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ABSTRACT

In recent years, drone delivery has become one of the most widely adopted emerging technologies. Under
the current Covid-19 pandemic, drones greatly improve logistics, especially in rural areas, where inefficient
road networks and long distances between customers reduce the delivery capacity of conventional ground
vehicles. Considering the limited flight range of drones, charging stations play essential roles in the rural
delivery system. In this study, we utilize simulation to optimize the drone delivery system design, in order
to minimize the cost of serving the maximum capacity of customers. As facility siting is usually difficult
to optimize, we propose a novel simulation-heuristic framework that continuously improves the objective
to find near-optimal solutions. In addition, we conduct a case study using real-world data collected from
Knox County, Tennessee. The results suggest that the proposed approach saves over 15% on total costs
compared with the benchmark.

1 INTRODUCTION

The past decade has witnessed the rapid growth of drones and autonomous systems that have become more
capable. The technology needed to implement and maintain a drone delivery system has only been possible
since the creation of microprocessors. Drone delivery systems stemmed from the inefficiencies of trucks
within the last mile of the supply chain. The last mile of delivery is the most costly portion of the supply
chain for all delivery companies. To solve this problem, commercial companies, such as Amazon (CBS
News 2013), DHL (Discover Delivered by DHL 2022), Google (Koetsier 2021), and FedEx (FedEx 2019),
are looking at drones as a viable source of package transportation. As technology continues to climb at
an exponential rate, many supply chains have started to experiment with drone delivery systems. Major
distributors like Amazon and Walmart are planning to implement such systems (Pandit and Poojari 2014).
These systems could quickly change the overall profitability and efficiency of the last-mile delivery.

Drones have now been proven capable of successfully delivering lightweight packages. However, the
implementation of drone delivery systems has met great difficulties in recent years, as many of these ventures
have become stalled because of Covid-19 (Gao et al. 2021). The pandemic has demonstrated particularly
severe impacts on rural areas, since rural residents live farther away from utilities than urban residents. As
a result, drone delivery systems are growing to be more critical in rural communities throughout the U.S.
(Brems et al. 2006). For example, under a healthcare context, a drone delivery system provides service to
people who cannot access proper treatment, medication, and other lifesaving items on a consistent basis
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(Brems et al. 2006). Also, in rural areas, patients are spread out in a large area, making conventional
deliveries (via trucks) inefficient. In rural areas, truck drivers may only make a few drop-offs considering
the distance between customers and the less industrialized terrain. This has an impact on the environment
as well as the timeliness of the delivery. Within the healthcare profession, such difficulty is partly relieved
by virtual doctor appointments (Health Resources and Services Administration 2021). However, this only
solves a portion of the problem in rural communities because once a doctor has prescribed the medication,
many patients still have to drive long distances to pick up the prescription. Elderly patients, injured people,
or people on bed rest are often unable to receive their prescriptions because of transportation obstacles. This,
in turn, leads to a lack of healthcare for individuals and induces life-threatening events (Health Resources
and Services Administration 2021). Under the current Covid-19 pandemic, there are great opportunities to
be explored in implementing drone delivery systems in rural areas.

2 Related Work

In the literature, there have been many drone delivery methods. One of the most well-studied methods,
in both urban and rural, is the drone-truck system (Murray and Chu 2015). In this system, drones are
placed in delivery trucks. Once the trucks arrive at destinations, the drones can be released to make one
or more deliveries (Ulmer and Thomas 2018). When deliveries are completed, the drones would go to
a designated location along the truck’s route for pickup. Review papers and surveys have summarized
research progresses and trends for this novel delivery method (Macrina et al. 2020; Moshref-Javadi and
Winkenbach 2021). To complete the delivery, drones will be equipped with new batteries or charged after
each sortie. However, frequently replacing or charging batteries could increase the time to deliver and
cause negative environmental impact (Ferrandez et al. 2016). The truck-drone method also may not be the
optimal solution for rural implementations (Marinelli et al. 2018), since it does not immediately resolve
the problems that trucks travel inefficiently in rural road networks, and the flight range of drones only
allows limited customers to be served.

Another system has shown great promises for drones to operate over long distances, with the assistance
of charging stations in the area of service (Mourgelas et al. 2020). Kim and Lim (2018) proposed a drone
surveillance network along the U.S. and Mexican border. This system introduces charging stations along
the route to increase the range of drones. In a second study, Hong et al. (2018) showed the effectiveness of
charging stations. Charging stations significantly increase the range of the drones by nearly doubling the
given battery capacity (Choi et al. 2016). Typically, two types of charging stations are considered. One on
which drones land and recharge (stationary) (Shin et al. 2019), and another that drones fly through, without
stopping, to charge the battery (dynamic) (Kim and Lim 2018) (Mourgelas et al. 2020). The stationary
charging station provides more charging capacity, but takes more time. The stationary charging stations are
considered in many drone delivery studies (Marinelli et al. 2018). In contrast, the dynamic charging station
only partially charges the battery, since the drone remains in flight, but it also saves time, and is more flexible
to design. Since the stationary and the dynamic charging stations have their own advantages, experiments
from the literature show that a mixture of the two would achieve the most efficiency in prolonging drone
flights (Kim et al. 2018).

