
Proceedings of the 2022 Winter Simulation Conference
B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew, T. Roeder, and
P. Lendermann, eds.

FROM EFFICIENCY TO FAIRNESS: DESIGN OF
ALLOCATION RULES FOR FOOD BANK OPERATIONS

Jinpeng Liang

School of Transportation Engineering
Dalian Maritime University

1 Linghai Rd, Ganjingzi District
Dalian, Liaoning 116026, P. R. CHINA

Guodong Lyu

School of Business and Management
Hong Kong University of Science and Technology

Clear Water Bay
Kowloon, HONG KONG

ABSTRACT

Food banks play an essential role in alleviating world hunger by allocating surplus food to eligible agencies
or individuals. As non-profit organizations, food banks target agencies to achieve operational efficiency
of food allocation (i.e., reduce food waste). However, this would result in inequitable service delivered to
different agencies. In this work, we design real-time food allocation rules to serve the sequentially revealed
demand of each targeted agency, and to ensure that adequate food is allocated to each agency (fairness)
as much as possible. We measure allocation fairness by fill rate (i.e., the ratio of the allocated amount to
revealed demand) and exploit online convex optimization tools to characterize the attainable fill rate of the
agency. We use these insights to develop provably near-optimal allocation rules for food bank operations,
and leverage on extensive numerical simulations to discuss the promising benefits of our allocation rules
over the existing benchmark.

1 INTRODUCTION

Food is at the core of the United Nations’ sustainable development agenda for the 21st century. As reported
by the State of Food Security and Nutrition in the World 2021 report, despite some progress, over 800 million
people across the globe suffered from hunger in 2020. Under the shadow of the COVID-19 pandemic,
the situation continues to deteriorate. Hunger is not only the pain point of developing countries, millions
of households in developed countries (e.g., America, Singapore, and Britain) also go to bed hungry. The
paradox of scarcity in abundance is a consequence of food waste and unbalanced distribution. Estimates
suggest that one-third of global food gets lost or wasted, while recycling and resharing just 25% of those
leftovers would suffice to eradicate world hunger (The State of Global Food Banking 2018: Nourishing
the World). To this end, the food bank model, which aims at matching surplus food with eligible agencies
or individuals, provides an effective solution to hunger relief. Since the establishment of the world’s first
food bank in 1967, more than 1500 food banks have been set up across the world to prevent food waste and
alleviate hunger. In 2019, the world’s major food banks redirected 3.75 million metric tons of surplus food
from landfills to more than 66.5 million beneficiaries worldwide (Advancing the Sustainable Development
Goals: Roadmap to 2030).

In practice, the food banks operate a fleet of delivery trucks for food allocation and follow predetermined
routes to visit the eligible agencies sequentially. However, due to the lack of personnel at different agencies
and the sequential manner of food delivery, the demand information of each agency is revealed only upon the
arrival of the truck. Consequently, the planner needs to make an irrevocable allocation decision to serve the
demand required by each agency, while the random demand of unvisited agencies is unknown. To meet the
demand of each agency as much as possible, the dynamic resource (food) allocation is at the heart of food
bank operations. A great deal of research effort has been made to construct delicate resource allocation rules
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to maximize revenue or minimize cost (Talluri and Ryzin 2004). However, although operational efficiency
(e.g., reducing food waste) is desirable for food banks, such efficiency-oriented allocation policies may
possibly induce inequitable service experiences for different agencies. Notably, allocation fairness, which
is measured by service equity, also plays a paramount role in food bank operations to deliver sustainable
service (Lien et al. 2014). Indeed, fairness is one of the six critical issues faced by a nonprofit organization
(Berenguer and Shen 2020), and the fairness concern becomes even more significant during this COVID-19
period when millions of vulnerable people are pushed into greater food insecurity (Manshadi et al. 2021;
Ma et al. 2022).

In this paper, we aim to design real-time food allocation rules to serve the sequentially revealed demand
of the targeted agencies, and to ensure that adequate food is allocated to each agency as much as possible
(fairness). We use fill rate, which is defined as the ratio of the allocated amount to revealed demand, to
measure allocation fairness, and our objective is to maximize the minimal expected fill rate attained across
different agencies. We note that this fairness objective is in line with the spirit of Rawlsian justice that
seeks to maximize the worst-off performance over all the agencies in a system (Manshadi et al. 2021).
To achieve this goal, we first theoretically characterize the achievable region of fill rate for all agencies,
and then numerically determine the maximal fill rate target. Next, we use these insights to design provably
near-optimal allocation rules for food bank operations. Finally, we simulate extensive numerical scenarios
to show that our allocation rule can effectively protect the most vulnerable agencies from food shortage,
without scarifying too much operational efficiency.

