBLEM DESCRIPTION

In this section, we describe the key components of a COPS, the control of order pickers, and the collaborative
order picking problem. The COPS employs AMR to support order pickers by taking over all the transportation
tasks, enabling pickers to focus on picking. An illustration of the COPS is provided in Figure 1. Each
AMR in the system follows a specific routine. This routine starts when an AMR does not have a task to
execute, so idle. The idle state is interrupted by the Warehouse Management System (WMS), assigning a
collection of order lines, or pickrun, to an AMR. After receiving a pickrun, the AMR collects empty load
carriers to start the picking operation. Next, it moves towards the first pick location. When an AMR arrives
at a pick location, it waits to get served by an order picker. Once it is served, the AMR moves towards the
following pick location. This process continues until all items of a pickrun are collected. Once a pickrun
is complete, the AMR drives from the last pick location towards the drop-off location to drop off the full
load carriers. From there, it will move towards its starting point, ending its routine.

As shown in Figure 1, order pickers move freely in the picking area during the picking process, picking
items for AMRs waiting at specific pick locations. Order pickers follow a free-floating policy, which means
that they are not explicitly committed to a certain pickrun or AMR but are guided to available pick locations
by a central controller. It also means that order pickers are not committed to any zone, or there is no fixed
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Figure 1: COPS illustration.

number of pickers per zone, where a zone is defined as an area that is a combination of a number of aisles
(de Koster et al. 2007). If multiple AMRs are nearby waiting to be served, an order picker can serve them
simultaneously. The principle of picking multiple AMRs, or a ‘wave’ of AMRs, at once gives the COPS
the potential to improve the pick rate performance (number of order lines picked per hour).

The problem is how to create waves of AMRs to achieve a high pick rate. The creation of waves of
AMRs is influenced by the composition of pickruns (batching decision) and the sequence of assigning these
pickruns to AMRs (sequencing or releasing decision). For instance, if a couple of pickruns have similar
pick locations in a particular zone, they could be released to create a cluster with a high density of potential
pick locations. This enables an order picker to pick a lot of products without having to spend a lot of time
traveling, which increases the performance of the order picker and thus the overall pick rate performance
of the system. The combination of the batching and releasing decisions in the COPS is referred to as the
collaborative order picking problem (COPP). The former decision determines the composition, or a ‘batch’,
of picklists in a pickrun, where each picklist consists of a predetermined set of products that needs to be
picked to fill a single load carrier. The latter determines which pickrun, from the available pickruns, to
release to an idle AMR. The combinations of different batching and releasing rules result in alternative
order release strategies (ORSs).

From a business perspective, applying ORS to COPS is of added value if a higher pick rate performance
can be achieved with fewer resources. The investment costs of a COPS are roughly linear to the required
number of AMRs. Therefore, we aim to develop an ORS that provides the best pick rate performance per
AMR. In addition, the impact of an ORS on a COPS can be assessed using other performance measures,
i.e., the time AMR and pickers spend on each activity, such as traveling, picking, and waiting, can be used
as performance indicators. A decrease in traveling and waiting time is needed to increase the pick rate
performance of a COPS while increasing the time spent on picking. If order pickers devote more time
to picking, the probability of picking more order lines increases, but encountering disturbance (capturing
all breaks and disruptions) also increases. The disturbance may increase the waiting time to be served of
AMRs, thus the likelihood of AMR congestion, which in turn affects the waves of AMRs and the pick
rate performance per AMR ultimately. All these trade-offs need to be considered when designing ORSs.
In the next section, we describe various batching and releasing approaches for ORSs.

3 ORDER RELEASE STRATEGIES

This section presents different approaches for the batching and releasing decisions. While batching methods
are described in Section 3.1, releasing methods are discussed in Section 3.4, followed by their combinations.
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3.1 Batching Methods

The batching decision is responsible for creating pickruns from a set of picklists. A picklist consists of
order lines with specific pick locations and several cases that need to be picked at these locations. Picklists
are created by the WMS and will not be subject to change. The capacity of each AMR is restricted to two
load carriers in our paper. In other words, each pickrun can consist of a combination of two picklists, each
one of them belonging to a single load carrier. For batching picklists, we present two methods: regular
heuristic (RH) and savings heuristic (SH). The RH applies the current way of creating pickruns in the case
study warehouse. On the other hand, the SH adapts the concept of the Clarke & Wright Savings Algorithm
(CWSA) (Clarke and Wright 1964) to create batches that ‘save’ travel distance. These methods will be
discussed in Sections 3.2 and 3.3, respectively.