With the help of charging stations, one of the major problems of rural delivery systems can be overcome,
where the distance between locations is too large for drones to cover. In current applications, excessive
delivery hubs are placed to cover the service area, which increases the investment greatly. For example,
in healthcare, the drone delivery system for rural patients is designed to deliver low weight packages such
as medicine (Kim et al. 2017; Scott and Scott 2018). To accomplish this, multiple delivery hubs or depots
are set up in optimal locations where their zones of operations only slightly overlap. The drones are then
dispatched to customers, dropping off medication or other cargo (Kim et al. 2017). A similar system was
created for disaster relief, specifically considering the infrastructure in underdeveloped countries (Rabta
et al. 2018). With advanced camera and positioning systems, drones can easily distinguish objects, such
as picking out a house from trees within an apartment complex, which allows drones to perform delivery
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operations in precision. All in all, for rural areas, drone delivery remains one of the most viable options
(Brunner et al. 2019).

In order to design a drone delivery system in a rural area, drone depots are often placed throughout a
predefined graph/network (Cornuéjols et al. 1983). Depots are “warehouses”, which drones will be released
from and returned to. These depots are stationary locations placed though out a community to increase the
effective coverage area of the deliveries (Cornuéjols et al. 1983; Wu et al. 2006). Depots are the biggest and
most costly portion of this potential network. To combat the high prices of depots, charging stations will be
placed in strategic locations on the edge of the delivery range to extend the delivery distance without having
to add more costly depots to the network (Cornuéjols et al. 1983). Charging stations cost considerably less
than depots because they will not need as much infrastructure or land to become operative. As discussed,
charging stations give drones a much larger delivery range, allowing drones to serve more customers.
The benefits of combining drone depot and charging stations include reduced investment, increased drone
flight range, and better coverage of customers, leading to an efficient, environmentally-friendly last mile
of delivery method (Raj and Sah 2019). However, the challenges still remain on how to optimally design
infrastructure to support drone delivery operations (Frachtenberg 2019).

In this study, the optimal placement of drone depots and charging stations involve facility location
decisions, which have been extensively studied by the Operations Research community, where many have
considered the problem difficult to optimize, especially for large-scale implementations (Owen and Daskin
1998; Snyder 2006). In practice, there are many stochastic parameters like uncertain flight range which may
make it even harder. To improve the solution methodology, in this study, we propose a simulation-heuristic
framework that harnesses the power of simulation to enhance the optimization capability of heuristic al-
gorithms. Simheuristics is the hybridization of simulation techniques with metaheuristics, which can help
deal with optimization problems in uncertain domains (Chica et al. 2020). This problem under study is
a NP-hard problem and has stochastic parameters. When dealing with large-scale stochastic optimization
problems, simheuristics is considered as a “first resort” method to help decision-makers get reasonable opti-
mal solutions in quick succession. Specifically, we combine an agent-based simulation model with a genetic
algorithm (GA) to find the optimal locations of drone depots and charging stations. In addition, we validate
our proposed approach through a case study that uses real-world data collected from Knox County, Tennessee.

3 PROBLEM FORMULATION

In this section, we formulate the optimal placement problem of drone depots and charging stations using
integer programming (IP). We then briefly discuss the complexity of the problem and potential obstacles
in solving it exactly.

Specifically, we use i ∈M to represent customers. We place drone depots at candidate locations j ∈V ,
and charging stations at locations k ∈W . There are fixed costs A j associated with each drone depot and Bk
with each charging station. Drones, with limited flight range R, depart drone depots to serve customers.
Drones are allowed to charge at charging stations so that the flight range can be extended to serve distant
customers. We use variable Uk to denote the number of charging stations visited by a drone starting from
the depot to the charging station k, including k. E.g., Uk = 1 means that k is the first station visited by the
drone, implying that the distance between k to its nearest depot is within R.