The rest of this paper is organized as follows: In Section 2, we review the related works in the literature.
We construct the allocation model and develop our allocation rules in Section 3. The numerical simulations
are presented in Section 4. Section 5 concludes the paper. Some preliminary results to support the technical
proof are relegated to Appendix A.

2 LITERATURE REVIEW

Our study is closely related to the research topics: food bank operations to alleviate hunger, and resource
allocation to ensure fairness.

Food bank operations. The operations of food banks have piqued a surge of interest in academia. At
a tactical level, the efficiency of food bank operations relies on the design of vehicle routing solutions to
achieve cost-effective performance for food collection and delivery (Bartholdi et al. 1983; Gunes 2010;
Lee et al. 2017). However, the aforementioned works did not address the issue of food allocation to each
agency, which significantly affects the performance of food bank operations in terms of demand fulfillment.
Since the food resource is in general scarce, the service experience delivered to the individual agency may
vary considerably under different allocation policies. To this end, the problem of equitable and efficient
food allocation through simultaneous routing and allocation decisions was studied by Nair et al. (2017) and
Eisenhandler and Tzur (2019). We note that the food allocation problem to ensure equity and efficiency was
also considered in a static setting (Orgut et al. 2016; Orgut et al. 2017; Orgut et al. 2018). Unfortunately,
these static allocation solutions could not be used for real-time allocation decisions when the agencies’
demand information reveals sequentially. To bridge the gap, as far as we know, Lien et al. (2014) was one
of the earliest papers to study the fair resource allocation in a sequential setting where the food delivery
truck visits the agencies under fixed routes and allocates a certain amount of food to each agency upon
the visit to this agency. The goal was to maximize the expected minimum fill rate of all agencies, and
this problem was extended to a multi-vehicle setting by Balcik et al. (2014). In this paper, we consider a
similar setting as Lien et al. (2014) but focus on maximizing the minimal expected fill rate for all agencies.

Fair resource allocation. The notion of equity and fairness has been encountered in diverse contexts
(Savas 1978; Brill 1979; Marsh and Schilling 1994), but the measurement of fairness varies under different
allocation settings (Bertsimas et al. 2011). For example, a stream of research papers introduced the
service level target to enforce operational fairness in supply chain management (Zhong et al. 2018; Lyu
et al. 2019) and online platform (Lyu et al. 2019), etc. The aforementioned work addressed the resource
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allocation problem in a simultaneous allocation setting, in which the allocation decision is determined after
knowing the realized demand of all agencies. In contrast, Zheng et al. (2022) designed static decision rules
to solve the service level constrained cash-transfer problem without knowing the realized information a
priori. Along this direction, various types of fair allocation problems have also been studied in a sequential
setting (Lien et al. 2014; Manshadi et al. 2021; Ma et al. 2022). In particular, Manshadi et al. (2021)
considered two types of fairness measures in terms of the expected fill rate, i.e., maximizing the expected
minimum fill rate (ex-post fairness) and maximizing the minimum expected fill rate (ex-ante fairness).
Similarly, we aim to ensure ex-ante fairness in the food allocation problem. The novelty of our work is to
theoretically characterize the achievable region of ex-ante fill rate target to all agencies. Furthermore, we
design provably near-optimal allocation policies to achieve the predetermined target, and design heuristic
policies to boost the computational efficiency for large-scale problems. The numerical results show that
our heuristic allocation policy outperforms the target fill rate policy proposed by Manshadi et al. (2021).

3 MODEL FORMULATION AND ALLOCATION POLICY

3.1 Model Formulation

We consider a food bank program in which one planner follows a fixed route to allocate a certain amount
of food to N agencies with stochastic demand. The agencies are indexed as {1, . . . ,N} according to the
allocation sequence. We assume that the demands of agencies are drawn from a joint distribution, while
their demands are sequentially revealed to the planner upon the visit to each agency. Let ddd denote the
demand vector of all agencies with non-negative support set Ωddd , and di denote the demand of agency i. To
enforce allocation fairness, we use fill rate (the ratio of allocated amount to realized demand) to quantify
the service level delivered to each agency. To this end, the planner needs to sequentially determine the
proportion of demand to be served for each agency so that the minimal expected fill rate among all agencies
can be maximized.

Furthermore, we let si denote the remaining amount of food when the planner arrives at agency i and
we have s1 = c, where c represents the initial capacity level of food. Upon the visit to each agency i, the
planner observes realized demand di ∈R+ as well as available amount of food si ∈R+, and then decides the
proportion of demand fulfillment xi(si,ddd) for agency i to balance the trade-off between satisfying immediate
demand di and reserving resources for the unvisited agencies. For the sake of feasibility, the allocation
amount xi(si,ddd) ·di for agency i cannot exceed remaining quantity si nor can it exceed the realized demand
di. More formally, we formulate the feasible region of xi(si,ddd) as follows:

Xi(si,ddd) :=

{
xi ∈ R+

∣∣∣∣∣ 0≤ xi(si,ddd)≤ 1,

xi(si,ddd) ·di ≤ si

}
.