3.2 Regular Heuristic

Our case study warehouse employs a single discrete-order-picking policy. It means order pickers pick per
customer order, and all picklists of a pickrun are picked sequentially. The same concept is applied in the
regular batching approach. First, all available picklists will be grouped based on customer orders. Next,
each group of picklists will be ordered based on their pick locations. The first two picklists are then batched
in a pickrun. This continues until all picklists of a group have been batched in pickruns. Afterwards, the
same procedure is applied to the next group until all groups are considered. If a customer order contains
an uneven number of picklists, there will be a pickrun consisting of only one picklist.

3.3 Savings Heuristic

For the SH batching method, the CWSA is adapted to fit the batching of two picklists in a pickrun. The
savings of a pair is calculated by adding the total distance of the first picklist to the total distance of the
second picklist and then subtracting the total distance of the combination of the two picklists. A positive
saving indicates that combining the two picklists is favorable in terms of travel distance. In contrast, a
negative saving suggests that picking both picklists separately would be more advantageous, assuming a
fixed starting location. The procedure of the SH is presented in Algorithm 1.

Algorithm 1: Savings heuristic.
Result: Maximized distance savings for solution S

1 Set initial solution S0 as list of individual picklists
2 for (q∧ r) ∈ S0 and (q ̸= r) do
3 Calculate dq, dr , and dqr

4 end
5 Create empty savings list SL
6 for (q∧ r) ∈ S0 and (q ̸= r) do
7 sqr = dq +dr −dqr
8 Append sqr to SL
9 end

10 Sort SL in descending order of sqr
11 Create empty solution S
12 while SL ̸= /0 do
13 for sqr ∈ SL do
14 if (q ̸∈ S)∧ (r ̸∈ S) then
15 Combine q∧ r and add to S
16 Eliminate sqr from SL
17 else
18 Eliminate sqr from SL
19 end
20 end
21 end
22 return solution S
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First, an initial solution (S0) is initiated as the set of picklists (line 1). Then, the total distance of every
single picklist and every pair of two picklists in the initial solution is calculated (lines 2–4). The total
distance (dq) of a single picklist (q) is calculated by iterating over the pick locations in the list and summing
the distances between the pick locations. The two individual picklists (q and r) are merged into a single
list (qr) to calculate the combined distance. A distance model calculating these distances is designed based
on the dimensions of the case study warehouse and the s-shape routing policy (Žunić et al. 2018).

Afterwards, the SH computes a list of savings (SL) of all possible combinations (lines 6–9). The saving
of a combination of two picklists is determined by subtracting the combined total distance from the sum
of the individual total distances. Then, the SH constructs solution S iteratively (lines 12–21). It checks
each pair in the savings list whether it is feasible to combine. The feasibility is based on whether either of
the two picklists has already been batched or not (line 14). Each time a savings pair has been combined
or discarded, the element is removed from the savings list (lines 16 & 18) until the savings list is empty.

3.4 Releasing Methods

The releasing decision is in charge of assigning a pickrun to an idle AMR. The goal is to release pickruns
to create a high pick density of released work, thus enabling the formation of waves of AMRs. In addition
to the current way of working, this paper proposes a release rule based on zone information of the available
pickruns. The release rules are explained in detail in the following sections.

3.5 Random Release Rule

This first release rule can be seen as a benchmark based on the current working method in the case study
warehouse. It allows for comparing the current way of working against one of the designed release rules.
This rule uses a random draw from the list of available pickruns to release a pickrun to an idle AMR. We
note that the complete warehouse is considered a single zone for this rule. In this way, the workload can
be spread equally across the warehouse. As each customer order generally contains SKU from across the
whole warehouse, all pickruns together should cover approximately the complete warehouse. By giving
each pickrun an equal probability of being chosen, there is a high probability of achieving an equal spread
throughout the warehouse.

