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ABSTRACT

Animal feed production constitutes a significant market in today’s agricultural sector, with an annual
turnover of 55 billion euros within the European Union in 2020. Nevertheless, feed logistics stills suffer
from low digitization and manually coordinated supply chains. These factors lead to high transportation and
product costs for customers and retailers by inducing short-term orders that often disregard current price
developments. This article presents a simulation model for feed supply networks consisting of a number
of customers, retailers, and manufacturers. It proposes a fuzzy-based decision strategy for customers to
decide when to order specific products. Moreover, it describes a possible decision strategy for retailers to
optimize their transport routes by selecting viable manufacturers. The evaluation shows that the proposed
decision strategy can reduce costs for feed and, depending on the supply network structure, reduce delivery
distances for feed retailers.

1 INTRODUCTION

As part of the agricultural market, feed production achieved a turnover of 52 billion Euro within the
European Union in 2019, marking an increase of 28% since 2007 and amounting to approximately 1,112
Megatons of feed (FEFAC 2021). Nevertheless, animal feed constitutes one of the highest cost factors for
livestock production, ranging between 11% for cattle to 57% for poultry (FEFAC 2021). The differences
result from the diversity of animal feeds and the fact that farmers often produce parts of their own feed,
e.g., grains or grasses. According to Leenstra (2013), poultry production only marginally profits from this
option and generally relies on buying animal feed in full. In general, feed production combines many actors
with an extensive range of product variants that require a high level of coordination across the supply chain.

The efficiency of this supply network highly relies on fast communication and predictable customer
behavior. For example, Annosi et al. (2021) describe in their study that the food sector only shows a
limited degree of digitization. This limited degree results, e.g., from a large number of small actors within
the market, missing expertise, and capabilities to monitor and handle the necessary data, comparably high
investment costs, and missing trust. For example, Böhmerle (2020) states that 237 different manufacturers
for compound feed existed in Germany (2019) while, according to Germany’s Ministry for Food and
Agriculture, 168,833 companies/farms were registered to hold livestock in 2021. Moreover, approximately
2,700 agricultural retailers existed in Germany by 2018. These numbers indicate an extreme bandwidth of
digitization and highlight that the barriers identified by Annosi et al. (2021) also hold for feed production.
Similarly, Vennemann and Theuvsen (2004) describe a study where only 6% of the participants used online
marketplaces to procure feed or other tools. Most participants ordered by phone as they conceived online
alternatives as too complicated or time-consuming. Accordingly, feed production requires solutions with
low entry costs and barriers to use modern technologies and methods to streamline its processes. The
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availability of fast and unproblematic access to such technologies for farmers, both as customers and raw
material producers, constitutes a major factor in increasing the supply network’s efficiency.

Together with the avency GmbH, the research project XCeedFeed aims to develop and provide an online
platform for involved actors which allows better coordination with low entry barriers considering financial
investments and expertise requirements. While other research projects mainly focus on the development
of storage level sensors and inter-connectivity, e.g., Raba et al. (2020), this platform uses an agent-based
simulation model, to estimate the actors’ behavior and market developments to provide customers with
order suggestions based on their inventory or silo levels and feed requirements. Ultimately, the platform
aims to streamline processes to reduce costs and CO2 emissions.

Consequently, this article contributes to the current literature by first providing a concise overview of
feed-logistics supply chains, market characteristics, and available online tools by summarizing different
sources from literature. Second, the article describes a new agent-based simulation model covering these
characteristics and proposes a fuzzy-based decision strategy for customers considering this sector’s highly
dynamic price developments.

After presenting an introduction to the markets and targeted supply networks, the following section
presents current solutions available in the feed market. Section 3 presents the simulation model used to
evaluate different methods to derive order suggestions. Finally, section 4 evaluates the effect of these
methods on the overall performance. The article closes with a conclusion and a preview of future works.

