
Proceedings of the 2022 Winter Simulation Conference
B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew, T. Roeder, and
P. Lendermann, eds.

DEVELOPMENT OF DES APPLICATION
FOR FACTORY MATERIAL FLOW SIMULATION WITH SIMPY

So-Hyun Nam
Seung-Heon Oh

Hee-Chang Yoon
Young-In Cho1
Ki-Young Cho2

Dong-Hoon Kwak
Jong Hun Woo

Department of Naval Architecture and Ocean Engineering

Seoul National University
1th Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea

ABSTRACT

Since most studies on logistics simulation have used commercial software, there has always been a limit in
terms of customization and performance. In this research, a discrete-event simulation (DES) model, a
program that is capable of evaluating logistics for shipyard layout changes, was developed. The DES model
was substituted yard layouts with network models in order to model the complex factory layouts and road
configurations of shipyards. An application that is capable of not only performing high-speed calculations
on the frequency of road use, travel distance of transporters, travel distance of blocks, and workloads in
stockyards and factories through simulation was developed, and given the ability to analyze productivity
changes according to various layout configurations, production plans, product configurations and resource
conditions.

1 INTRODUCTION

The biggest consideration when it comes to improving the factory layout is logistics. Unlike general
machinery industries, in which the process flow is standardized once the product is decided, in shipyards,
logistics indicators change due to factors such as ship composition, scheduling, and routing. Because of
this, a methodology to evaluate layouts based on these various factors is required.

Research on logistics analysis using Discrete Event Simulation (DES) as representative layout
verification method is being conducted. In Halim et al. (2020), the performance of arrangement at an
automobile assembly plant was evaluated using ARENA, a commercial DES software. In Zúñiga et al.
(2020), optimization for various manufacturing processes such as electrical cabinets and water pumps was
conducted using several commercial DES software. In Hamzas et al. (2017), a layout verification simulation
for motorcycle assembly plants using Witness, another commercial DES software, was developed. Several
studies on simulations for verification and evaluation of semiconductor plant layouts have also been
conducted. In Ndiaye et al. (2016), the commercial software AutoMod was used to design a semiconductor
plant AVG (automated guided vehicle) transport system. Kim et al. (2012) conducted a study on the
improvement of semiconductor parts production lines using simulation and AHP/DEA.

Active research using DES is also being conducted in the shipbuilding sector. The following are some
examples of studies that have been conducted in the field of shipbuilding production management. In Song
et al. (2009), a methodology for the application of DES simulation, and to identify tasks that can be expected

978-1-6654-7661-4/22/$31.00 ©2022 IEEE 1545

Nam, Oh, Yoon, Cho, Cho, Kwak, and Woo

to improve productivity using DES simulation was presented for production management in small and
medium-sized shipyards. In Woo and Song (2014), a methodology to define core performance indicators
using business administration BSCs (balance score cards) and performance pyramids for DES simulation-
based shipyard production management was proposed. Also, the applicability of KPI (key performance
indicator) identification methods and DES simulation for the solution of business problems in shipyard
block assembly plant systems was researched. Woo and Oh (2018) and Lee et al. (2020) conducted a study
on assembly plant planning optimization (Woo & Oh, 2018) and mid-term planning productivity
improvement (Lee et al., 2020) by linking DES simulation through actual shipyard production planning
systems and interfaces.

Also, the following studies on the design and improvement of shipyard layouts have been conducted.
Shin et al. (2009) conducted a framework research on the design of shipyard layouts. In this research, a
framework that incorporates methodologies that consider the characteristics of shipbuilding processes
based on the traditional systematic layout planning methods was proposed. Specially, the role of DES
simulations when it comes to the quantitative evaluation of layout alternatives was defined. Also, in Song
et al. (2010), applications for the framework designed by Shin et al. (2009) were developed to demonstrate
the feasibility of shipyard layout design based on theories and systems. There are also cases in which
logistics depending on shipyard layout changes have been analyzed using DES simulations. For example,
in Woo et al. (2010), a comparative analysis on logistics efficiency following the establishment of new
factories using DES simulation to analyze investment effects from the perspective of logistics before large
capital yard investment (for construction of new shipbuilding factories) was conducted. Also, Jeong et al.
(2018) developed a DES kernel to overcome existing commercial DES software limitations (customizing
difficulties, slow simulation speed, etc.), and conducted a study for equipping the DES model with GIS,
route search, and spatial arrangement algorithms for shipyard logistics simulations.