To provide delivery service to customers in distant regions, we aim to set up drone depots and charging
stations in optimal locations. Similar to the literature (Scaparra and Church 2008), we allow decision-makers
to choose from candidate locations in order to serve as many customers as possible and keep total costs
at the minimum. The notation of this model is summarized in Table 1. The objective function of the IP
model minimizes the total cost, including the cost of setting up depots, charging stations and the penalty
cost of those unserved customers. The IP model can be formulated as follows.

min
J

∑
j=1

A jX j +
K

∑
k=1

BkYk +
F

∑
i=1

ciPi (1)
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Table 1: Notation of the IP model.

Notation Definition
Index
i Index of customers
j Index of depots
k, l Index of charging stations
Variables
X j If there is a depot in location j, X j = 1. Otherwise X j = 0.
Yk If there is a charging station in location k, Yk = 1. Otherwise Yk = 0.
Uk Number of visited charging stations when arriving at k, integer variable.
Ci,k If customer i is served by drones through charging station k, Ci,k = 1. Otherwise Ci,k = 0.
Ci, j If customer i is served by drones which starts from depot j, Ci, j = 1. Otherwise Ci, j = 0.
ci If customer i is served, ci = 1. Otherwise ci = 0.
Z j,k If charging station k can be serve by depot j, Z j,k = 1. Otherwise Z j,k = 0.
zk If this charging station is connected to a depot directly, zk = 0. Otherwise zk = 1.
ρk,l If charging station k is connected to charging station l, ρk,l = 1. Otherwise ρk,l = 0.
Parameters
F The set of customers
V The set of potential depots
W The set of potential charging stations
Di, j The distance between node i and j, where j represents either a depot or a charging station
A j The cost of depot j
Bk The cost of charging station k
Pi The penalty cost of unserved customer i
R The maximum travelling distance for each fully-charged drone

s.t.
J

∑
j=1

Ci, j +
K

∑
k=1

Ci,k ≥ 1 ∀ i ∈ F (2)

Ci, jR+ ciM ≥ 2Di, j ∀ j ∈V, i ∈ F (3)

Ci,kR+ ciM ≥ 2Di,k ∀ k ∈W, i ∈ F (4)

Ci, j ≤ X j ∀ j ∈V, i ∈ F (5)

Ci,k ≤ Yk ∀ k ∈W, i ∈ F (6)

In the IP model, Equation (2) means that most customers are reachable by the drone from a depot or a
charging station. Equations (3) and (4) limit that if customer i does not exceed the service range of depot
j or charging station k, the distance between i and j or k should be no more than R/2, since drones have
to travel back to a depot/charging station after delivery. If customer i cannot be served by any depots, (3)
and (4) make sure that ci = 1 and it will get an extra penalty cost in the objective function. Equations (5)
and (6) make sure that the customer has the probability to be served by drones from depot j or charging
station k only when there is a facility. With respect to the length of the paper, other constraints such as
those that govern the connection between charging stations and drone depots are not included here. A
drone must travel from and return to a depot, so a charging station only functions when it is reachable by
a drone from a depot. In addition, we let M be a very big number to control integer variables.

We use Gurobi 9.1.1 on a personal computer with an Intel 2.70 GHz CPU and an 8G memory and
test the mathematical model by a random instance with 20 customers, 2 depots and 10 charging stations.
The optimal solution is obtained within 1 second. However, when we increase the problem scale to 50
customers, 3 depots and 40 charging stations, it has still more than 10% gap after 3,600 seconds and the
optimal solution is not obtained.

Overall, the optimization model is complex since all the variables are integer. As a result, feasible
solutions to the model are scattered discontinuously and nonlinearly within a high-dimensional convex
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hull (Conforti et al. 2014). Thus, solving the model exactly requires branching and bounding techniques,
whose computational complexities increase exponentially with the size of the problem. This suggests that
even for problems with moderate sizes, commercial solvers such as Gurobi cannot produce good-quality
solutions within a reasonable time period. To resolve this issue, in the following section, we consider
alternative routes to optimize the problem.

4 THE SIMULATION-HEURISTIC APPROACH

As discussed, the IP model becomes difficult to solve in reasonable time frames, especially for large-scale
implementations. In order to find good-quality solutions fast, we use heuristic algorithms as the optimization
procedure. However, as shown in the IP model, the problem is regulated by multiple constraints, which
imposes great obstacles on the heuristic algorithm when evaluating feasible solutions. Thus, in the following,
we incorporate the heuristic algorithm into an agent-based simulation environment, where the solutions
improved by the heuristic algorithm can be quickly and accurately evaluated, instead of solving a system
of linear constraints with integer variables.

In addition, by creating an agent-based simulation environment, the model can be easily modified into
various extensions. For example, as Cheng et al. (2020) indicates, the performance of drones is affected by
multiple uncertain factors, such as weather, temperature, or air density. When uncertainties are incorporated
into the model, the simulated environment offers a convenient yet robust approach to finding good-quality
solutions.