3.6 Zone-Based Release Rule

The basis of the second release rule is illustrated in Figure 2. This release rule splits up the warehouse
into several zones to control the workload in each of them (de Koster et al. 2007). Releasing pickruns per
zone creates ‘clusters’ of potential pick locations, which is favorable for creating waves of AMRs, thus
achieving a high pick rate performance.

The rule is based on pickrun- and zone-specific information. For each pickrun in the available pickruns,
a zone score is determined for each zone. The zone score is calculated by the aisle number of each pick
location of a pickrun. If an aisle number aligns with a zone, the zone score is increased by one. When
performing this calculation for a complete pickrun, it can be decided which zone the pickrun aligns with by
taking the maximum zone score. By aligning all pickruns of the available set with their respective zones, a
zone-based sequence is created. Next, the pickruns in the zone need to be sequenced, for which two types
of rules have been applied. These rules will be discussed in the following paragraphs. The complete flow
chart of the rule can be created by inserting a specific type in the blue process in Figure 2.

The first type of rule provides an ordering based on the lowest pick location number of each pickrun.
The sequence of pickruns is ordered based on their zones, from a low aisle number to a high aisle number.
Then, the pickruns per zone are ordered on the pick location number of their first pick location. Overall,
this creates a sequence from the left-hand side of the warehouse to the right-hand side of the warehouse.
It aims to create a picking ‘wave’ across the zones, moving gradually from left to right, allowing order
pickers to move along with the released work. This rule will be referred to as the zone-based ordering rule.
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Figure 2: Zone-based release rule.

In the second variant, the sequence is first determined by the zone a pickrun is assigned to (from left to
right) and then by randomizing the pickruns belonging to a particular zone. It still clusters work by zones
but spreads the workload within zones. While zone-based ordering aims to create a high pick density in a
specific area, using random sequencing within zones potentially decreases the effect of congestion. This
variant will be referred to as the zone-based random rule.

Lastly, each combination of batching and releasing methods creates an ORS. With the two batching
and three releasing methods, there are six combinations in total. We denote the codes of the batching
methods by R (for regular heuristic) and S (for savings heuristic). Similarly, the codes of the releasing
methods are R (for random release), ZO (for zone-based ordering), and ZR (zone-based random). Then,
an ORS will be referred to by a code for the batching and releasing method, e.g., the current practice with
regular batching and random release will be referred to as ORS R-R.

4 SIMULATION MODEL

This section presents a discrete-event simulation model for a COPS in which the introduced batching and
releasing methods are implemented as an input function. Simulation is chosen because it allows capturing
system uncertainties in our problem, for example, the AMR congestion and disturbance of order pickers.
The simulation model is coded in Python 3.8.11 (Van Rossum and Drake 2009). The SimPy package has
been used for the specific implementation of the DES simulation engine (Team SimPy 2020).

The AMR process is responsible for the behavior of an individual AMR, while the picker process
controls the behavior of an individual picker, including traveling to pick locations, disturbance, and picking.
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SIMULATION MODEL
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Figure 3: Overview simulation model.

The picker optimizer process allocates pickers to pick locations by checking whether there is any AMR
available for picking from the current location of the picker until the end of the current half-aisle and on
the next half-aisle in the direction of work (upstream of the driving/walking direction). This continues until
the pickruns of two or more AMRs are assigned to the picker. The picker optimizer process is triggered
each time a new event occurs in the SimPy Environment since, after each event, it could be needed to send
a picker to a new pick location.

An interaction between an AMR and picker process occurs whenever a picker serves an AMR at a
specific pick location. A ‘rack’ is used to model the interaction at such a location. A SimPy FilterStore
represents a ‘rack’ and forms a queue for the FilterStore.Put and FilterStore.Get actions of requests. For
each type of interaction of processes, a separate list of racks is initialized. Every rack in the list represents
a pick location, so the length of the list is determined by the number of locations in the warehouse. Next to
the AMR-picker interaction, there are two other types of interactions. The interaction between the picker-
and picker optimizer process triggers whenever a picker does not have a task to execute. The interaction
between AMR processes is triggered whenever AMRs overtake each other (see Figure 4). The overtaking
times can be determined by using the AMR speed and the distance an AMR needs to go ‘around’ another
AMR in an aisle. This distance is calculated based on the dimensions of the warehouse (see the distance
model). For an interaction to occur, one process must put a request in a rack, and the other must get this
specific request out of the rack. As there are multiple AMR and picker processes, each process has its
identifier. Every request in a rack inherits the identifier from its sender to make sure that the receiver gets
the valid request from the rack. This way, multiple processes may put a request in the same rack and can
be served by various other processes.