The existing studies show the similarities of design and improvement activities for DES-based
production systems. Specially, using DES for general manufacturing process and layout design is becoming
essential in terms of cost reduction and productivity improvement. However, it has not yet reached the stage
of full-scale commercialization in the shipbuilding field due to some problems. The first problem is that
most commercial DES software are designed to be suitable for general manufacturing industry types, and
lack of a customizing environment that is able to reflect factors such as complex product structures like
those of ships, and the constantly changing schedules of shipyards. Another problem is the simulation
speed; medium- and long-term simulations that consider a variety of factors such as product information
and schedules are required for shipyard layout simulations, but existing research using commercial software
has not been able to solve speed problems. The afore-mentioned research (Jeong et al., 2018) developed its
own DES software with a flexible customizing environment specialized for shipyards, but could not solve
simulation speed issues due to performance problems of the self-developed DES kernel.

This research was conducted to increase customizing flexibility and securing fast simulation speed.
Since most existing DES research was implemented using Windows, which is considered to have
limitations when it comes to processing quickly large amounts of data such as that of shipyard simulations.
For the two goals, the simulator is developed by open-source DES software. Dagkakis and Heavey (2016)
compared and evaluated some open-source DES software by some dimensions – language, license, the
latest release, etc. According to those features, the algorithm for evaluating material flow in production
yard is used SimPy which is python-based DES kernel as the package has merits on reliability, cost-
effectiveness, interoperability with machine learning resources, memory efficient computation for Python.
Since the release in 2002, SimPy have gained reliability by many user’s feedback and updates. Also, as
SimPy is based on MIT license, it has perfect cost effectiveness. Consequently, cost effectiveness is the key
consideration because this study aims at the field that, if possible, seeks to improve productivity without
cost. Many machine learning packages can run in Python environment. Therefore, SimPy has the powerful
interoperability with machine learning packages and the interoperability can facilitates the future-works,
such as the integration with reinforcement learning.

1546

Nam, Oh, Yoon, Cho, Cho, Kwak, and Woo

2 METHODOLOGY

2.1 Simulation Framework

In this research, the simulation framework for DES program development is defined as shown in Figure 11.
The simulation framework is composed by an adapter module that is responsible for data preprocessing, a
modeler module that connects data and simulation, a simulation module that performs simulations, and an
analyzer and reporter module that calculates and outputs results according to the purpose of simulation. In
other words, it consists of an adapter and a modeler for pre-processing, an analyzer and a reporter for post-
processing, and a DES Kernel for performing simulations.

Figure 1: Simulation framework.

The adapter module receives external information (such as product, process, and schedule information)
and converts it into the data required for simulation modeling. The modeler module uses pre-processed data
to model components of the simulation model (part, source, resource, and process) as objects, and also
creates objects called sink and monitor to analyze simulation results.

In the simulation module, the modeled objects are used for simulation execution. This module is a
kernel for DES execution that uses SimPy, which is a Python-based DES package. The simulator for this
research is developed from ‘SimComponents’ which Grotto Networking(https://www.grotto-
networking.com/DiscreteEventPython.html#Intro) made for the transferring object between processes as
SimPy offers only basic components for simulation, such as queue, event, resource, etc. Six classes in the
modified ‘SimComponents’ in Figure 11 are key objects for the actual production system turning into a
DES model.

2.2 Pre-Processing

Next, the pre-processing algorithms corresponding to the adapter module will be described. This is a step
that is necessary for DES simulation, and in which schedule and product data is combined and converted
into data for process-oriented DES. In this research, pre-processing is conducted in two steps. First, activity
data that is suitable for the simulation purpose is selected. And second, the assembly relationship of bill-
of-material (BOM) data is connected to the processed activity data.

1547

Nam, Oh, Yoon, Cho, Cho, Kwak, and Woo

2.2.1 Activity Pre-processing

Activity data is processed in accordance with the simulation purpose. The activity on a block cannot have
any overlapping with other activities on the same block. Figure 2 shows the entire cases of the relation
between activities for the same block and the output of pre-processing of each case.