This model attempts to address a rural area similar to the population density of Sweetwater TN, where
a major city (Knoxville) is within 40 minutes by car. This would attempt to help the underrepresented
population of underprivileged individuals who do not have the opportunity to reach public health facilities.
Many of these individuals are unable to reach the public health facilities because of lack of transportation.
The public transportation is often too sparse, unreliable, and slow. They often times just can not take time
off to take a day trip for there own health. This in part motivated us to study this problem.

Another reason for this study is to reduce the last mile of delivery, which is usually the most inefficient
part of the supply chain. By directly servicing customers we reduce the carbon footprint and positively
affect the environment. This is the case because trucks are needed for the last mile of delivery, which
creates a higher carbon emission then drones. By introducing drones to the last mile of delivery in rural
areas, less trucks will be needed as well as more customers can be served because trucks sometimes just
can not reach a customer.

4.1 Agent-based Simulation

For this problem, we consider three types of agents: customers, charging stations, and drone depots. Drones
themselves are not included as agents because the flight range of drones is modeled, on the high level, as
the service range of drone depots and charging stations. The locations of customers, potential charging
stations, and potential depots are modeled on a Geographic Information System (GIS) map according to
their latitude and longitude. Since drones fly above terrains, we use the Euclidean distance to calculate
the flight range between locations. The objective of the simulation model is similar to the objective of the
IP model, with one distinction, where extra costs are added when customers are unable to receive service
from drones, due to ill-placed depots or charging stations. The structure of the simulation model is shown
in Figure 1.

In the simulation model, we call a charging station “valid”, if and only if it is within the service range
of another “valid” charging station or a depot. This means that a drone flying from a “valid” depot can
reach any other “valid” charging station or depot. In addition, a customer is served when the customer
lies within half of the service range of a “valid” charging station or a depot, so that a drone can fly to the
customer and return for charging. The objective function is to minimize the aggregated costs of setting up
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(a) The logic flow of an agent. (b) An illustration of “valid” and “invalid” charging stations.
Figure 1: An overview of the agent-based model.

depots and charging stations, as shown in Figure 1a. Additionally, customers who are not “served” add
additional penalty costs to the total cost.

Figure 1b illustrates “valid” and “invalid” charging stations. The yellow boxes represent the “valid”
charging station which connects to at least one drone depot. The depot expands its service range by allowing
drones to fly to charging stations. The green boxes represent the “invalid” charging stations, from which
the flight range of drones cannot reach any depot, thus providing no benefits in serving customers. We are
not sure which charging stations will be used to provide service when making decisions. So these “invalid”
charging stations may be set up, but will not work in delivery.

Before the simulation, we initialize the agents and parameters. All the customers, depots and charging
stations have parameters of their locations: longitude and latitude, which can be imported to AnyLogic
GIS map. The drones have their own attributes like speed and flight range which can be chosen in a
certain stochastic distribution. When simulating, the customers will find its closest depot. If the distance
between a customer to its closest depot is no more than the flight radium of a drone, there will be a drone
coming from that depot and delivering packages to that customer. Otherwise, the customer will find the
first charging station which is in the service range of drones and continue to find the next charging station
in the service range until there is a depot within the flight radium of the drone. If there is a customer who
cannot find any depot to serve it, this customer is treated as unserved. Since our goal is to find the total
cost of this delivery system, we compute the cost of building all the depots and charging stations which
are used in serving these customers. Besides, there will be a penalty cost for each unserved customer in
this delivery system.

4.2 Genetic Algorithm

The agent-based simulation creates an environment where the feasibility and optimally of the solutions
are evaluated, which represents the decisions of the depot and charging station placements. In order to
improve the solution, we incorporate a heuristic algorithm into the simulation environment. Specifically,
we use GA as an optimization procedure to improve the solution quality.

Considering that our purpose is to choose some depots from a given depot set and choose some charging
stations from a given charging station set, which can be seen as two decision lists with binary variables, we
encode them as chromosomes and use GA to get a better solution. As a heuristic algorithm, GA provides
some quick and relatively inexpensive feedback to decision-makers. And due to its high efficiency, we can
use this algorithm multiple times with different random seeds to obtain better solutions. Moreover, GA
can find satisfying solutions without changing the algorithm structure in different scenarios and it is much
easier to be combined with simulation tools compared with other methods such as neural networks.
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GA mimics the process of natural selection. GA starts with a population of chromosomes, which is the first
generation. Each chromosome consists of multiple genes. Different chromosomes may perform differently
in the environment. A fitness function can measure the quality of performance of each chromosome.
Selected by the environment, the chromosome which performs better has a greater probability of producing
offspring for the next generation, using a crossover operation. During the crossover, genes in the offspring’s
chromosome have probabilities to mutate, from which stronger individuals may emerge. The entire evolution
process continues through multiple generations until a certain termination criterion is met.