2 MARKET DESCRIPTION AND STATE OF THE ART

Figure 1 shows the main components and distribution channels for compound feed to the actual customers.
Farmers mainly procure their animal feed through agricultural retailers and feed manufacturers. In addition,
several farmers produce their own feedstuff. Manufacturers use raw materials like grains, mineral products,
oils, or supplements to produce compound feed in various combinations, e.g., as pellets or crumbles.
Therefore, they rely on imported materials like soybeans and, preferably, locally sourced materials from
other farmers, the food industry, e.g., for oils or starch, and mineral or other supplements to be added to
the compound feed.
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Figure 1: Compound Feed Supply Chain, modeled after DVT (2022).

Agrarheute (2014) describes a survey conducted across 591 farmers in Germany to characterize their
buying behavior. In summary, 49% of the farms procure their feed from private agricultural retailers, 41%
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buy from cooperative agricultural retailers, and only 10% obtain their feeds directly from manufacturers.
Moreover, the study shows that about 22% of farmers produce their own feed.

These numbers show that agricultural retailers take on the role of intermediaries between farmers and
manufacturers. In consequence, most manufacturers produce in a make-to-order mode (Rippel et al. 2017).
Therefore, retailers usually supply the raw materials as part of their order. Similarly, current statistics
from Germany’s Federal Office for Agriculture and Food show that manufacturers only hold a minimum
inventory of raw materials apart from additives (Böhmerle 2020). According to this report, most of the
stored inventory of raw materials and finished feed remains with the farmers themselves. Consequently
the compound feed market mainly relies on just-in-time concepts (Böhmerle 2020).

2.1 Market Characteristics

Wajszczuk (2016) reviews unique characteristics that differentiate agri-food supply chains from supply
chains in other manufacturing areas. While focusing on food supply chains, most of these characteristics
hold for feed manufacturing. Among others, he highlights the dependence of processes and products on
climatic conditions, the need for fast transport and processing to retain quality, and the high diversification
in products. The article states that these characteristics lead to shifts in logistic costs. For example, physical
flow costs (transport) make up approximately 86.5% of logistics costs, compared to 31.5% in other sectors.
In contrast, inventory costs only amount to 12.2% compared to an average of 39.7% in other domains.

Consequently, feed production constitutes a highly customer-driven market with high product variety.
For example, Rippel et al. (2017) describe the use case of a manufacturer who manufactured feed using
119 recipes across 60 different ingredients at the time of the process analysis. The manufacturer could
replace several ingredients within a recipe with others, as the products usually need to satisfy specific
characteristics, e.g., protein or fat levels, instead of including specific ingredients. Similarly, Böhmerle
(2020) states that many ingredients could be substituted, e.g., most grains could be interchanged. Moreover,
this contract manufacturer received orders short-term, usually for the current or next day.

This example demonstrates the importance of order management and supply chain coordination within
feed production supply networks. In most cases, the actual process begins with a customer realizing its
need to (re-)order feed and placing the order with the respective retailer. The retailer then procures the raw
materials (stored or from other sources), places the manufacturing order, and arranges the materials and
final product transport. Depending on the materials’ sources and the manufacturer’s timetable, the retailer
can arrange direct delivery of the materials to the manufacturer or provide short-term storage to collect
the materials before delivery. Once produced, the retailer usually arranges transport from the manufacturer
to the customer directly. In some cases, the retailer might hold some inventory of commonly requested
products, simplifying and separating the manufacturing from the customer. Nevertheless, the high variability
and perishable nature of feeds combined with the volatile demand, depending, e.g., on regional-, climate-,
or seasonal factors, only allows for a small subset of stored products.

