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ABSTRACT 

The bullwhip effect, a phenomenon of progressively larger distortion of demands across a supply chain, 
can cause chaos and disorder with amplified supply and demand misalignment. In this research, we 
investigate ways to decrease the bullwhip effect via risk pooling and information sharing through a 
simulation study. An agent-based simulation model was developed to evaluate how risk pooling and 
information sharing between distinct entities in a supply chain can reduce the bullwhip effects. 
Specifically, we are interested in the effectiveness of these two strategies through their interplay when 
they are applied simultaneously and separately. We simulate a three-echelon supply chain by considering 
one manufacturer, one wholesaler, and two retailers. Four scenarios are evaluated by varying the 
information sharing strategy (centralized and decentralized), and with and without a risk pooling policy. 
The results show that when both strategies are adopted, the supply chain faces less order amplification 
throughout the supply chain.  

1   INTRODUCTION 

The bullwhip effect is very common, and sometimes inevitable, in supply chain management (Dai et al. 
2017). It refers to the distortion of information that is realized from the magnification of the order 
variance as orders move upstream in the supply chain (Dejonckheere et al. 2003; Wang and Disney 2016) 
and causes a discrepancy between supply and demand that leads to difficulties in supply chain 
management planning (Li et al. 2016). It also increases operational costs (Cannella et al. 2013), leads to 
poor customer service (Lee et al. 1997a; Lee et al. 1997b), increases inefficiencies (Metters 1997), and 
realizes needless safety stock (Jakšič and Rusjan 2008). Therefore, the attenuation of the bullwhip effect 
is one of the major focuses of supply chain researchers (Thomas et al. 2011). A detailed examination of 
the research around the causes of the bullwhip effect can be found in the study of Bhattacharya and 
Bandyopadhyay (2011). 

A classic supply chain is illustrated in Figure 1, depicting both the information flow and the material 
flow. The progressively larger fluctuations of demands propagate from Customer to Retailer, Wholesaler, 
and finally Manufacturer. One of the most suggested solutions to mitigate the bullwhip effect is 
information sharing (Chen et al. 2000), as shown in Figure 2. Information sharing enables parties 
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throughout the supply chain to better communicate and predict changes. It allows better planning and 
increases efficiency by smoothing production and lowering inventories (Chatfield 2009). The value of this 
type of method is proven to be highly beneficial when demand varies. Lee et al. (2000) show that 
information sharing can dramatically reduce inventory and save money for the manufacturer. Similar 
research by Wu and Cheng (2008) proves the same in a multi-echelon supply chain. The study conducted 
by Cachon and Fisher (2000) explores two different levels of information sharing, traditional and full. 
The research states that traditional information sharing happens if the supplier only monitors the retailer's 
order. Full information sharing occurs when the supplier can immediately see the retailer's inventory data. 
The study proves that full information sharing is the most effective type of sharing. A study by Zhou and 
Benton (2007) shows that supply chain performance can be improved with effective supply chain 
practices and information sharing. Information sharing is commonly referred to as centralized 
information. 

 
Figure 1: Traditional supply chain.  

Another solution to reduce the bullwhip effect is risk pooling, as shown in Figure 3. Risk pooling is a 
statistical concept that refers to the practice of clustering the risks of a supply chain to make the risk more 
“certain”. This concept uses a centralized inventory policy to plan for inventory. It assumes if the demand 
at one retailer is higher than the average, it will be lower at other retailers. Instead of keeping the safety 
stock separately for each retailer/wholesaler, it aggregates the safety stock by considering the demand 
variance of multiple retailers/wholesalers together (Mak and Shen 2012). Thus, the risk is pooled for the 
multiple retailers/wholesalers by the upstream stages of a supply chain. The study of Sucky (2009) 
indicates that the bullwhip effect is overestimated given a simple supply chain and risk pooling effects. 
Their study explores a three-stage supply chain with two retailers, a wholesaler, and a manufacturer. The 
study argues that most research around the bullwhip effect fails to include risk pooling effects, and it 
needs to be considered. 