Figure 2: An illustration of the optimization process in GA.

In this problem, chromosomes represent binary decisions of whether to place a depot or charging station
at a candidate location. A chromosome is encoded in such a way that the first part contains binary digits of
depot locations, and the second part contains binary digits of charging station locations. Since our goal is
to minimize the total cost of the drone delivery system, the fitness function is formulated by summing the
cost of placed depots and charging stations. To acquire better solutions, GA allows the current population
to “evolute”, where crossover preserves the good genes in the current generation, and mutation introduces
new possibilities for improvement. Specifically, in this problem, the parent chromosomes exchange part
of the genes in the crossover. Mutation flips a binary digit in of gene from 0 to 1 or from 1 to 0.

Algorithm 1: Pseudo-code for GA.
1: Initiate crossover rate C and mutation rate P1,1, P1,2, P2,1, P2,2
2: Initiate the minimal cost T ← ∞

3: Set all candidate locations of drone depots and charging stations to a queue D
4: Generate S random chromosomes as the population m1 in generation t← 1
5: while t ≤M do
6: Compute the fitness value of each chromosome in mt
7: Update the minimal fitness value T
8: Record the chromosome R with minimal fitness value
9: while The size of mt+1 not exceeds SC do

10: Choose two chromosomes from mt according to the fitness value
11: Randomly exchange values in these two chromosomes and generate two new chromosomes
12: end while
13: The rest S(1−C) chromosomes comes from mt which have minimal fitness function
14: for all Scan chromosome i in the mt+1 do
15: for all Scan node j in i do
16: j has a probability to change its value according to P1,1, P1,2, P2,1 or P2,2
17: end for
18: end for
19: t← t +1
20: end while
21: Output T and R

When implementing GA, we first initialize parameters, including population size (S), maximum gen-
erations (M), crossover rate (C) and mutation rate (P). Since drone depots are much more expensive
than charging stations, we use different mutation rates for drone depot and charging station sections in a
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chromosome. Additionally, since most of the time, good solutions to the problem are scarce vectors, i.e.,
0 digits appear more often than 1 digits, we further use different mutation rates when mutating 0 to 1
and mutating 1to 0. Specifically, the mutation rate of the drone depot section in a chromosome will have
the probability P1,1 of turning 1 to 0, and P1,2 of turning 0 to 1, where P1,1 > P1,2. The charging station
section in a chromosome will have the probability P2,1 of turning 1 to 0, and P2,2 of turning 0 to 1, where
P2,1 > P2,2. Figure 2 concisely shows the optimization process of GA, where chromosomes go through
crossover and mutation to produce better offspring. The pseudo code for GA is shown in Algorithm 1.

5 CASE STUDY

5.1 Data and Parameters

In this section, we conduct a case study to validate our method. Data used in this study were collected
in Knox County, Tennessee, with the Google Maps API. Knox County features low-rise buildings and
loosely packed residential homes, making it suitable as a case study for drone delivery in the rural area. We
randomly select 101 customers in the area according to the United States Census Bureau (2021). Candidate
depot locations are chosen according to 4 local UPS stores. We choose 67 candidate charging stations
randomly using Census block data. Figure 3a illustrates the data, where red, blue, and green dots represent
customers, candidate depots, and candidate charging stations.

(a) The map of customers and facilities. (b) The best objective in each generation of GA.
Figure 3: Data and results.

According to Kirschstein (2020), the flight range of a drone can be up to 9 km. Here we let the drone’s
flight range follow a uniform distribution from 4 to 8 km since the load and weather will consume more
energy than no load in good weather. The setup cost of drone depot is estimated to be $1 million (Greg
Clinton 2022), and the cost of a charging station with 10 charging pads is estimated to be $10,000 (Nick
Lavars 2014). In this case study, to avoid numerical issues, we re-scale the costs, so that they become
manageable for the simulation model. We let the cost of a depot be $1 million, and the cost of a charging
station be $10,000. In addition, each customer who cannot receive service will cost extra $100,000 as a
penalty. To implement GA, we let S = 100, M = 100, C = 0.75, P1,1 = 0.01, P1,2 = 0.1, P2,1 = 0.01, and
P2,2 = 0.05.