2.2 Availability of Online Marketplaces

Schulze Schwering and Kunz (2020) present a recent review of online marketplaces for animal feed. The
article highlights that there exist several online marketplaces, e.g., agrando, agrar2b, agrarconnect, or
Agrora, or online shops, e.g, ag.supply. While most of these shops and marketplaces offer a variety of
resources, e.g., workwear or tools, only very few of them offer animal feed. Those shops offering feed
only offer a very limited product range of standardized feed, e.g., so-called starter diets or feed for poultry.
Nevertheless, these standardized products only cover a minimal range of feeds. Furthermore, the authors
describe a literature review on factors influencing feed availability in online marketplaces. Besides a
deep-rooted traditionalism within this sector, resulting in a hesitancy to adopt new business models and
technologies, the authors highlight that the extreme number of product variants, volatile price developments,
high transportation efforts, and the sectors demographics impede online availability of feed.
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While online shops and marketplaces show high potential to offer and procure standardized products,
they are not suitable for configurable products, consisting of hundreds of substitutable ingredients whose
prices change daily. Consequently, most companies offering online ordering for feed rely on nonautomated
channels, e.g., online forms, quick phone contacts, or a limited product range in online shops. Moreover,
features like product finders or configurators, common to online shops targeting pets or horses, have not
yet been established in the agricultural feed sector (Schulze Schwering and Kunz 2020).

Consequently, animal feed requires a dedicated solution for online marketing that reaches beyond a
simple online shop or marketplace. On the one hand, it needs to handle the extensive product variety and
customize the feed to the customer’s needs. On the other hand, it needs to simplify and streamline to
overall process chain, from the customer over the retailers and manufacturers to the transport companies,
to achieve tangible benefits for all involved parties.

3 SIMULATION MODEL AND ORDER STRATEGIES

On the one hand, the platform aims to provide an easy-to-use online portal to configure feed and manage
orders for customers, retailers and manufacturers. Therefore, it consists of a specifically tailored database
for feeds and ingredients to allow customer-specific recipes. On the other hand, it aims to streamline
ordering itself. Therefore, the platform allows connecting silo level sensors to monitor the customers’
silo levels. The platform uses a simulation model to connect these data with the current feeds’ recipes
and market conditions to offer the customers suggestions on when to order which feeds in what quantity.
Overall, integrating such sensors already reduces late or rush orders by creating transparency on the current
levels. Moreover, it allows more intelligent decision methods to determine optimal order characteristics.
Finally, if the customer desires, information on current silo levels allows retailers to place targeted offers,
enhancing the efficiency of transports or production plans. In contrast to other strategies evaluated in the
literature, e.g., retailer-centric fixed-batch or variable-batch strategies (Raba et al. 2017), this setup allows
a higher level of integration between the costs of retailers, manufacturers and customers.

3.1 Simulation Model

The logistics system has been implemented in AnyLogic 8.7 and includes the main agent types of customers
(farms), retailers, manufacturers, and transport vehicles, as shown in Figure 2.

Figure 2: Screenshot of the simulation model.

1628



Rippel, Lütjen, and Freitag

As the overall platform is still in development, this article initializes the logistics network randomly using
a predefined seed, product range and some fixed assumptions regarding silo and vehicle characteristics.
Consequently, the model places a defined number of agents randomly scattered around a given region
(Lower-Saxony, Germany) with random characteristics.

Customer agents consist of a given number of silos, each containing 10 tons of a single product. The
current implementation specifies the number of dairy cattle and laying hens. Afterward, the model selects
the required products for each type of animal and allocates the corresponding number of silos with a
randomly chosen initial inventory level. Nevertheless, the model allows replacing products in silos and,
if available, allocates additional silos to products with higher consumption. Moreover, the agent specifies
if the customer always purchases a product from a specific retailer or if they compare prices between
different retailers. Every day, the customer agent consumes an amount of each product that correlates
with the number of animals. Therefore, common feed suggestions indicate consumption of about 20 kg
of grass silage, 15 kg corn silage, 1.5 kg hay, 0.25 kg mineral feed, and additionally about 9 kg of dry
feed manufactured from ray, corn, and rapeseeds, per dairy cattle. Similarly, they indicate consumption of
about 125 g of cornmeal per laying hen.