We say that the decision is feasible if xi(si,ddd) ∈ Xi(si,ddd) for all i = 1, . . . ,N, and write xxx ∈ XXX to denote
that xxx is feasible in short. After determining the fill rate xi(si,ddd) for agency i, the amount of available food
for agency i+1 is updated as:

si+1 = si− xi(si,ddd) ·di, ∀i = 1, . . . ,N−1.

It is evident that the straightforward first-come-first-serve policy that allocates all of the resources
to satisfy the demand of early-visited agencies could achieve the highest efficiency (e.g., food waste
minimization), but may induce unfair service experience among different agencies. This paper studies fair
resource allocation policies for food bank operations that aim to maximize the minimal expected fill rate
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across all agencies. We formulate the fair resource allocation problem as follows:

(P1) max
xxx(si,ddd),θ

θ

s.t. Eddd [xi(si,ddd)]≥ θ , ∀i = 1, . . . ,N

xi(si,ddd) ∈ X(si,ddd), ∀i = 1, . . . ,N, ddd ∈Ωddd

si+1 = si− xi(si,ddd) ·di, ∀i = 1, . . . ,N−1, ddd ∈Ωddd

xi(si,ddd) non-anticipatory, ∀i = 1, . . . ,N.

where the first set of constraints requires that the expected fill rate delivered to each and every agency
is no less than θ , while our objective is to maximize the value of θ . For the last set of constraints, we
ensure that the allocation decision is made in an online fashion, i.e., the decision for each agency i cannot
use the unrevealed information from agency i+ 1 to N. This problem is challenging partly because the
planner needs to sequentially build up the solution xi(si,ddd) for each agency i without full visibility of future
demands. Furthermore, the allocation decision has to be jointly optimized with the minimal expected fill
rate θ . To solve this problem, we first consider the following feasibility problem: given a fixed fill rate
target θ , can we find a sequential allocation policy that can satisfy the fill rate constraints in Problem (P1)?
We derive a set of necessary and sufficient conditions that only involve the demand fulfillment decision
xxx ∈ XXX and the fill rate target θ .

3.2 Necessary and Sufficient Conditions

In this subsection, we derive a set of necessary and sufficient conditions for a given fill rate target θ to
be feasible. For ease of exposition, we use xπ

i (si,ddd) to denote the fill rate decision for agency i under a
feasible allocation policy π , while the collection of all feasible policies is denoted as Π. Next, we present
the following Theorem 1 to describe the necessary and sufficient conditions.
Theorem 1 The expected fill rate target θ in the fair resource allocation Problem (P1) can be attained if
and only if

max
λλλ≥000

{
N

∑
i=1

λiθ −max
π∈Π

E

[
N

∑
i=1

λixπ
i (si,ddd)

]}
≤ 0. (1)

Theorem 1 implies that the fill rate target θ is attainable if and only if maxπ∈Π E
[
∑

N
i=1 λixπ

i (si,ddd)
]
≥

∑
N
i=1 λiθ for any non-negative vector λλλ ≥ 000. Here the vector λλλ represents the priority weight attached

to each agency when determining the allocation solution. Indeed, it is not easy to obtain any closed-
form expressions for the above necessary and sufficient conditions, which concern complicated resource
allocation decisions in food bank operations. Interestingly, we can leverage on the above results to evaluate
the feasibility of a given θ and numerically characterize the largest feasible fill rate target for all agencies.

3.2.1 Necessary Conditions.

For any feasible sequential allocation policy A ∈ Π that satisfies the fill rate requirement, we have the
following conditions:

θ −Eddd
[
xA

i (si,ddd)
]
≤ 0, ∀i = 1, . . . ,N. (2)

By taking a linear combination with non-negative vector λλλ ≥ 000 among all agencies in Equation (2), we
can conclude the necessity part of conditions (1) in Theorem 1.

3.2.2 Sufficient Conditions.

Note that Problem (P1) imposes the “expected” fill rate requirement in the single-period stochastic setting. It
is straightforward to interpret the stochastic constraints by generating infinite i.i.d demand samples {dddt}T

t=1,
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where ddd(t) denotes the demand sample at each epoch t and the sample size is sufficiently large enough,
i.e., T → ∞. To this end, we explicitly construct a debt-associated-sequential (DAS) allocation policy for
the multi-sample problem.

The key of our DAS allocation policy is the notion debt, which quantifies the gap between the attained
average fill rate and the requirement θ for each agency. To be more specific, let Bi(t) denote the debt for
agency i at sampling epoch t, say the deficit owe to the fill rate target θ under the demand fulfillment
decision xi(t):

Bi(t) := θ − xi(t).