5.2 Results

To evaluate the performance of the simulation-heuristic framework, we include a greedy algorithm as
the benchmark, which always looks for the solution with the lowest costs to serve the largest number of
customers. Specifically, the greedy algorithm assigns each customer to the nearest selected depot, and
connects the customer with the depot using the minimum number of charging stations.
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We first show the results from GA. Figure 3b plots the total cost of the best drone delivery system
design in each generation. Initially, the total cost of the drone delivery system is more than $2.1 million.
As the generation increases, better solutions are found. After 100 generations, the best solution found
by the GA needs only one drone depot and one charging station, which cost only $1.78 million in total.
For each scenario, the greedy algorithm takes less than 0.1 seconds. And the running time of GA mainly
depends on the population size and the number of iterations. In the case of more than 100 customers, the
population size of 100 and 100 iterations, this algorithm only takes less than 2 minutes, which can be even
faster if we reduce the maximum generations.

Table 2: Comparison between GA and the greedy algorithm.

Instance Scenario 1 Scenario 2 Scenario 3
Method GA Greedy GA Greedy GA Greedy

Total cost ($1,000) 1,780 2,140 1,920 2,760 1,580 1,940
Drone depot 1 1 1 1 1 1

charging station 18 34 12 26 18 34
Unserved customers 6 8 7 15 4 6

Compared with the greedy algorithm, GA clearly outperforms. Table 2 shows the comparison between
GA and the greedy algorithm in different scenarios. In scenario 1, we have 101 customers, 4 depots and
67 charging stations. There are 101 customers, 3 depots and 55 charging stations in scenario 2, and 80
customers, 4 depots and 67 charging stations in scenario 3. We can see that GA gets better solutions than
the greedy method in each scenario with lower cost and more served customers. Besides, GA takes less
than 2 minutes in all these experiments. Although the greedy algorithm can provide a solution in a very
short time, GA provides significantly better solutions with the cost of an acceptable time. Moreover, these
scenarios will be very hard to find the optimal solution by solvers since the scale is simply too large, which
means this efficient heuristic algorithm is very helpful.

5.3 Sensitivity Analysis

5.3.1 Drone Flight Range

In this section, we conduct additional experiments with varying drone flight ranges. Considering that the
flight range of drones is affected by multiple factors (Cheng et al. 2020), we let the flight range of drones
follow a uniform distribution from 6 to 9 km. We use the minimum, mean and maximum values for the
flight range, as well as randomly sampling from the uniform distribution. Especially, when the uniform
distribution is used, we report the average objective value of 10 repeated evaluations. Additionally, an
extreme case is also conducted that the drones can only travel for 5 km, which is shorter than expected.

Table 3: Drone delivery system design with varying flight range.

Flight range (km) 5 6 7.5 9 Uniform Distribution
Total cost ($1,000) 2,930 1,030 1,020 1,010 1,020

Drone depot 2 1 1 1 1
charging station 3 3 2 1 2
Serve customer 92 101 101 101 101

Table 3 shows the results of the experiments. In most cases, to serve all customers, one depot and two
charging stations are needed. However, when the drones assume the maximum flight range, the results
intuitively suggest that only one depot, as well as one charging station, is required. Overall, the experiments
show that in the case of uncertain flight range, placing one drone depot with two charging stations can
serve all customers in most cases. But when the flight range becomes extremely small, even two depots
with three charging stations cannot serve all customers, which makes the delivery system based on the
flight range between 6-9 km fail in this case. Additionally, when we assume that the flight range is always
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the maximum value, the best result we obtained will not do well if the flight range decreases. But the
result in Random Uniform case still works well in different cases. Figure 4a shows how many customers
will be served with two different drone delivery systems when the drones have various flight ranges.

(a) Number of served customers with shorter flight
range.

(b) The number of unreachable customers with varying cost
ratios.

Figure 4: Sensitivity analysis.

5.3.2 Facility costs

Considering that in practical situations, the construction cost of depots and charging stations may vary,
according to numerous factors, such as location, technology, design, etc. (Greg Clinton 2022), we further
conduct a sensitivity analysis on the costs of depots and charging stations, to provide insights for practitioners.
Specifically, we vary the ratios between the cost of depot versus charging station, ranging from 10:1 to 1:1.

Results of the experiments are shown in Figure 4b, as the impact on customer coverage. Comparing
the first two columns, the results show less sensitivity regarding charging station costs, as the model strives
to serve all customers to avoid additional penalties. However, when the cost of charging stations increases,
the behavior changes, where the model would rather sacrifice customer coverage, than pay for additional
charging stations, due to the expensive cost. Overall, the results suggest that for practitioners, in order to
maximize customer coverage, it is critical to control the price of charging stations, which are the keys to
prolonging the drone flight range.