 
Figure 2: Supply chain with information sharing and no risk pooling.   

Traditionally, two approaches are used in studies related to the bullwhip effect: simulation-based and 
analytical methods (Disney et al. 2004). Analytical or numerical studies produce exact and controlled 
solutions and assess pertinent factors that affect the system. However, it is challenging to comprehend the 
effect of each factor and integrate multiple factors on the entire supply chain due to its complexities (Min 
and Zhou 2002). With the increase in computational power and the availability of such resources, 
simulation-based models have gained popularity and enable more complex and thorough studies in supply 
chain management (Kleijnen 2005). Simulation-based studies also enable real-time adaptability and 
stochasticity tolerance, which is not possible with analytical models. A model created by Chinh et al. 
(2013) used agent-based simulation to measure the stability of a supply chain using lead time and 
stochastic demand. 
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Many studies have been conducted investigating the bullwhip effect but a few of the studies have 
looked at the impact of both risk pooling and information sharing on the bullwhip effect as seen in Figure 
4. Research conducted by Li et al. (2016) study both strategies and evaluate their effects on the container 
shipping market industry. By using these two methods of reducing the bullwhip effect, their study 
illustrates how to improve supply chain planning using analytical models. However, their study is limited 
to two retailers, without the consideration of a more practical and complex distribution network. They did 
not show the impact of increasing lead time on the effectiveness of those mitigation strategies and only 
considered constant lead times. On the other hand, agent-based simulation modeling can handle more 
complex supply chain networks and deal with stochastic lead times easily. Therefore, this study extends 
the research of Li et al. (2016) by building an agent-based simulation model of a generic supply chain to 
measure the bullwhip effect while information sharing and risk pooling are applied as a mitigation 
strategy. We have incorporated the stochastic lead time in our study and presented the impact of 
increasing lead time on the efficiency of those mitigation strategies. 

 
 Figure 3: Supply chain with no information sharing and with risk pooling. 

 
Figure 4: Supply chain with information sharing and with risk pooling. 

The organization of this paper is as follows. The following section presents an agent-based simulation 
approach for this problem, followed by the numerical experiments in AnyLogic software. Finally, the last 
section discusses our conclusions. 

2  AGENT-BASED SIMULATION MODEL TO MEASURE THE BULLWHIP EFFECT IN A 
SUPPLY CHAIN 

Agent-based modeling and simulation is a popular tool nowadays to build models of complex systems 
such as supply chains (Abar et al. 2017). In this simulation approach, different components of a system 
are described as agents. Agents interact with each other in an environment. The behavior of an agent is 
modeled using a set of simple rules. It is easy to identify the impact of different factors on the behavior of 
agents and on the outcomes of a model. Agent-based techniques enable the system to dynamically self-
adapt and strengthen in response to changing environmental circumstances and other disturbances (Abar 
et al. 2017). 
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In this paper, we have used an agent-based modeling approach to simulate a traditional supply chain 
for measuring the bullwhip effect and the impact of risk pooling, and information sharing among the 
stages of that supply chain in mitigating the bullwhip effect. A three-stage supply chain with two retailers, 
a wholesaler, and a manufacturer, is considered to build the model. There are four primary agents named 
retailer1, retailer2, wholesaler, and factory/manufacturer, respectively. Demand, order, and shipment are 
defined as agent types. Each agent can interact with the other via sharing information (order/demand) and 
delivering products. Customers generate demand at a particular time and the demand information is 
passed to the retailers, where the retailers fulfill the demand. Other agents receive orders from 
downstream agents, and they fulfill the order by sending a shipment. Customers are not considered as an 
agent because they are just creating the demand which is accomplished by using an event in the 
simulation. All the agents follow a replenishment policy and place orders to their upstream agent. If an 
agent is placed at the top of the supply chain (factory/manufacturer, i.e., there is no upstream agent), it 
will self-generate orders. The terms ‘stage’ and ‘agent’ will be used interchangeably throughout this 
section. 