For the simulator to start, several elements need to be initialized. First, all the main input parameters
need to be instantiated, including the set of pickruns that needs to be processed, which is the output of the
batching decision (see Section 3.1). Second, the AMR and picker processes are initialized for a defined
number of AMR and pickers, respectively. Third, each AMR process is assigned a random pickrun with a
random amount of remaining pick locations. These pickruns are randomly drawn from the set of pickruns.
Each picker process is given a random start location in the warehouse. This initialization procedure ensures
that the simulation model is not empty at the start and thus does not use the actual pickruns during its
warm-up period. Fourth, the racking for each type of process interaction is constructed. Finally, the picker
optimizer process is initiated. After all these elements are complete, the simulation model can start.
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Figure 4: AMR congestion scenarios.

As the simulation model needs to capture the real-world aspects of a COPS as closely as possible, the
model should be detailed while maintaining an acceptable run time. To achieve this objective, the model
is designed under several assumptions:

• A data sample of the order picking data is used as model input. This data is assumed to be complete
and available at the beginning of the operation. Hence, no continuous arrivals will occur. Also, the
allocations of picked items are given in the data, and the item reallocation is not considered.

• Disturbance of pickers is modeled as a timeout event initiated after a number of order lines are
picked. This event is assumed to capture all breaks, case failures, re-stacking, and other disruptions.

• The speed of AMRs and pickers are constants based on average real-life speeds. The picking time
is assumed to be constant without loss of generality because the picking action in the COPS limits
itself to only taking an item out of a storage location and putting it on an AMR.

• Pick-up and drop-off locations for AMRs are fixed at a specific pick location to enable exact distance
calculations. It is assumed that individual AMRs do not travel to shipping docks but to a dedicated
drop-off location.

• In the pick-up and drop-off state, it is assumed that AMRs do not encounter congestion.

5 RESULTS AND DISCUSSION

We first provide an analysis of the current way of working using an order picking data sample in Section 5.1.
We then study and compare the performance of various ORSs in Section 5.2. To provide realistic insights
on the design of ORS for a COPS, real-world order picking data will be used from a case study warehouse.
The realistic dimensions of the case study warehouse can also be found in the distance model.

5.1 Analysis of Current Practice

An overview of the analysis of the current practice (ORS R-R) is presented in Table 1. The parameter
values in Table 1 are derived from discussions with experts from Vanderlande. For the picker disturbance,
after a normally distributed number of order lines with N (50,5) is picked, a normally distributed timeout
with N (45,3) is triggered. In addition, at a specific pick location, picking the first product takes 6 seconds,
and picking each remaining product takes 3 seconds. Also, the warehouse is divided into 4 zones. In this
analysis, the impact of the number of AMRs will be first tested against the number of pickers. The result
of this analysis is shown in Figure 5.

In general, adding more AMRs leads to higher system performance until the maximum utilization of
the pickers is reached. At some point, the pickers will not pick more items, and their pick rate performance
stabilizes. In this case, adding more AMRs does not have an effect anymore. From the perspective of
manual picking, adding more pickers would seem a logical step to increase the pick rate performance.
However, as shown in Figure 5(a), for a COPS, a high number of pickers requires a large number of AMRs
to achieve a high pick rate performance. This is caused by the fact that the number of AMRs determines
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Table 1: Analysis scenarios.