Figure 2: Cases of activity pre-processing.

2.2.2 BOM Pre-processing

Bill of material (BOM) data includes the relationships of blocks which will be assembled and characteristics
of each block. For example, using Figure 33, the BOM data has the information that the Part A through Part
C will be combined and turn into Part D. Also the data contain parts’ height, weight etc. That numbers will
used in the algorithms for selecting resources. From a simulation point of view, when a product part that
was being processed according to an activity is brought together with a product part of a superior level,
child parts are gathered together in the corresponding process to create a new parent part through BOM
data in which the relationship between the current product part (child part), and the superior product part
(parent part) are specified. This logic is reflected in simulation data during pre-processing, and is also
reflected in the simulation model’s logic.

Various parent-child relationships are processed through several steps as shown in Figure 33. In this
research, these relationships are generalized and reflected in the pre-processing data and model logic for
implementation of the assembly process.

Figure 3: BOM data structure.

1548

Nam, Oh, Yoon, Cho, Cho, Kwak, and Woo

2.2.3 GIS Pre-processing

Road implementation in commercial DES-based shipyard simulations has its limitations. Since existing
commercial DES programs are specialized for modeling environments with fork lift or AGV (automatic
ground vehicle) movement, they have limitations when it comes to reflecting general road shapes such as
in shipyards.

In this research, to compensate for these shortcomings, distance matrices between each shipyard layout
location were created in advance and loaded from the GIS into the DES program. Shipyard layouts were
modeled as shown in Figure 44 using Esri ArcGIS. Factories and roads were organized into layers
representing geographic data collections in ArcGIS. Roads where block logistics flows were modeled as
omnidirectional graph data structures with the form of edge layers that connect the corresponding point and
node layers modeling major points. Here, nodes represent points where the characteristics of roads or
factory entrances/exits change. The weighted value of edges represents the distance between each node.
Once modeling is over, factory area data and distance data between entrances and exits is exported in csv
format.

Figure 4: Layout representation by Esri ArcGIS.

As shown in Table 11, distance data between nodes exported from ArcGIS creates symmetric tables
containing information on the shortest distance between each node using Dijkstra algorithms based on
Python environment NetworkX packages. Factory area data is used as capacity required for block tasks,
and symmetric tables are used to calculate the travel distance and travel time of blocks. Applying distance
matrices to the simulation can reduce significantly the time required for route search during simulation.

Table 1: Example of shortest distance table between nodes.

 Factory A Factory B Stockyard A Factory C Stockyard B …

Factory A 0 69 120 653 631 …

Factory B 69 0 51 584 561 …

Stockyard A 120 51 0 533 510 …

Factory C 653 584 533 0 22 …

… … … … … … 0

1549

Nam, Oh, Yoon, Cho, Cho, Kwak, and Woo

2.3 Simulation Module

2.3.1 SimPy

In this research, SimPy (https://simpy.readthedocs.io/en/latest/index.html), which is a Python-based Open
Source DES Kernel, is used. SimPy is a Python package that provides DES modeling environments and
functions, and can be used with Python’s various data processing packages. SimPy.Environment manages
time, and stores and progresses events. SimPy.Event is in charge of progressing time during simulation,
calling resources provided by SimPy, and generator modeling. Finally, SimPy.Resource, in order to model
the resources required for each process, is composed by a Resource that models resources with the same
characteristics, a Store that stores discrete resources, and a Container that stores continuous resources.

2.3.2 Simulation Module

Since there are still some short comings with the goal of this research’s simulation when only using SimPy,
SimComponents was developed for this research by borrowing from Grotto Networking’s SimComponents
the idea of process connection using SimPy. Resource’s Store. Part class, which is shown in Figure 11, is
one of the components of SimComponents, refers to objects on which work is being performed during a
process. Part class represents the product in the simulation and includes various property (size, weight, etc.)
information of the product. Source and sink classes are virtual processes that perform part class creation
and destruction. Parts created in the source class are moved to the first process of the corresponding part.
Parts whose planned work has been finished are moved to sink class and deleted. Process class is an object
where works related to parts are made. Process receives parts from preceding processes (or from Source, in
case of the preceding process being the initial process) and moves them to the following process (or to Sink,
in case of the following process being the last process) after working on them during a set period of time
according to the schedule. Resource class is an object that models facilities, areas, workforce, and
transporters required for process progress. It uses resources classes provided by SimPy, or, briefly, creates
and expresses internal variables. Finally, Monitor class record event logs that occur during simulation. The
analyzer module analyzes results based on these records.