2.1  Assumptions 

While using agent-based simulation to create our model, we make the following assumptions:  
 
● A three-stage supply chain is assumed, which operates 24-hours each day, including two retailers, 

a wholesaler, and a factory/manufacturer.  
● Customer demands are identifiable, identical, and independently distributed among various time 

periods. Each retailer serves separate markets.  
● It is assumed that all stages of the supply chain agree to make use of identical order-up-to policies 

and the same moving average forecasting technique. If the calculated order quantity was negative, 
then no order is placed to the subsequent stage of the supply chain for that period (similar to 
Sucky (2009)). 

● Each stage accesses the order-up-to level information of the multiple periods at the start of every 
period and makes a goal for the order quantity for that time period and the order is placed (similar 
to Li et al. (2016)).  

● Each stage fills its customer demands (lower stage’s demand/order) with its on-hand inventory. 
Backlogging is allowed. If this is the case, at the start of a time period, the newly arrived 
shipment is used to fulfill the backlogged demand first. Ordering and production lead times can 
be different at various stages.  

● Lastly, when information is shared, it is assumed that all the information becomes immediately 
accessible from every stage of the supply chain.  

2.2  Notations 

Following notations are used for this paper: 
 
𝐷!,#	   demand/order quantity for stage 𝑘	in time period 𝑡	
𝑧  desired service level 
𝑁  number of time periods for forecasting using moving average 
𝐿#  ordering lead time for stage 𝑘	
𝐼!#  inventory level of stage 𝑘 in time period 𝑡	
𝑞!# 	 	 order quantity of stage 𝑘 in time period 𝑡 without risk pooling 
𝑞*!#  order quantity of stage 𝑘	in time period 𝑡 with risk pooling 
𝑠!#  reorder point of stage 𝑘 in time period 𝑡 without risk pooling 
𝑠̅!#		

	  reorder point of stage 𝑘 in time period 𝑡 with risk pooling. 
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2.3  Inventory Replenishment Policy 

The retailers are denoted as stage 0, the wholesaler is denoted as stage 1, and the factory/manufacturer is 
denoted as stage 2 in the equations below. 
 An Event at the beginning of each day synchronizes all supply chain elements, and each supply chain 
stage checks for orders at the same time, including orders that have just arrived, checks the inventory 
level, and decides an order quantity, 𝑞!#	. Using similar assumptions to Li et al. (2016) and Lee et al. 
(2000), we follow the demand assumption that order quantity in the time period, t,	 depends on the 
demand from the previous time period, 𝐷!%&,	and the order-up-to level of the previous two periods.  
 Initially, the demands are generated from the customers, and it is fulfilled from the inventory of the 
retailers of the supply chain. Stages such as retailer and wholesaler place orders to the upstream agents. If 
enough inventory is available, demands from the customer are fulfilled by the retailers instantaneously. 
For other upstream stages, 𝐿# time is needed to fulfill the order of each downstream stage. The amount 
shipped is subtracted from the inventory and removed from the ordering queue. The new inventory, 𝐼!# is 
calculated by 𝐼!# 	= 	 𝐼!# 	–	𝐷#,!.  
 If the demand/order is greater than the available inventory, it is shipped to the customer/downstream 
agent and the remaining demand/order is backlogged, producing a negative inventory level. Backlogs will 
be addressed when future deliveries are received from the upstream stage of the supply chain. The order-
up-to-level policy is used by every stage of the supply chain. For a serial supply chain, a stage calculates 
the order-up-to level for that period and uses the following equation to calculate the order quantity for that 
period  
 
(1) 

                                                                    
𝑞!# =	𝑠!# −	𝑠!%&# +	𝐷#,!%&.	