Scenario Parameter Value Range
1 Number of AMRs [35, 55, ..., 145, 165]

Number of Pickers [35, 40, 45, 50]
2 Picker speed (m/s) [0.4, 0.6, ..., 1.4, 1.6]

Number of AMRs [55, 95, 125, 165]
3 AMRs speed (m/s) [0.4, 0.6, ..., 1.4, 1.6]

Number of Pickers [15, 25, 35, 45]
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Figure 5: (a) Average pick rate per AMR: 35 pickers (—), 40 pickers (—), 45 pickers (—), 50 pickers
(—); (b) Average pick rate per ratio AMRs/picker.

the number of potential pick locations. With more pickers in the system, potential pick locations should
increase to achieve similar performance. Hence, more AMRs are required. When looking at the curve for
35 pickers, the peak of the curve is reached between 95 and 115 AMRs. Looking at the relative increase
in performance, the increase from 95 to 100 AMRs adds 5 OL/hr, while the increase from 100 to 115
AMRs also adds 5 OL/hr. Therefore, when considering the return on investment, using 100 AMRs for 35
pickers seems to be reasonable. This suggestion is confirmed by Figure 5(b), where the ratio of AMR per
picker is plotted against the pick rate performance. In this plot, it can be seen that the curve reached its
maximum around 2.9 - 3.1 AMRs/picker. Increasing this ratio further provides minimal additional returns
in terms of performance.

The second analysis focuses on picker speed and AMR speed. The results of this analysis are presented
in Figures 6(a) and 6(b), respectively. In general, with a higher picker speed, the picker spends less time
traveling, and thus has more time left for picking, assuming that the pick time stays equal. As a consequence,
the pick rate performance would increase. However, in a COPS, the number of AMRs is a limiting factor.
More AMRs in the system lead to more potential pick locations. In combination with a higher picker
speed, this leads to increased performance. The pick rate performance declines when the speed of the
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Figure 6: (a) Average pick rate per picker speed (with 35 pickers and 1.2 m/s AMR speed): 55 AMRs
(—), 95 AMRs (—), 125 AMRs (—), 165 AMRs (—); (b) Average pick rate per AMR speed (with 100
AMRs and 0.8 m/s picker speed): 15 pickers (—), 25 pickers (—), 35 pickers (—), 45 pickers (—).

pickers grows above the speed of the AMR. This is because the picker optimizer reallocates a picker to
another location once it detects the picker and AMR will not reach their pick location simultaneously.
This logic is based on the constraint that a picker will never wait for an AMR to arrive. Reallocation
of pickers leads to additional travel time, which reduces the average pick rate performance. A potential
solution for this specific problem would be either increasing the speed of the AMR or reducing the number
of pickers. However, it is questionable whether a picker speed above 1.2 m/s is representative in a real-life
case. Following our industry partner, it seems more reasonable to assume a picker speed of around 0.8
m/s. Figures 6(a) and 6(b) shows that the reachable and reasonable option for 100 AMRs is about 1.0 m/s
picker speed, 35 pickers, and 1.2 m/s AMR speed.

5.2 Comparison of Different ORS

This section studies the performance of the ORSs presented in Section 3. The input parameters of the
simulation model are set to the reasonable values determined in Section 5.1. In addition, ORS R-R is
considered the current practice, thus used as a benchmark. To assess whether an ORS is significantly
different from the benchmark, a statistical test, i.e., Mann-Whitney U test (Mann and Whitney 1947), will
be used. For this assessment, the average pick rate per picker is used as a performance indicator.

Table 2 shows that the performance in the number of order lines increases when using an ORS different
from the current practice. Our statistical tests result in the p-values smaller than 0.05, and hence they are
statistically different compared to ORS R-R. Table 2 also reveals that the zone-based rules (under the same
batching method) improve the average pick rate by approximately 3–4 %. With the same release rule, the
SH considerably improves the performance by around 15–16 %. Especially, their combinations (S-ZO and
S-ZR) gain the most with about 20 % increase in the average pick rate. This improvement also implies the
possibility of decreasing the number of AMRs with the proposed saving and zone-based heuristics while
still achieving the same pick rate performance as in the current practice.
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Table 2: Results of various ORSs.