During the spring and summer months, cattle usually graze, effectively reducing feed consumption of
some products depending on the current grass growth as depicted in Figure 3. The simulation estimates
the growth using a regression function derived from averaged values within the literature and accordingly
reduces the consumption of affected products and ingredients (Josera Agrar 2022). After consuming
products, the customer checks their silo levels and decides whether to reorder a specific product. In such
cases, they request offers from one or more retailers for chosen dates and accept the best offer.
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Figure 3: Grass-growth model (a) and resulting feed consumption (b).

Retailer agents consist of several transport vehicles and associate with a given number of manufacturers.
Currently, the simulation assumes that each retailer has a fleet of five silo vehicles, each providing a maximum
payload of 26 tons across three compartments. Retailer agents have two tasks: offering prices and organizing
the transport of manufactured or stored goods to the customers. Once retailers receive a pricing request,
they first obtain a list of already existing orders for the requested delivery date. Afterward, they solve
several pickup and delivery vehicle routing problems with time windows (PD-VRPTW) (Dumas et al.
1991) using the grasshopper JSPRIT Java library, which can be imported to the AnyLogic model directly.
These problems include all existing jobs and assign the new order to either one of the manufacturers
already visited that day or the manufacturer with the lowest round-trip distance between themselves, the
manufacturer, and the customer. Please see Figure 4 for an example.
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(a) Original Route (b) Existing Manufacturer (c) Closest Manufacturer

Trader Manufacturer Customer Existing New / Candidate

Figure 4: Example for possible routes extending the original network (a) by choosing an existing (b) or
the closest (c) manufacturers.

The retailer assumes that they can pick up and deliver finished products between 12:00 and 22:00.
After comparing the results of each route, the retailer selects the best manufacturer for an offer and denotes
the corresponding (additional) transportation costs for each request and replies to the customer. In this
simulation, the transportation costs describe the additional distance vehicles would need to travel that
day by incorporating the new order with the optimized routing. Every day, the retailer solves the same
PD-VRPTW using all orders posted for a given day and forwards the resulting routes to their transport
vehicle agents. The simulation additionally allows retailers to rent additional transports if the PD-VRPTW
results in unassigned jobs. In such cases, the retailer increases the number of transports by one until the
problem can solve completely.

Finally, transport vehicle agents currently only follow their assigned routes and return to their retailer
once finished. The assigned routes include all stops (pickup and delivery) and the corresponding processing
times. Once a delivery job completes, the vehicle agent notifies the customer and proceeds to the next task.
In contrast, manufacturer agents currently have no active tasks but mainly act as locations for the transport
planning.

3.2 Ordering Strategies

While retailer agents use a fixed decision strategy in choosing viable manufacturers to minimize their
traveling distance, customer agents currently possess two strategies to decide when to order which product.
Generally, both options use a look-ahead strategy and usually obtain several offers. Each day and for each
product, the customer first obtains their current inventory level and predicts their demand and remaining
inventory for the next ten days as described later in this section. Based on these values, they apply either
the order point or the fuzzy-based strategy to decide whether to post a pricing request for delivery on those
days or not. After obtaining the prices for each option, the customer decides which offer to choose based
on the (normalized) product price and the transportation costs.

The order point strategy evaluates when the current inventory should be used up and requests delivery
for that day or the day before. While this strategy guarantees sufficient feed and, more or less, corresponds
to today’s practice, it does not consider daily price changes or allows the retailers much freedom to optimize
their transports. In contrast, the fuzzy controller uses a set of rules to allow customers to decide whether
to order or not using additional information. Moreover, this strategy tries to wait with actually posting
pricing requests until its evaluation offers several advantageous delivery dates to the retailer(s).

Generally, fuzzy controllers operate in three stages. First, they fuzzify their inputs by turning numeric
input values into memberships to so-called literal terms. Second, they apply a set of rules to determine
the membership of the output variable. Finally, they defuzzify the output literals to a numeric value. As
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output, the proposed controller uses two values: 0/Do Nothing or 1/Do Order. The controller used in the
simulation model has been implemented using the Java library JFuzzyLogic. The library offers the option
to define controllers using strings, i.e., textual descriptions. Consequently, the following tables show code
that has actually been used to define the controller.
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Figure 5: Membership functions used by the fuzzy controller: Example of the storage level (a) and functions
for the price level and development variable (b).