Figure 5: The way of connection with user interface and python files.

1550

Nam, Oh, Yoon, Cho, Cho, Kwak, and Woo

2.4 User Interface

In this research, for simulation data input, adjustment of parameters, and verification of results, a method
of connection between a Windows User Interface and Python simulation algorithms was devised. Although
there are many cases in which user interfaces are developed in C languages (C, C++, C#, etc.) by 3rd party
software providers that provide rich UI object libraries, in this research, the DES program was developed
with Python. Thus, connection with programs developed in different environments is necessary.

Figure 55 shows the method of connection between user interface and the DES program. Both the user
interface and the DES program are developed independently. The user interface is equipped with functions
for data input and verification, and on-screen display of post-processing indicators. The procedure of
connection between user interface and the DES program is as follows. First, the user inputs data required
for the simulation. The input data(data path, parameters, etc.) is saved by json format(①). When the user
click execution button, the program makes the execution file as batch format (②). Right after creating run
file(②), simulator has run with input data file(①) and algorithm file(③). After this, the DES program
executed in the batch file proceeds with data pre-processing, simulation, and post-processing. The user
interface reads post-processed files that have been stored in the path specified for each project by the DES
program and displays the results visually on the screen. The advantages of this method are that, since
simulation algorithms and program environments operate independently, both the user interface and the
DES program can be debugged separately when a problem occurs. Also, the features of Python programs
can be shared in a Windows environment.

3 DES FRAMEWORK FOR LAYOUT SIMULATION

The target system of simulation is the logistics of a shipbuilding company. This research sets the minimum
unit of this simulation as the block which should be moved by transporter. The grand block which is after
small blocks are put together at assembly process should pass through pre-outfitting process for working
inside the block, painting process, and pre-erecting process which the last process before combined blocks
to ship. If the time between the end of prior activity and the start of post activity is more than 3 days, the
block should get to the stockyard.

Even though this research is based on the DES Framework (Figure 11), some SimComponents parts
corresponding to simulation were partially modified and applied to layout evaluation simulation (Figure
11). First, the class structure was adjusted based on the movement of hull blocks, which are objects of
logistics movement. Since the creation and destruction of blocks is closely related to the block assembly
process, source class and process classes were unified as process classes. Also, the reporter module was
replaced by a user interface.

3.1 Adapter and Modeler Module

In the adapter module, data entered by the user is converted into a format that can be processed in the
simulation. In addition to Section 2.2’s pre-processing, activities that are irrelevant to logistics were also
removed. After this, the modeler module sorts data processed in the adapter module and connects it with
the necessary information in each class of the simulation module. Table 22 shows input information linked
to the main classes.

3.2 Simulation Module

SimComponents, which corresponds to simulation implementation and logic, is composed by part class
(task objects), process class (part class creation and tasking), resource class (movement and assignment of
resources required for task), sink class (part class deletion), and monitor class (recording of simulation
events).

1551

Nam, Oh, Yoon, Cho, Cho, Kwak, and Woo

Table 2: Input data for each class.

Class Input data

Part class

Part Information (name, weight, …)

Initial location

Working data

Source class

Part classes

Distance information

Resource information

Resource class

Transporter Transporter Information (name, capacity, working yard)

Factory, Stockyard
Name

Area

Monitor class Path of Event Tracing File

3.2.1 Part Class

Part class models hull blocks. Class objects themselves were implemented to move according with the
movement of actual blocks. In part class, block characteristics (name, weight, area, and data) are defined
as property values. Part classes work while moving between workshop and stockyard, and are deleted in
sink objects after assembled into a block of a higher rank.