With slight abuse of notation, we let xi(t) denote the allocation decision to agency i at epoch t, and
Xi(t) represents the corresponding feasible region. At the beginning of sampling epoch (t + 1), we let
βi(t +1) denote the average debt for agency i, which is accumulated from sampling epoch 1 to t:

βi(t +1) :=
1
t

t

∑
s=1

Bi(s).

Intuitively speaking, the sign of average debt βi(t+1) implies whether the expected fill rate attained by
agency i over the first t sampling epochs exceeds the target θ or not. More concretely, when βi(t +1)> 0,
the attained fill rate over the first t epochs has not achieved the target θ for agency i. However, when
βi(t +1) ≤ 0, it means that the attained fill rate has already met the target θ for agency i. The key idea
of our DAS policy is to prioritize agencies with positive average debt when making allocation decisions
at sampling epoch (t +1) so that the expected fill rate target θ can be attained for all agencies in the long
run. Among the agencies with positive average debt, the agencies with larger positive average debt shall
be given higher priority to be served at epoch (t +1). In contrast, the agencies with negative debt shall not
be considered unless there is idle resource after serving those with positive average debt. In this way, we
set β

+
i (t +1) = max{βi(t +1),0} as the weight associated with agency i when determining the allocation

decision xxx(t +1) at sampling epoch (t +1). Altogether, our DAS policy at epoch (t +1) aims to maximize
the following weighted-sum stochastic dynamic programming (DP) problem:

f (βββ+(t +1)) = Eddd(t+1)

[
max

xxx(t+1)∈XXX(t+1)

N

∑
i=1

β
+
i (t +1) · xi(t +1)

]
. (3)

where f (βββ+(t +1)) denotes the optimal value of the DP model (3) at epoch (t +1). To this end, our DAS
policy decomposes the fill rate constrained problem into a series of DP problems. In what follows, we
show that our DAS policy can deliver the expected fill rate target for each and every agency as long as
conditions (1) hold. This result is motivated by tracking the evolution of debt vector under the DAS policy.
Let βββ (0) = 000 for notational convenience. For each sampling epoch 0≤ t ≤ T −1, we have∥∥∥βββ

+(t +1)
∥∥∥2

2

≤
∥∥∥βββ

+(t)
∥∥∥2

2
+2βββ

+(t)> [βββ (t +1)−βββ (t)]+‖βββ (t +1)−βββ (t)‖2
2 (4)

=
∥∥∥βββ

+(t)
∥∥∥2

2
+2βββ

+(t)>
BBB(t)−βββ (t)

t
+
‖BBB(t)−βββ (t)‖2

2
t2 (5)

≤
∥∥∥βββ

+(t)
∥∥∥2

2
+

2βββ
+(t)> {BBB(t)−βββ (t)}

t
+

N
t2 (6)

=
∥∥∥βββ

+(t)
∥∥∥2

2
+

2βββ
+(t)> {E [BBB(t)|βββ (t)−βββ (t)]}

t
+

2βββ
+(t)> {BBB(t)−E [BBB(t)|βββ (t)]}

t
+

N
t2 (7)
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Step (4) is due to the inequality in the Claim 1 of Appendix A. According to the definition of BBB(t)
and βββ (t), it is straightforward to see that βββ (t + 1)−βββ (t) = 1

t [BBB(t)−βββ (t)], which justifies Step (5). In
addition, we have

|Bi(t)−βi(t)|=
∣∣∣∣ 1
t−1

t−1

∑
s=1

xi(s)− xi(t)
∣∣∣∣≤ 1, ∀i = 1, . . . ,N

which facilitate us to bound the term ‖BBB(t)−βββ (t)‖2
2 with N in Step (6). Finally, we decompose the term

{BBB(t)−βββ (t)} by introducing the conditional expectation E [BBB(t)|βββ (t)] to arrive at Step (7). By definition,

we have βββ
+(t)>βββ (t) =

∥∥∥βββ
+(t)

∥∥∥2

2
≥ 0. We then derive the following Step (8) and (9):

∥∥∥βββ
+(t +1)

∥∥∥2

2

≤
∥∥∥βββ

+(t)
∥∥∥2

2
+

2βββ
+(t)> {E [BBB(t)|βββ (t)]}

t
− βββ

+(t)>βββ (t)
t

+
2βββ

+(t)> {BBB(t)−E [BBB(t)|βββ (t)]}
t

+
N
t2 (8)

=
t−1

t

∥∥∥βββ
+(t)

∥∥∥2

2
+

2βββ
+(t)> {E [BBB(t)|βββ (t)]}

t
+

2βββ
+(t)> {BBB(t)−E [BBB(t)|βββ (t)]}

t
+

N
t2 (9)

≤ t−1
t

∥∥∥βββ
+(t)

∥∥∥2

2
+

2βββ
+(t)> {BBB(t)−E [BBB(t)|βββ (t)]}

t
+

N
t2 (10)

where Step (10) is due to the inequality βββ
+(t)> {E [BBB(t)|βββ (t)]} ≤ 0, which is proved in Lemma 2. This

result is motivated by exploiting the convexity of f (βββ+(t +1)) (see Lemma 1) to derive its Fenchel dual.