The proposed controller uses four input variables: the predicted inventory at the day after the (possible)
delivery, the current price level, and the predicted price levels at three and seven days into the future for
the current day. Figure 5 shows the membership functions used in this article. In terms of the input values,
price levels are normalized values between -1 (cheap or declining) to +1 (expensive or increasing), while
the silo level is in kg. In addition to these inputs, the controller takes the maximum capacity (max) and the
expected product consumption (drain) to adjust the membership functions for the silo level depending on
the product’s consumption. Accordingly, these membership functions are currently defined as triangular
or trapezoid functions over these parameters, as given in Table 1.

Table 1: Definition of the ”Storage Level” variable.
FUZZIFY s t o r a g e

runsEmpty := ( −1 .5* d r a i n , 1 ) ( 0 , 1 ) (2* d r a i n , 0 )
veryLow := ( 0 , 0 ) ( d r a i n , 1 ) (4* d r a i n , 0 )
low := ( d r a i n , 0 ) (3* d r a i n , 1 ) (5* d r a i n , 1 ) (6* d r a i n , 0 )
s u f f i c i e n t := ( 0 , 0 ) ( 0 . 5 * max , 1 ) ( 0 . 7 * max , 1 ) ( 0 . 8 * max , 0 )
f u l l := ( 0 . 5 * max , 0 ) ( 0 . 7 5 * max , 1 ) ( max , 1 ) ( 1 . 5 * max , 0 )

After obtaining the membership of the input values for each literal, the controller applies a set of
weighted rules given in Table 2 to decide on whether or not to buy under the given circumstances. The
code shows that the controller first checks the current storage level and, afterward, relies on the pricing data
to render its decision. Moreover, the code demonstrates one of the main advantages of fuzzy controllers:
Users can specify their behavior using close to natural language, which renders such controllers easy to
adapt and configure in practical environments.

The controller uses estimations of the current price level and future price developments as input. While
the platform will rely on pricing databases and include a prediction component in the future, the current
implementation relies on datasets of historical price developments. The simulation uses averaged daily
prices for different agricultural products, e.g., soybeans, between 2007 and 2021 and normalizes these
prices as a baseline. The simulation randomly determines a shift within this data stream for each product
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Table 2: Rules used by the controller.
IF s t o r a g e IS runsEmpty THEN a c t i o n IS r e s t o c k WITH 2 . 0
IF s t o r a g e IS veryLow AND c u r r e n t p r i c e IS low THEN a c t i o n IS r e s t o c k
IF s t o r a g e IS veryLow AND c u r r e n t p r i c e IS normal THEN a c t i o n IS r e s t o c k WITH 0 . 7 5
IF s t o r a g e IS veryLow AND c u r r e n t p r i c e IS h igh THEN a c t i o n IS n o t h i n g
IF s t o r a g e IS veryLow AND f u t u r e p r i c e s h o r t IS i n c r e a s i n g THEN a c t i o n IS r e s t o c k
IF s t o r a g e IS low AND f u t u r e p r i c e s h o r t IS i n c r e a s i n g THEN a c t i o n IS r e s t o c k
IF s t o r a g e IS low AND c u r r e n t p r i c e IS low THEN a c t i o n IS r e s t o c k WITH 0 . 2 5
IF s t o r a g e IS low AND c u r r e n t p r i c e IS normal AND f u t u r e p r i c e s h o r t IS i n c r e a s i n g

THEN a c t i o n IS r e s t o c k
IF s t o r a g e IS low AND c u r r e n t p r i c e IS normal AND f u t u r e p r i c e s h o r t IS s t a t i o n a r y