3.2.2 Process Class

Process class manages the tasking and movement of block objects, and is in charge of all decision-making
from block creation to workplace selection, movement to workshop and stockyard, and deletion after they
have been assembled into a block of a higher rank. The first decision-making that occurs in Process class
is whether to create a block or not. There are two types of block creations, as shown in Figure 66. In the
three types, it is assumed that Part C, which is parent block, is created after Part A and Part B, which are
child blocks, are assembled.

Figure 6: Constraints for assembly.

In this research, the restrictions of cases 2 and 3 were solved through the Store objects of
SimPy.Resource. Store releases objects that are stored in it if they are called from the outside. If there are
no objects to be released inside Store, the outside waits until an object is put inside Store, and, once there

Case 1

Case 2

Case 3

Part A Part C

Part B

Part C

Part B

Part A

Part C

Part B

Part A

Part A Part C

Part B

Part C

Part A

Part B

Part C

Part A

Part B

1552

Nam, Oh, Yoon, Cho, Cho, Kwak, and Woo

is an object to release, the requested task is performed without delay. Likewise, in this simulation, by setting
the condition of item input inside Store for child blocks to be completed, parent block creation and first task
end signals are detected and executed without iterative loop search and time delay.

3.2.3 Resource Class

The resource class is divided into a class that models each resource, and a class that manages resources
(management class). Resources required for the production process are transporters, which are in charge of
movements, and factories and stockyards, whose area is occupied for block tasks. Each resource determines
whether it is preempted or available, and uses SimPy. Resource´s Resource and Container objects for
allocation without time delay. Classes that manage resources are composed by methods that select
transporters, factories, and stockyards by type. Once a resource is requested by a process class, said resource
is released to the requested block taking into consideration the resource´s status, capacity, and distance. Just
like in process class block creation, resource characteristics provided by SimPy are used for resource search
and allocation. In case of queue due to lack of resources, the time when the resources will be available is
searched without execution of iterative loops, and the resources are used without time delay.

Transporter search is also similar to workshop/stockyard search. First, transporters with a maximum
loadable block capacity that is greater than the weight of the block to be moved are selected among currently
idle transporters. Then, the transporter that is closest to the block to be moved is selected among those found
in the first step. After this, the selected transporter is called. In case the search range is expanded to include
even transporters that have already been assigned to other blocks, time delay between resource request and
assign occurs. This task too was designed to search whether transporters are idle or not without time delay
by reflecting SimPy.Resource characteristics. This transporter search method finishes its job when the
selected transporter arrives at the block’s current location, and returns the name of the selected transporter
to Process class.

3.2.4 Monitor Class

The Monitor class logs events that occur during simulation. It logs block creation and deletion, allocated
resources, and task progress events. This event log is used by the analyzer module to analyze simulation
result indicators. Table 33 shows the list of events.

3.3 Analyzer Module

In the analyzer module, road usage, travel distance by block, transporter travel distance, and process loads
are calculated based on event logs such as those shown in Table 3. In this research, the user interface was
developed using DevExpress (Version 21.1.6), which is a C#-based Visual Studio Components Library.
According to the user interface functions, users can input and edit data, input parameters, and check results.

4 RESULTS AND DISCUSSION

In terms of the user environment, Figure 7 exemplarily shows a screen through which the input data can be
checked, and through which users can edit and store data inside the program. Data edited by users is
reflected in real time in actual data files and stored again. In a further screen, parameters to be used in
simulations can be set. In this screen, lag time, which is the basis for simulation target period and stockyard
movement, can be input. Users input all information and perform simulation by pressing the ‘Run’ button.
Here, data paths and parameters input by user are stored as json files and delivered to batch files that perform
simulations. Once the simulation starts, its progress is displayed in the form of a console.

1553

Nam, Oh, Yoon, Cho, Cho, Kwak, and Woo

Table 3: Events of DES.