In what follows, we denote W (t) := t
∥∥∥βββ

+(t +1)
∥∥∥2

2
and restate Step (10) as follows:

W (t)≤W (t−1)+2βββ
+(t)> {BBB(t)−E [BBB(t)|βββ (t)]}+ N

t
. (11)

Apply the inequality (11) recursively from t = 1 to t = T , we have

W (T )≤W (0)+2
T

∑
t=1

βββ
+(t)> {BBB(t)−E [BBB(t)|βββ (t)]}+

T

∑
t=1

N
t

≤ 0+2
T

∑
t=1

βββ
+(t)> {BBB(t)−E [BBB(t)|βββ (t)]}+N(1+ log(T ))

Note that E [BBB(t)|βββ (t)] = E [BBB(t)] under i.i.d demand sampling process. Therefore, taking expectation
on both sides of above inequality, we can obtain

E
[∥∥∥βββ

+(T +1)
∥∥∥2

2

]
≤ N(1+ log(T ))

T

which implies that E
[∥∥∥βββ

+(T +1)
∥∥∥2

2

]
→ 0 as T → ∞. In this way, the average debt βi(T +1) of agency i

also satisfies the following non-asymptotic convergence guarantee in expectation:

E
[∥∥β

+
i (T +1)

∥∥2
2

]
≤ N(1+ log(T ))

T
, ∀i = 1, . . . ,N.

To this end, we have shown that the expected fill rate target θ can be achieved under our DAS allocation
policy if the set of conditions (1) holds. Altogether, we prove the sufficiency part.
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4 NUMERICAL EXPERIMENTS

In fact, it is challenging to characterize the optimal solution to the DP model (3) due to the curse of
dimensionality, which may hinder its application in solving large-scale food allocation problems. For the
ease of implementation, we design a heuristic DAS (abbreviated as H-DAS) allocation policy to sequentially
determine the allocation quantity to each agency based on the realized demand of this agency and the mean
demand of unvisited agencies. Next, we numerically evaluate the performance of this heuristic policy.

4.1 Design of Heuristic Allocation Policy

Let µi denote the mean demand of agency i. Upon the visit to agency i, we solve a linear programming
(LP) model based on the revealed demand di and demand mean of unvisited agencies {µi+1, . . . ,µN} to
maximize the debt-weighted demand fulfillment objective, subject to the remaining capacity constraint.
Note that there may exist multiple optimal solutions to the LP model when the resource is not used up
after serving agencies with positive average debt. For tie-breaking and reduction of food waste, we modify
β
+
i (t +1)← max{ε,βi(t +1)}, where ε is a sufficiently small positive real number so that we can fully

utilize the remaining resource. Altogether, we present the details of the H-DAS policy in Algorithm 1.

Algorithm 1 H-DAS Allocation Policy
1: INPUT: Capacity level c, demand samples {dddt}T

t=1, and expected fill rate target θ .
2: INITIALIZE: W.L.O.G., let the average debt vector βββ (1) = (1, . . . ,1) for t = 1.
3: for t = 1, . . . ,T do
4: for i = 1, . . . ,N do
5: Upon the visit to agency i, update the state variable:

si =

{
c i = 1
si−1−di−1(t) · xi−1(t) i = 2, . . . ,N

6: After observing the realized demand di(t) of agency i, the demand fulfillment decision for agency i is
determined by solving the following LP problem:

max
N

∑
k=i

β
+
k (t) · xk(t)

s.t. di(t) · xi(t)+
N

∑
k=i+1

µk · xk(t)≤ si,

0≤ xk(t)≤ 1, ∀k = i, . . . ,N.

7: end for (i)
8: Update the debt vector BBB(t) at epoch t and the sample-based average debt vector βββ (t +1).
9: end for (t)

10: OUTPUT: The collection of average debt vectors {βββ (t)}T
t=1.