 

 
 

where, 𝑞!#	 is the order quantity at time period t for stage 𝑘. 𝑠!# is the order-up-to level for time period 𝑡 
for stage 𝑘. The order quantity,	𝑞!# , relies on demand/order from the previous time period, 𝐷#,!%& and on 
the order-up-to level of the last two time periods. The order-up-to level equation for any stage in time 
period 𝑡 is given by: 
 
(1) 

	

𝑠!# = 	𝐸 5𝐷#,! + 𝑧 ∗ 7𝑉𝑎𝑟;𝐷#,!<	=,	

 

 
 
 

where, 𝐸(𝐷#,!) is the expected demand/order for periods 𝑡 to 	𝑡 + 𝐿# of a particular stage 𝑘 and 𝑁 is the 
number of periods to consider for calculating the moving average of demand at time period t. 𝑉𝑎𝑟(𝐷#,!) 
is the variance of demand for periods 𝑡 to 	 𝑡 + 𝐿# of a particular stage 𝑘 at time period	 𝑡. 𝐸(𝐷#,!) and 
𝑉𝑎𝑟(𝐷#,!) are calculated using the following equations.  
   
 
(1) 𝐸(𝐷#,!) 	= 	

𝐿#
𝑁
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!%&
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𝐷#,' 	= 	
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 Each retailer and factory follow this ordering policy described above. When no information is shared, 
each stage decides its order-up-to level, which is calculated using the mean and variance of demand/order 
placed by the downstream stage. However, when information is shared across the supply chain, the actual 
customer demand information is available to the wholesaler and the factory also. So, they calculate the 
order-up-to level using the mean and variance of the actual customer demand. 
 Four scenarios will be investigated for the wholesaler because the wholesaler has two retailers and 
the fundamental idea of information sharing and risk pooling can apply at the wholesaler stage at the 
same time. To compare the four different scenarios described above in the introduction (Figures 1-4), we 
calculate the ratio and difference of variance between the customer demand and order quantity at each 
stage of the supply chain. Understanding the variance of the order with and without risk pooling is a key 
difference. The equations below define how the order-up-to level is calculated in the simulation model.  

 
Scenario 1: Without information sharing and without risk pooling:  
The order-up-to level for the wholesaler at scenario 1 is as follows: 
 
(1) 

 

𝑠!& = 	𝐸;𝐷+&,!< + 	𝐸;𝐷+*,!< + 	𝑧 ∗ 7𝑉𝑎𝑟;𝐷+&,!< + 	𝑧 ∗ 	7𝑉𝑎𝑟;𝐷+*,!<,	

 

 
 
 

where, 𝐷+&,! and 𝐷+*,! are the order quantities from retailer1 and retailer2, respectively.  
 
Scenario 2: Without information sharing and with risk pooling: 
The order-up-to level for the wholesaler at scenario 1 is as follows: 
 

 
(1) 

 

𝑠̅!& = 𝐸	;𝐷+&,! +	𝐷+*,!	< + 	𝑧	7𝑉𝑎𝑟(𝐷+&) + 	𝑉𝑎𝑟(𝐷+*) + 2𝜌,G𝑉𝑎𝑟(𝐷+&,!)G𝑉𝑎𝑟(𝐷+*,!)	, 

 

 

where, the orders of the two retailers are correlated with a coefficient −1 ≤ 𝜌, ≤ 1.  
 
Scenario 3: With information sharing and without risk pooling:  
The same equation of scenario 1 is used but instead of calculating the order-up-to level from the mean and 
variance of retailer order, the mean and variance of actual customer demand are used.  

 
Scenario 4: With Information Sharing and Without Risk Pooling:  
Similarly, the same equation of scenario 2 is used but instead of calculating the order-up-to level from the 
mean and variance of retailer order, the mean and variance of actual customer demand are used. 