6 CONCLUSIONS

In this study, we consider a novel drone delivery system that optimizes the placement of drone depots
and charging stations, prolonging the flight duration of drones, and thus expanding their customer-serving
capabilities. To solve the problem, we first formulate an optimization model. Due to the difficulties
in solving the optimization model, we propose a novel simulation-heuristic framework that incorporates
heuristic algorithms into simulation environments. Specifically, we model the drone delivery problem with
agent-based simulation and optimize the locations of drone depots and charging stations using GA.

To validate the model, we further conduct a case study that employs data collected from the real world.
Results of the case study show that the simulation-heuristic framework produces solutions that save more
than 50% on the cost compared with the greedy algorithm, with 100% customer coverage.

From a future research perspective, multiple types of drones can be considered, which may have
different flight ranges. Optimization under this setting will impose more challenges. Additionally, impacts
from the environmental factors should be studied, where a scenario-based or simulation-based model could
improve system stability under uncertainties.
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Kim, S. J., G. J. Lim, J. Cho, and M. J. Côté. 2017. “Drone-Aided Healthcare Services for Patients with Chronic Diseases in

Rural Areas”. Journal of Intelligent & Robotic Systems 88(1):163–180.
Kirschstein, T. 2020. “Comparison of Energy Demands of Drone-Based and Ground-Based Parcel Delivery Services”. Trans-

portation Research Part D: Transport and Environment 78:102209.
Koetsier, J. 2021. Google Now Owns The ‘Largest Residential Drone Delivery Service in the World’. https://www.forbes.com/sites/

johnkoetsier/2021/08/25/google-now-owns-the-largest-residential-drone-delivery-service-in-the-world/?sh=7e81b5391197,
accessed 14st April, 2022.

Macrina, G., L. D. P. Pugliese, F. Guerriero, and G. Laporte. 2020. “Drone-Aided Routing: A Literature Review”. Transportation
Research Part C: Emerging Technologies 120:102762.

Marinelli, M., L. Caggiani, M. Ottomanelli, and M. Dell’Orco. 2018. “En Route Truck–drone Parcel Delivery for Optimal
Vehicle Routing Strategies”. IET Intelligent Transport Systems 12(4):253–261.

Moshref-Javadi, M., and M. Winkenbach. 2021. “Applications and Research Avenues for Drone-Based Models in Logistics: A
Classification and Review”. Expert Systems with Applications 177:114854.

Mourgelas, C., S. Kokkinos, A. Milidonis, and I. Voyiatzis. 2020. “Autonomous Drone Charging Stations: A Survey”. In 24th
Pan-Hellenic Conference on Informatics, 233–236. New York, NY, USA: Association for Computing Machinery.

Murray, C. C., and A. G. Chu. 2015. “The Flying Sidekick Traveling Salesman Problem: Optimization of Drone-Assisted
Parcel Delivery”. Transportation Research Part C 54:86–109.

1591

https://www.cbsnews.com/news/amazon-unveils-futuristic-plan-delivery-by-drone/
https://www.cbsnews.com/news/amazon-unveils-futuristic-plan-delivery-by-drone/
https://www.dhl.com/discover/en-my/business/business-ethics/parcelcopter-drone-technology
https://www.dhl.com/discover/en-my/business/business-ethics/parcelcopter-drone-technology
https://www.fedex.com/en-us/sustainability/wing-drones-transport-fedex-deliveries-directly-to-homes.html
https://www.fedex.com/en-us/sustainability/wing-drones-transport-fedex-deliveries-directly-to-homes.html
https://www.buildzoom.com/blog/what-does-it-cost-fedex
https://www.buildzoom.com/blog/what-does-it-cost-fedex
https://www.ruralhealthinfo.org/topics/telehealth
https://www.ruralhealthinfo.org/topics/telehealth
https://www.forbes.com/sites/johnkoetsier/2021/08/25/google-now-owns-the-largest-residential-drone-delivery-service-in-the-world/?sh=7e81b5391197
https://www.forbes.com/sites/johnkoetsier/2021/08/25/google-now-owns-the-largest-residential-drone-delivery-service-in-the-world/?sh=7e81b5391197


Wang, Swanson, Liu, Jones, and Li

Nick Lavars 2014. SkySense Pad Starts Charging Your Drone the Moment It Lands. https://newatlas.com/
skysense-pad-charging-drone-lands/34592/, accessed accessed 14st April, 2022.

Owen, S. H., and M. S. Daskin. 1998. “Strategic Facility Location: A Review”. European Journal of Operational Re-
search 111(3):423–447.

Pandit, V., and A. Poojari. 2014. “A Study on Amazon Prime Air for Feasibility and Profitability: A Graphical Data Analysis”.
IOSR Journal of Business and Management 16(11):06–11.