4.2 Simulation Scenarios

In this subsection, we construct a simulation environment where a food bank sequentially serves N = 12
agencies that are indexed by {1, . . . ,12}. The stochastic demand of agency i follows a (truncated) normal
distribution di ∼max

(
0,Normal(µi,(δ µi)

2)
)
, where δ denotes the degree of demand variation. We set the

mean demand as µµµ = [3,6,9,9,6,3,3,6,9,9,6,3] and use parameter α to denote the resource abundance
level (i.e., the supply to mean demand ratio). In this way, the maximal fill rate to all agencies is min{α,1}
if the demand is deterministic. We solve the resource allocation problem under different demand variations,
resource supply, and agency visit order. We compare the performance of our H-DAS policy with two
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benchmarks: (1) Hindsight Optimal Solution. This solution is obtained by the SAA method using the
test data, which serves as an upper bound for any sequential policies. (2) Target-fill-rate (TFR) policy
proposed by Manshadi et al. (2021). Upon the visit to agency i, this policy either allocates the required
amount of resource diθ

∗ or allocates all the remaining resource si to this agency.
In each simulation setting, we generate two sets of i.i.d demand samples (i.e., training and test data),

each with sample size T = 104. We first exploit the classic sampling average approximation (SAA) method
to estimate the max feasible value of θ ∗ with training data, then use it as the target to guide fair resource
allocation with test data. We measure the performance of different policies in terms of (i) attained value of
the minimal expected fill rate across all agencies, (ii) the average food waste, i.e., the ratio of remaining food
after serving the last agency. We simulate the resource allocation environment using Python programming
language and solve the optimization problem with Gurobi (9.5.1) solver. All the experiments are performed
on a 2.8GHz i9-10900 CPU Windows PC with 64G RAM.

Service experience of each agency. Suppose the planner has c = 43.2 units of food for allocation (i.e.,
supply abundance level α = 0.6), we depict the attained fill rate for each agency when the demand variation
parameter δ takes value 0.1 and 0.5 respectively in Figure 1. First, it shows that our H-DAS policy delivers
almost the same fill rate to each agency as the hindsight optimal solution when δ = 0.1. However, the
performance gap increases slightly when δ grows from 0.1 to 0.5. This is because the approximation error
of our H-DAS policy increases as the demand exhibits larger deviations from the mean value. Second,
since the TFR policy tries to meet the fill rate target for the early-visited agencies as much as possible,
the remaining resources are insufficient to deliver the targeted fill rate to the downstream agencies. Third,
we note that the largest feasible fill rate for all agencies is α = 0.6 if the demand is deterministic (e.g.,
demand variation δ = 0). However, the minimal expected fill rate under both the hindsight optimal solution
and H-DAS policy is larger than 0.6 when δ > 0. This implies that the planner could exploit demand
fluctuations to achieve higher fill rate for all agencies under appropriately designed allocation rules.
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Figure 1: Expected fill rate of each agency under different policies

Impact of demand variations. To evaluate the impact of demand variation on each allocation policy,
we set the supply abundance level as α = 0.6 and evaluate the performance of each allocation policy
under different demand variance δ in Figure 2. First, the minimal expected fill rate under both hindsight
optimal solution and H-DAS policy increases as δ grows from 0.1 to 0.5. The reason is that larger demand
fluctuation provides more potential for the planner to achieve higher fill rate by serving agencies with low
demand. Second, the demand variation has marginal impacts on the TFR policy since it greedily meets the
fill rate requirement for early-visited agencies. Third, the capacity waste under our H-DAS policy increases
under larger demand variations. Recall that our H-DAS policy exploits revealed demand di and demand
mean of unvisited agencies to make allocation decision at agency i, which results in a larger approximation
gap when demand variation δ increases.
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Figure 2: Performance of each allocation policy under various demand variation

Impact of supply level. Next, we evaluate the impact of supply level on the performance of each
allocation policy. In this setting, we set the demand variation as δ = 0.3, and depict each allocation policy’s
minimal expected fill rate and resource waste under various supply abundance levels in Figure 3. It is
easy to see that the minimal expected fill rate under all policies would increase in the supply abundance
level. However, compared to the TFR policy, the increase under our H-DAS policy appears to be more
considerable. This means that our approach could exploit the resource more effectively. Third, the TFR
policy wastes less resources since this policy allocates the resource to the early-visited agencies in a greedy
manner while our H-DAS policy needs to strategically reserve the capacity for downstream agencies.
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Figure 3: Performance of each allocation policy under various supply abundance level

Impact of agency visit order. Finally, we evaluate the impact of agency visit order on the performance
of each allocation policy. In this setting, we fix the demand variation as δ = 0.3 and supply abundance
level as α = 0.6. We generate 1000 resource allocation instances by randomly permuting the agency visit
orders. We solve the resource allocation problem under each agency visit order and use boxplot to depict
the performance of each policy in Figure 4. We can see that the minimal expected fill rate under our H-DAS
policy exhibits negligible variation, which means that it is slightly affected by the order of visit. However,
the TFR policy provides fluctuating fill rate guarantee under different visit orders since it endows higher
priority to early-visited agencies. Moreover, the resource waste under our H-DAS policy is slightly higher
and exhibits larger deviation compared with the TFR policy.
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Figure 4: Performance of each allocation policy under different agency visit orders