THEN a c t i o n IS n o t h i n g WITH 0 . 5
IF s t o r a g e IS low AND c u r r e n t p r i c e IS normal AND f u t u r e p r i c e s h o r t IS d e c r e a s i n g

THEN a c t i o n IS n o t h i n g
IF s t o r a g e IS low AND c u r r e n t p r i c e IS h igh THEN a c t i o n IS n o t h i n g
IF s t o r a g e IS s u f f i c i e n t THEN a c t i o n IS n o t h i n g WITH 0 . 1
IF s t o r a g e IS s u f f i c i e n t AND c u r r e n t p r i c e IS low AND f u t u r e p r i c e l o n g IS i n c r e a s i n g

THEN a c t i o n IS r e s t o c k
IF s t o r a g e IS s u f f i c i e n t AND c u r r e n t p r i c e IS normal AND f u t u r e p r i c e l o n g IS i n c r e a s i n g

THEN a c t i o n IS r e s t o c k WITH 0 . 5
IF s t o r a g e IS f u l l THEN a c t i o n IS n o t h i n g

as a starting point. Accordingly, the simulation uses realistic price developments and ensures that the
developments are not similar for all products even if the current product does not have a data stream
attached to it. The prediction currently looks up the future price, normalizes the difference to [-1; 1], and
applies a slight random variance as prediction.

4 EVALUATION

This article aims to compare the two described order strategies for supply networks within the feed industry.
Therefore, the article describes several simulation runs that use either control strategy in randomly generated
networks. The experiments run each scenario, determined by a random seed, once for each decision strategy
to ensure comparability. The experiment covers 20 randomly generated scenarios to provide a sufficient
variety of settings. As most customers rely on a single retailer to procure their feed, the simulation scenario
only includes a single retailer plus their network of five possible manufacturers and twenty customers. The
experiments choose a random starting month due to the variance in feed consumption. Table 3 shows the
parametrization for the scenarios. The left compartment shows parameters selected for this experiment,
while the right compartment shows the distribution of random values based on the scenario’s seed.

Table 3: Scenario parameters and domain.

Parameter Unit Domain Parameter Unit Domain
Scenarios Number of 20 Seed Integer Random by Scenario
Decision Strategy OP, F 0, 1 Sim. Start Date Random Month
Simulation Time Days 93 Locations Per Agent Random in Lower-Saxony
Manufacturers Number of 5 Dairy Cattle Number of uniform(20, 60)
Retailers Number of 1 Laying Hens Number of uniform(75, 200)
Customers Number of 20 Silo Cur. Level Percent uniform(50, 100)
Silo Max. Level kg 10,000 Product Price Shift Days uniform(50,2000)

This experiment compares the decision strategies using the difference in the delivery distance required
to satisfy all orders, each customer’s costs, and the number of orders completed in the scenario. These
prices consist of the current, daily product price plus 0.70e per additional kilometer the retailer’s transports
need to drive to penalize selecting inefficient routes for the customer. The simulation calculates the product
prices using the normalized price variances stored within the model and the daily product prices obtained
online on March 25th 2022 to obtain realistic prices for each product.
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Table 4 summarizes the main results of all twenty scenarios. The table shows that the fuzzy-based
decision strategy reduces the number of placed orders by an average of 1.6 orders per scenario with a total
of 32 fewer orders. Moreover, it reduces the total distance required to satisfy all orders within the three
months across all scenarios by 15,906 km, or on average by 795.35 km per scenario. Besides this reduction
in distance, the fuzzy-based strategy achieved cost reductions for the customers of over 102,209 e in sum,
with an average of 5,110 e within the three months of each scenario.

Table 4: Detailed simulation results separated by order point (O) and fuzzy (F) decision strategies.