 
 In summary, when information sharing is not employed, each stage of the supply chain places orders 
based on the order quantity received from the downstream agent/stage. However, when information is 
shared, each agent/stage has access to the actual customer demand, and the order quantity is calculated 
based on that actual customer demand. For risk pooling, the mean and variance of order quantities of two 
retailers are considered together. Instead of calculating the order-up-to level for each retailer separately, 
the two retailers are aggregated statistically together. Consequently, the bullwhip effect is anticipated to 
be reduced.  

2.4  Bullwhip Effect Measurement 

While running the simulation, the demand/order placed by each stage to the upstream agent is tracked and 
the mean and variance of those values are calculated. Two measurements are generally used to measure 
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the bullwhip effect. The first one is the ratio between the variance of order placed by each stage 
(𝑉𝑎𝑟-./0.,#) and the variance of actual customer demand (𝑉𝑎𝑟/0123/), which is called the bullwhip 
effect index, B.  This measurement is used to measure the magnitude of the bullwhip effect for a 
particular stage of the supply chain (Chinh et al. 2013). 
   
 
(1) 𝐵.2!'-	 =

𝑉𝑎𝑟-./0.,#
𝑉𝑎𝑟/0123/

	
 

 

   
 The second metric is the difference between the variance of order placed by each stage (𝑉𝑎𝑟-./0.,#) 
and the variance of actual customer demand (𝑉𝑎𝑟/0123/) (Li et al. 2016).  
   
 
(1) 𝐵/'440.0350	 =	𝑉𝑎𝑟-./0.,# −	𝑉𝑎𝑟/0123/ 	  

3  NUMERICAL EXPERIMENTS AND DISCUSSION 

To test the performance of the simulation framework and to identify the impact of information sharing 
and risk pooling in mitigating the bullwhip effect in a generic supply chain, we have considered a three-
stage supply chain with a manufacturer, a wholesaler, and two retailers. A custom customer demand 
distribution is used to generate customer demand for each market. The lead time of fulfilling of an order 
placed from a retailer to the wholesaler requires one day for the initial experiment. The manufacturer's 
lead time is one day as well. The manufacturer tracks the wholesaler order, and when a manufacturing 
decision is taken, it takes one day to produce the product and replenish the manufacturer’s inventory. 
Following the policy of Sucky (2009), the safety factor, z = 2.33, is set to meet the desired service level. 
Like Li et al. (2016), all stages of this supply chain follow a two-period moving average forecasting 
technique and the same order-up-to policy. Four separate models are built to depict four scenarios. 

Initially, all four simulation models are run with a fixed random seed 1 for all four scenarios. At this 
point, no mitigation strategy is applied. Figure 5 shows the variation of customer demand, total retailer 
order, wholesaler order, and manufacturer’s production quantity with time. The customer demand is 
relatively stable, but the retailer order quantity is fluctuating and attempting to follow the customer 
demand pattern. On the other hand, the order quantity of the wholesaler and the manufacturer’s 
production quantity realizes greater fluctuation. Therefore, a strong bullwhip effect is present in this 
supply chain as no information is shared and risk pooling is not applied by the wholesaler.  

Figures 6, 7, and 8 represent the fluctuation of demand/order quantity in the supply chain for scenario 
2, 3, and 4, respectively. When no information is shared and risk pooling is applied (scenario 2), the 
fluctuation in demand/order quantity is reduced substantially as can be seen in Figure 6. Similarly, the 
bullwhip effect is reduced when information is shared but risk pooling is not applied (scenario 3) as can 
be seen in Figure 7. Finally, scenario 4 is presented in Figure 8 where the bullwhip effect is reduced the 
most as the order quantity is not fluctuating significantly throughout the supply chain because both 
information sharing and risk pooling are present at the same time. Hence, the mitigation strategies appear 
to work, although the benefits are most effective when the risk pooling and information sharing strategies 
are applied together. 