Measure R-R R-ZO R-ZR S-R S-ZO S-ZR

µ σ µ σ µ σ µ σ µ σ µ σ

OL/hr 219.9 9.6 227.3 9.1 224.3 8.7 253.6 10.7 264.8 8.6 261.8 8.1
% improvement vs. R-R - 3.4 2.0 15.3 20.4 19.1

A
M

R

Pick-Up 10.9 1.1 11.1 1.4 11.0 1.2 11.8 1.1 12.2 1.5 12.1 1.2
Travel to pick 14.4 1.8 14.7 2.6 14.6 1.8 10.5 1.4 10.9 1.8 10.8 1.3
Waiting 43.9 3.5 39.3 8.1 42.1 5.5 43.6 3.9 37.9 7.6 41.4 5.1
Picking 14.3 1.5 14.6 2.3 14.4 1.9 16.5 1.8 17.0 2.4 16.9 2.1
Drop-Off 8.4 0.9 8.6 1.2 8.5 1.0 9.3 1.0 9.7 1.2 9.6 1.0
Congestion 2.6 0.4 6.1 0.9 3.8 0.5 1.8 0.4 5.7 0.8 2.7 0.4

Pi
ck

er

Travel to location 16.1 2.2 18.5 1.4 16.4 1.7 16.0 2.2 17.9 1.4 14.9 1.7
Travel to pick 38.7 1.7 33.7 1.5 36.9 1.2 31.3 1.6 25.7 1.3 30.0 1.2
Picking 39.6 2.0 41.5 1.8 40.8 1.7 45.6 2.2 48.3 1.7 47.5 1.7
Disturbance 5.6 0.3 6.4 0.3 5.9 0.3 7.2 0.4 8.1 0.3 7.6 0.3

It can also be noticed that the AMR division of time spent on each activity remains relatively stable
across all ORSs, except for AMR congestion and waiting. The time spent on congestion is directly influenced
by the method of releasing pickruns. In contrast, the time spent on waiting is influenced by the behavior
of the pickers and indirectly affected by the method of releasing pickruns. Across all ORSs, a pattern
can be distinguished when comparing the time AMRs spent waiting to the time pickers spent picking. If
AMR waiting time is on the high side, then the total picking time is on the low side, and vice versa. It is
because when pickers spend more time picking, it will directly impact the waiting time of AMRs. Apart
from this, a more surprising pattern is visible between the congestion time and waiting time of AMRs. If
the congestion percentage is high, then the time spent on waiting is low, and vice versa. The ORS with a
high AMR congestion and a low AMR waiting time generates a higher average pick rate.

Furthermore, the differences in performance between the two batching methods mainly result from
AMR congestion, picker traveling time, and picker picking time. It can be seen that the AMR congestion
percentage and the time of the pickers traveling to picks are lower for the ORSs using the SH. Also,
the total picking time increased by approximately 6–8 %. This can be explained by the fact that the SH
enables combinations of picklists in close proximity to each other, whereas in regular batching, picklists are
combined based on their belongings to customer order. The SH allows two picklists to (partially) overlap,
creating a dense pickrun with locations close to each other. In most cases, regular batching will create
pickruns with two picklists that need to be picked sequentially since two picklists from the same customer
order can not have any overlap. It means that regular batching covers more travel distance and thus has a
higher probability of creating AMR overtakes. If the total distance of a pickrun is smaller, picking can be
conducted more efficiently. This causes an AMR to spend less time in the warehouse, preventing AMR
congestion. It can be concluded that the performance of a COPS is highly dependent on the efficacy of a
batching method.

6 CONCLUSIONS

In this paper, we study a collaborative order picking system with pickers and autonomous mobile robots.
Several order release strategies, combining batching and releasing rules, are proposed to improve the pick
rate performance per AMR compared to the current practice. We assess the effect of the proposed ORSs on
a COPS through a developed simulation model. The computational results reveal that the saving heuristic
for the batching decision has a more significant impact on the system performance than the zone-based rules
for the releasing decision (i.e., 16 % vs. 4 % improvement). In addition, their combinations can yield up to
about 20 % increase in the average pick rate. This yield implies a considerable potential investment saving
for future users of the system. In other words, an efficient ORS can help achieve the same performance
target with fewer AMRs or pickers. Interesting future research works include an integrated method for the
batching and releasing decisions, more complex ORSs using reinforcement learning techniques, and an
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improved picker optimizer that would benefit designed ORSs, and the willingness of human order pickers
to accept the new concept and trust this new way of working.
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