5 CONCLUSION

Motivated by the allocation fairness challenges faced in food bank operations, this paper proposes an
analytical framework to maximize the minimal expected fill rate across all eligible agencies. We first
exploit the online convex optimization approach and Fenchel dual to characterize the attainable expected
fill rate target, and then develop provable near-optimal allocation rules to facilitate the resource allocation
in real-time. We show that our allocation rule can protect the most vulnerable agencies from food shortages
without wasting too much resource. This insight holds regardless of the predetermined allocation sequence.
Last but not least, we remark that this analytic framework can be easily adapted to other dynamic allocation
or rationing problems with fairness guarantee.
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A SOME PRELIMINARY RESULTS FOR PROOF

Claim 1 Given any two vectors ppp,qqq ∈ RN , the following inequality holds:∥∥qqq+
∥∥2

2 ≤
∥∥ppp+

∥∥2
2 +2ppp+ [qqq− ppp]+‖qqq− ppp‖2

2 (12)

Proof. By definition, we can rewrite inequality (12) as

N

∑
i=1

(q+i )
2 ≤

N

∑
i=1

(p+i )
2 +

N

∑
i=1

2p+i (qi− pi)+
N

∑
i=1

(qi− pi)
2 (13)

Therefore, it is sufficient to prove inequality (13) in component-wise. For any i = 1, . . . ,N , we claim:

(q+i )
2 ≤ (p+i )

2 +2p+i (qi− pi)+(qi− pi)
2 (14)

We consider the following cases to prove inequality (14):

• pi ≤ 0, qi ≥ 0, then inequality (14) reduces to (q+i )
2 ≤ (qi− pi)

2, which is true.
• pi ≤ 0, qi ≤ 0, then inequality (14) reduces to 0≤ (qi− pi)

2, which is also true.
• pi ≥ 0, qi ≥ 0, then both sides of inequality (14) are equal to (qi)

2.
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• pi ≥ 0, qi ≤ 0, then both sides of inequality (14) are also equal to 0.

Hence, we complete the proof of inequality (12) by summing inequality (14) for all i = 1, . . . ,N.

Lemma 1. For any sample epoch (t) and any average debt vector βββ (t), the optimal value of DP formulation
fa(βββ

+(t)) is a convex function w.r.t. debt vector βββ
+(t).

Proof. Note that formulation (3) is indeed a DP model with N stages. Let J∗(si) denote the optimal
value function under remaining capacity level si when the truck arrives at agency i. In this way, the optimal
value function as stage N can be represented as

J∗N(sN) = max
xN(sN ,ddd)∈XN(sN ,ddd)

E [βN · xN(sN ,ddd)] = E
[

βN ·min
(

1,
sN

dN

)]
It is well known that J∗N(sN) is convex w.r.t. debt vector βββ

+(t) since it appears as the coefficient in the
objective function. W.L.O.G., we assume that J∗i+1(si+1) at stage i+1 is convex w.r.t debt vector βββ

+(t).
By the Bellman equation, J∗i (si) at stage i can be formulated as

J∗i (si) = max
xi(si,ddd)∈Xi(si,ddd)

E
[
β
+
i (t) · xi(si,ddd)+ J∗i+1(si+1)

]
(15)

For any xi(si,ddd) ∈ Xi(si,ddd), both terms in the RHS of equation (15) are convex w.r.t. βββ
+(t). Hence, we

can claim that J∗i (si) is a convex function of βββ
+(t). As a result, the optimal value f (βββ+(t)), which is

equivalent to J∗0 (s0), is also a convex function of βββ
+(t).

Lemma 2. For any sample epoch t and any average debt vector βββ (t), the debt vector BBB(t) obtained by
solving DP problem (3) satisfies ∑

N
i=1 β

+
i (t)E [Bi(t)|βββ (t)]≤ 0.

Proof. The proof is motivated by exploiting the convexity of f (βββ+(t)) to derive its Fenchel dual. Given
the ex-ante fairness target θ , we can define the Fenchel dual of f (βββ+(t)) as follows:

f ∗(θ) = max
βββ
+(t+1)≥000

[
N

∑
i=1

β
+
i (t +1)θ − f (βββ+(t +1))

]
.

According to Fenchel-Young inequality, we have:

f (βββ+(t +1))+ f ∗(θ)≥
N

∑
i=1

β
+
i (t +1)θ .

We let xxx∗(sss,dddt) denote the optimal solution to DP model (3) given debt vector βββ (t), it is straightforward
to obtain the following inequalities:

f ∗(θ) ≥
N

∑
i=1

β
+
i (t)θ − f (βββ+(t))

=
N

∑
i=1

β
+
i (t){θ −E [x∗i (si,dddt)|βββ (t)]}

=
N

∑
i=1

β
+
i (t)E [Bi(t)|βββ (t)] .