Scenario Distance (O) Distance (F) Cost (O) Cost (F) Orders (O) Orders (F)
ID in km in km in e in e amount amount
1 81,290 79,555 709,485 704,396 354 354
2 73,048 71,028 640,237 638,259 320 318
3 66,304 67,214 630,297 629,459 334 334
4 63,343 62,962 626,040 618,969 333 331
5 65,447 65,037 561,545 556,885 297 296
6 120,607 117,501 757,716 741,277 395 389
7 83,794 82,819 743,172 733,533 346 345
8 69,330 69,742 705,128 702,790 319 318
9 89,650 87,770 651,177 646,674 317 315

10 95,277 97,051 629,111 624,357 333 331
11 61,259 60,263 600,265 597,748 295 294
12 100,109 98,779 658,373 654,491 334 332
13 80,307 79,248 681,719 675,350 328 326
14 70,699 70,661 650,585 648,621 343 342
15 81,262 80,990 662,671 655,730 335 332
16 66,684 66,737 650,994 644,967 311 308
17 69,694 70,579 652,770 652,564 344 345
18 104,880 100,461 844,862 841,376 393 391
19 81,027 80,764 688,813 686,468 349 348
20 80,631 79,574 802,867 791,701 378 377

Evaluating the results given in Table 4 using a t-test in Matlab shows significant differences (α = 0.05)
with P-Values of 0.021765 for the distance, 0.000011 considering the costs and 0.000078 regarding the
number of orders, discarding MatLab’s base hypothesis that the data in x–y (OrderPoint - Fuzzy) comes
from a normal distribution with mean equal to zero and unknown variance, using the paired-sample t-test.
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Figure 6: Relative results between the strategies by scenario as (Fuzzy - Order Point).

Figure 6 shows the difference in the retailer’s travel distance and customers’ product costs between the
decision strategies. In all scenarios, the fuzzy-based strategy results in cost reductions for the customers.
Additionally, most scenarios also show a reduction in the retailer’s delivery distance. Depending on the
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network’s characteristics, i.e., the placement of the retailer and the manufacturers, some scenarios benefit
more from this decision strategy while a few scenarios show an increase in the delivery distance.

5 CONCLUSION AND FUTURE WORK

This article presents an agent-based simulation model that provides two different decision strategies for
customer order generation in feed-supply networks. While the simulation model has yet to be integrated
with the surrounding platform to receive real-world inputs, e.g., positions and characteristics of actors
or product- and pricing data, this simulation study already shows the model’s high viability to provide
order suggestions to customers. Moreover, the agent-based design allows setting up different optimization
strategies for each type of agent separately. The article demonstrates this extensibility by including two
decision strategies for customers on when to place an order for feed. Retailers, in contrast, currently only
have a single decision strategy on how to incorporate new requests or orders into their planning.

The comparison between the default order point strategy and the proposed fuzzy-based strategy shows
high potential for cost savings throughout the network. On average, the new strategy could reduce the
average delivery distance by 795 km for retailers, and the product costs by an average of 5,110 e for
customers over a simulation horizon of three months. In all of the twenty randomly selected scenarios, the
fuzzy-based strategy achieved cost reductions for the customers. Additionally, it also decreased delivery
distances for retailers in all but four scenarios.

Future work will focus on integrating real-world data and developing viable demand, capacity, and price
prediction algorithms. The current implementation uses a simple linear regression to predict upcoming
feed consumption from the last n data points. Nevertheless, feed consumption can vary quickly, e.g.,
depending on seasonal effects, animal health, or other external influences, rendering a simple linear
regression inappropriate for real-world applications. Considering the price development estimations, the
model at hand looks up the future development from its database. While viable to compare the (possible)
efficiency of new ordering strategies by providing a ”best-case” estimate, future prices cannot be known
or looked up in real-world applications. Therefore, future work will focus on integrating or developing
prediction algorithms that operate on actual historical data for a given product.

Moreover, future work will focus on refining the simulation model, e.g., by incorporating the selection
and delivery of raw materials to manufacturers in the early morning and by evaluating additional decision
strategies. The modular setup of the simulation allows, e.g., to try other heuristics or optimizations.
Furthermore, the simulation model will be used as a training platform for reinforcement-learning policies,
which could offer a powerful alternative to manually designed decision strategies.
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