Class Event Description

Process

Block Created Block starts at Process class

Work Start Block starts working at Process class with preempted area

Work Finish Block finishes working at Process class

Process to Process/Stockyard Block moves from Process to another Process/Stockyard

Stockyard to Process Block moves from Stockyard to next Process

Child to Parent Child block moves over to its parent block for assembly

Resource

Area Request
Block requests area of factory or stockyard to Resource class
at Process class

Area Preempted Block gets resource’s area

Area Release Block release taken area to Resource class

Transporter Requested Transporter is requested after finding appropriate transporter

Transporter Assigned
An appropriate transporter is assigned requesting block as the
transporter gets available

Transporter Loading Start
Transporter put in requesting block’s location factory/stockyard and
transporter takes the block

Transporter Loading Completed Transporter and Block arrive at destination factory/stockyard

Sink Block Completed Block deleted in Simulation at Sink class

Figure 8 exemplarily shows the road usage result screen, in which road usage is expressed in GIS by

colors depending on the frequency of use. Figure 9 shows a screen in which the daily usage of resources
(transporters, factories, and stockyards) is shown by a graph. The upper graph shows the daily usage of
transporters, in which users can check results by selecting the operating zone and capacity. The lower graph
shows the daily rate of operation of factories and stockyards. Figure 10 shows a histogram of the total travel
distance of blocks. BOM information of blocks is shown in the table to the left, and to the right, a histogram
of the travel distance of blocks is shown.

This study is to develop a layout simulation program using SimPy, and the developed layout simulation
program shows superior performance compared to the commercial DES program (Plant Simulation of
Siemens) used in shipyards. It is known that it takes about 20 to 30 minutes to accurately check the
simulation speed of Plant Simulation for a 6-month production schedule. The execution speed of the layout
simulation program developed in this study took about 2 minutes under similar conditions. The exact
execution time is 113 seconds for half year under Intel® Core i7-1065G7 CPU, RAM 16GB. This result
was certificated by official certification authority. This performance improvement is expected to make it
possible to perform various experiments on the process variables affecting the layout by overcoming the
disadvantages of the existing slow speed.

Figure 7: Input parameter for simulation. Figure 8: Result of road used frequency.

1554

Nam, Oh, Yoon, Cho, Cho, Kwak, and Woo

Figure 9: Result of workload of resource. Figure 10: Result of moving distance of blocks.

5 CONCLUSION

In this research, a DES program based on packages of SimPy, which is a Python-based open source, was
developed for production system analysis. A logistics simulation program through which shipyard layouts
can be evaluated was developed based on the proposed DES Framework and applied to actual production
yards of the shipbuilding industry. In this program, whether blocks have been assembled or not can be
determined according to the characteristics of ship production, in which many blocks are brought together
to form a single ship. The developed DES program can overcome customizing difficulties and low speed
problems, which are the disadvantages of existing commercial DES programs.

REFERENCES

Dagkakis, G., & Heavey, C. 2016. A Review of Open Source Discrete Event Simulation Software for Operations Research. Journal
of Simulation 10(3): 193-206.

Halim, N. N. A., Shariff, S. S. R., & Zahari, S. M. 2020. "Modelling an Automobile Assembly Layout Plant Using Probabilistic
Functions and Discrete Event Simulation". International Conference on Industrial Engineering and Operations Management,
August 10th -14th, Detroit, Michigan, USA

Hamzas, M., Bareduan, S., Zakaria, M., Tan, W., & Zairi, S. 2017. "Validation of X1 motorcycle model in Industrial Plant Layout
by using WITNESSTM Simulation Software". American Institute of Physics Conference Proceedings (1885), 020182-1 -
020182-10, https://aip.scitation.org/doi/10.1063/1.5002376.

Jeong, Y. K., Lee, P., & Woo, J. H. 2018. "Shipyard Block Logistics Simulation using Process-Centric Discrete Event Simulation
Method". Journal of Ship Production and Design 34(02): 168-179.

Kim, D. S., Park, C. S., & Moon, D. H. 2012. "Determination of New Layout in a Semiconductor Packaging Substrate Line using
Simulation and AHP/DEA". Industrial Engineering interfaces 25(2): 264-275.

Lee, Y. G., Ju, S., & Woo, J. H. 2020. "Simulation-Based Planning System for Shipbuilding". International Journal of Computer
Integrated Manufacturing 33(6): 626-641.

Ndiaye, M. A., Dauzère-Pérès, S., Yugma, C., Rullière, L., & Lamiable, G. 2016. "Automated Transportation of Auxiliary
Resources in a Semiconductor Manufactoruing Facility". In Proceedings of 2016 Winter Simulation Conference, edited by
Theresa M.K. Roeder, Peter I. Frazier, Robert Szechtman, Enlu Zhou, Todd Huschka, and Stephen E. Chick, 2587-2597.
Piscataway, NJ: Institute of Electrical and Electronics Engineers, Inc.