Note that the conditions (1) imply that f ∗(θ)≤ 0, which means that
N

∑
i=1

β
+
i (t)E [Bi(t)|βββ (t)]≤ 0.

To this end, we complete the proof.
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Lee, D., E. Sönmez, M. I. Gómez, and X. Fan. 2017. “Combining Two Wrongs to Make Two Rights: Mitigating Food Insecurity

and Food Waste through Gleaning Operations”. Food Policy 68:40–52.
Lien, R. W., S. M. Iravani, and K. R. Smilowitz. 2014. “Sequential Resource Allocation for Nonprofit Operations”. Operations

Research 62(2):301–317.
Lyu, G., W.-C. Cheung, M. C. Chou, C.-P. Teo, Z. Zheng, and Y. Zhong. 2019. “Capacity Allocation in Flexible Production

Networks: Theory and Applications”. Management Science 65(11):5091–5109.
Lyu, G., W.-C. Cheung, C.-P. Teo, and H. Wang. 2019. “Multi-Objective Online Ride-Matching”. SSRN 3538755, https:

//papers.ssrn.com/sol3/papers.cfm?abstract id=3538755, accessed 16th August 2022.
Ma, Y., T. Wang, and H. Zheng. 2022. “On the Fairness and Efficiency in Nonprofit Operations: Dynamic Resource Allocations”.

SSRN 4017058, https://papers.ssrn.com/sol3/papers.cfm?abstract id=4017058, accessed 14th July 2022.
Manshadi, V., N. Rad, and R. Scott. 2021. “Fair Dynamic Rationing”. Available at arXiv:2102.01240, https://arxiv.org/abs/

2102.01240, accessed 14th July 2022.
Marsh, M. T., and D. A. Schilling. 1994. “Equity Measurement in Facility Location Analysis: A Review and Framework”.

European Journal of Operational Research 74(1):1–17.
Nair, D. J., D. Rey, and V. V. Dixit. 2017. “Fair Allocation and Cost-effective Routing Models for Food Rescue and Redistribution”.

IISE Transactions 49(12):1172–1188.
Orgut, I. S., J. Ivy, and R. Uzsoy. 2017. “Modeling for the Equitable and Effective Distribution of Food Donations under

Stochastic Receiving Capacities”. IISE Transactions 49(6):567–578.
Orgut, I. S., J. Ivy, R. Uzsoy, and J. R. Wilson. 2016. “Modeling for the Equitable and Effective Distribution of Donated Food

under Capacity Constraints”. IIE Transactions 48(3):252–266.
Orgut, I. S., J. S. Ivy, R. Uzsoy, and C. Hale. 2018. “Robust Optimization Approaches for the Equitable and Effective Distribution

of Donated Food”. European Journal of Operational Research 269(2):516–531.
Savas, E. S. 1978. “On Equity in Providing Public Services”. Management Science 24(8):800–808.
Talluri, K. T., and G. J. V. Ryzin. 2004. The Theory and Practice of Revenue Management. New York: Springer.
Zheng, H., G. Lyu, J. Ke, and C.-P. Teo. 2022. “From Targeting to Transfer: Design of Allocation Rules in Cash Transfer

Programs”. Manufacturing & Service Operations Management. Advance online publications, https://pubsonline.informs.
org/doi/abs/10.1287/msom.2022.1101, accessed 16th September 2022.

Zhong, Y., Z. Zheng, M. C. Chou, and C.-P. Teo. 2018. “Resource Pooling and Allocation Policies to Deliver Differentiated
Service”. Management Science 64(4):1555–1573.

AUTHOR BIOGRAPHIES
JINPENG LIANG is an Associate Professor in the School of Transportation Engineering at Dalian Maritime University.
He received his Ph.D. degree in system science from Beijing Jiaotong University in 2020. His research interests include
transportation system modeling and optimization.

GUODONG LYU is an Assistant Professor in operations management at the Hong Kong University of Science and Technology.
He earned his Ph.D. in the Department of Analytics & Operations at National University of Singapore. His research interests
include online optimization, robust optimization, and data analytics.

1568

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3538755
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3538755
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4017058
https://arxiv.org/abs/2102.01240
https://arxiv.org/abs/2102.01240
https://pubsonline.informs.org/doi/abs/10.1287/msom.2022.1101
https://pubsonline.informs.org/doi/abs/10.1287/msom.2022.1101

	INTRODUCTION
	LITERATURE REVIEW
	MODEL FORMULATION AND ALLOCATION POLICY
	Model Formulation
	Necessary and Sufficient Conditions
	  Necessary Conditions.
	  Sufficient Conditions.


	NUMERICAL EXPERIMENTS
	Design of Heuristic Allocation Policy
	Simulation Scenarios

	CONCLUSION
	SOME PRELIMINARY RESULTS FOR PROOF