Rabta, B., C. Wankmüller, and G. Reiner. 2018. “A Drone Fleet Model for Last-Mile Distribution in Disaster Relief Operations”.
International Journal of Disaster Risk Reduction 28:107–112.

Raj, A., and B. Sah. 2019. “Analyzing Critical Success Factors for Implementation of Drones in the Logistics Sector Using
Grey-DEMATEL Based Approach”. Computers & Industrial Engineering 138:106118.

Scaparra, M. P., and R. L. Church. 2008. “A Bilevel Mixed-Integer Program for Critical Infrastructure Protection Planning”.
Computers & Operations Research 35(6):1905–1923.

Scott, J. E., and C. H. Scott. 2018. “Models for Drone Delivery of Medications and Other Healthcare Items”. International
Journal of Healthcare Information Systems and Informatics 13(3):20–34.

Shin, M., J. Kim, and M. Levorato. 2019. “Auction-Based Charging Scheduling with Deep Learning Framework for Multi-Drone
Networks”. IEEE Transactions on Vehicular Technology 68(5):4235–4248.

Snyder, L. V. 2006. “Facility Location Under Uncertainty: A Review”. IIE Transactions 38(7):547–564.
Ulmer, M. W., and B. W. Thomas. 2018. “Same-Day Delivery with Heterogeneous Fleets of Drones and Vehicles”. Net-

works 72(4):475–505.
United States Census Bureau 2021. “2010 Census - Block Maps”. https://www.census.gov/geographies/reference-maps/2010/

geo/2010-census-block-maps.html, accessed 14st April, 2022.
Wu, L.-Y., X.-S. Zhang, and J.-L. Zhang. 2006. “Capacitated Facility Location Problem withGeneral Setup Cost”. Computers

& Operations Research 33(5):1226–1241.

AUTHOR BIOGRAPHIES
XUDONG WANG is a Graduate Assistant Researcher in the Department of Industrial Systems Engineering at the University
of Tennessee, Knoxville. He holds a Bachelors in Information Management and Information System. His research interests
include vehicle routing problem and simulation. His email address is xwang97@vols.utk.edu.

KIMON SWANSON is a Graduate Assistant Researcher in the Department of Industrial Systems Engineering at the University
of Tennessee, Knoxville. He holds a Bachelors in Industrial Systems Engineering. His research interests include drone delivery
systems and machine learning predictive analysis. His email address is Kswanso5@vols.utk.edu.

ZEYU LIU is is a Ph.D. candidate in the Department of Industrial & Systems Engineering at the University of Tennessee,
Knoxville. His research interests include stochastic optimization, data-driven analytics, reinforcement learning and agent-based
simulation, with applications in the fields of critical infrastructure systems, healthcare, transportation, and energy systems. His
email address is zeyu.liu@utk.edu.

GERALD JONES is a Graduate Assistant Researcher in the Department of Industrial Systems Engineering at the University
of Tennessee, Knoxville. He holds a Bachelors in Electrical Engineering, a Masters in Computer Science and is currently
pursuing a Ph.D in Industrial Systems Engineering. His research interests include machine learning, bio-inspired computation,
system modeling and optimization, and power system reliability optimization. His email address is gjones2@vols.utk.edu.

XUEPING LI is a Professor of Industrial and Systems Engineering and the Director of the Ideation Laboratory (iLab) and
co-Director of the Health Innovation Technology and Simulation (HITS) Lab at the University of Tennessee - Knoxville. He
holds a Ph.D. from Arizona State University. His research areas include complex system modeling, simulation, and optimization,
with broad application in supply chain logistics, healthcare, and energy systems. He is a member of IIE, IEEE, ASEE and
INFORMS. His e-mail address is Xueping.Li@utk.edu. His website is https://xli.tennessee.edu/.

1592

https://newatlas.com/skysense-pad-charging-drone-lands/34592/
https://newatlas.com/skysense-pad-charging-drone-lands/34592/
https://www.census.gov/geographies/reference-maps/2010/geo/2010-census-block-maps.html
https://www.census.gov/geographies/reference-maps/2010/geo/2010-census-block-maps.html
mailto://xwang97@vols.utk.edu
mailto://Kswanso5@vols.utk.edu
mailto://zeyu.liu@utk.edu
mailto://gjones2@vols.utk.edu
mailto://Xueping.Li@utk.edu
https://xli.tennessee.edu

	INTRODUCTION
	Related Work
	PROBLEM FORMULATION
	THE SIMULATION-HEURISTIC APPROACH
	Agent-based Simulation
	blackGenetic Algorithm

	CASE STUDY
	Data and Parameters
	Results
	Sensitivity Analysis
	  Drone Flight Range
	  Facility costs


	CONCLUSIONS