Shin, J. G., Song, Y. J., Lee, D. K., & Woo, J. H. 2009. "A Concept and Framework for a Shipyard Layout Design based on
Simulation". Journal of Ship Production 25(3): 126-135.

Song, Y. J., Lee, D. K., Woo, J. H., & Shin, J. G. 2010. "System Development and Applications of a Shipyard Layout Design
Framework". Journal of Ship Production and Design 26(2): 144-154.

Song, Y. J., Woo, J. H., & Shin, J. G. 2009. "Research on a Simulation-Based Ship Production Support System for Middle-Sized
Shipbuilding Companies". International Journal of Naval Architecture and Ocean Engineering 1(2): 70-77.

Woo, J. H., & Oh, D. 2018. "Development of Simulation Framework for Shipbuilding". International Journal of Computer
Integrated Manufacturing 31(2): 210-227.

Woo, J. H., & Song, Y. J. 2014. "Systematisation of Ship Production Management and Case Study for Ship Block Assembly
Factory". International Journal of Computer Integrated Manufacturing 27(4): 333-347.

Woo, J. H., Song, Y. J., Kang, Y. W., & Shin, J. G. 2010. "Development of the Decision-Making System for the Ship Block
Logistics Based on the Simulation". Journal of Ship Production and Design 26(04): 290-300.

1555

Nam, Oh, Yoon, Cho, Cho, Kwak, and Woo

Zúñiga, E. R., Moris, M. U., Syberfeldt, A., Fathi, M., & Rubio-Romero, J. C. 2020. "A Simulation-Based Optimization
Methodology for Facility Layout Design in Manufacturing". IEEE Access 8: 163818-163828.

AUTHOR BIOGRAPHIES

SO-HYUN NAM is a graduate student in the Department of Naval Architecture and Ocean Engineering at Seoul National
University. Her research interest is in DES simulation, Reinforcement learning and queuing. Her email address is
sohyon525@snu.ac.kr.

SEUNG-HEON OH is a graduate school student in the Department of Naval Architecture and Ocean Engineering at Seoul National
University. He has a Bachelor of Science in Korea Naval Academy and is a officer (lieutenant commander) in R.O.K. Navy. His
research interests include modeling & simulation and reinforcement learning. His email address is suenghuny@snu.ac.kr.

HEE-CHANG YOON is a graduate school student in the Department of Naval Architecture and Ocean Engineering at Seoul
National University. He has a Bachelor of Science in Naval Architecture and Ocean Engineering. His research interests include
DES simulation, queuing theory, optimization, and machine learning. His email address is gmlckd12@snu.ac.kr

YOUNG-IN CHO is a graduate school student in the Department of Naval Architecture and Ocean Engineering at Seoul National
University. He has a Bachelor of Science in Naval Architecture and Ocean Engineering. His research interests include DES
(Discrete Event Simulation) and reinforcement learning. His email address is whduddlsi@snu.ac.kr.

KI-YOUNG CHO is a graduate school student in the Department of Naval Architecture and Ocean Engineering at Seoul National
University. He has a Bachelor of Science in Naval Architecture and Ocean Engineering.. His research interest is in optimization
and machine learning. His email address is kiyoung8@snu.ac.kr.

DONG-HOON KWAK is a graduate school student in the Department of Naval Architecture and Ocean Engineering at Seoul
National University. He has a Bachelor of Science in Naval Architecture and Ocean Engineering. His research interests include
production engineering, queuing theory, optimization, and machine learning. His email address is s2arta2s@snu.ac.kr.

JONG HUN WOO is an associate professor in the Department of Naval Architecture and Ocean Engineering at Seoul National
University. He holds a PhD in Naval Architectur and Ocean Engineering from Seoul National University. His research interest is
in DES simulation, APS(Advanced Planning and Scheduling), machine learning and queuing, and he has relevant research
experiences in the application areas of shipbuilding. His email address is j.woo@snu.ac.kr.

1556