Each simulation model for all four scenarios is run with random seeds ten times. Then, the variance 
ratio and variance difference for all stages are calculated. The average value with a 95% confidence 
interval of ten runs is listed in Table 1. For scenario 1, when no mitigations strategy is applied, the 
bullwhip effect is high in terms of the variance ratio and variance difference. The variance ratio and the 
variance difference are higher between customer and factory but lower between customer and wholesaler. 
However, when the first mitigation strategy is applied, scenario 2: without information sharing and with 
risk pooling, the average reduction in variance ratio is 33.23% for the customer-factory pair and 19.42% 
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for the customer-wholesaler pair. Similarly, the average reduction in variance difference is 48.40% and 
38.42% for the customer-factory and customer-wholesaler pairs, consecutively. The bullwhip effect is 
reduced for scenarios 3 also. However, the highest average reduction is seen when centralized information 
and risk pooling are applied at the same time (scenario 4). As compared to scenario 1, in which risk 
pooling and information sharing are not used in the supply chain, the average reduction in variance ratio 
for the customer- factory pair is 46.32% and 49.27% for the customer-wholesaler pair. In addition, the 
difference between variances is also reduced by 61.68% and 65.48%, respectively. 

 

 
 

 

 

 

 

 

Figure 5: Demand/order variability with time (scenario 1: without information sharing and without risk 
pooling).  

  

 

 

 

Figure 6: Demand/order variability with time (scenario 2: without information sharing and with risk 
pooling).  

  Figure 9 depicts the percentage of variance ratio reduction, with a 95% confidence interval, by both 
mitigation strategies (scenario 4) with an increase in lead time. We considered deterministic lead times, 
and the values are 1, 2, 3, and 5, respectively. Even with an increase in lead time, the percentage of 
variance ratio reduction is significantly high and increases as well. The confidence interval is also small 
and decreases with increasing lead time. Therefore, the coupled effect of both strategies does not 
deteriorate even in higher lead times. Moreover, the percentage of variance ratio reduction considering 
stochastic lead time is showed in Figure 10 with a 95% confidence interval. Here, the lead times follow a 
discrete uniform distribution. We have considered three lead time distributions as unif_discr (1,2), 
unif_discr (1,3), and unif_discr (1,5), respectively. The results show that the percentage of variance ratio 
reduction is also increasing even if lead time distributions with increasing ranges are used during the 
simulation. The confidence interval is also small similar to the deterministic case. For both deterministic 
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and stochastic cases, the variance ratio reduction ranges from 75 to 99%, which is comparable with the 
results of Li et al. (2016), where the variance ratio reduction is 96.7% for scenario 4 of their study. 
Finally, it is evident that when both strategies are used, the bullwhip effect is significantly reduced albeit 
of larger lead limes for both deterministic and stochastic cases. 

 

 

 

 

 

 

 

Figure 7: Demand/order variability with time (scenario 3: with information sharing and without risk 
pooling).  

  
 
 
 
 
 
 
 
 

Figure 8: Demand/order variability with time (scenario 4: with information sharing and with risk 
pooling).  

 Some managerial insights can be drawn from the above results. First, information should be shared 
between all stages of the supply chain. The customer demand information should be available to the 
wholesaler and the manufacturer instantly. If direct access to the customer demand data is instantly 
available to the wholesaler and the manufacturer, they can easily take their ordering decision with less 
forecasting error, which will reduce the inventory cost and overproduction. If actual customer demands 
are available to the wholesaler and the manufacturer, they will be able to adapt their marketing strategy 
and make decisions that are more market-driven as well as data-driven. Second, all the parties can work 
together in a way where they are not only working to increase their profit but also to increase the total 
profitability of the supply chain. Third, from modeling perspective, the simulation-based approach to 
study the bullwhip effect is shown to be efficacious because more practical and complex supply chains 
can be easily modeled using this technique to handle stochasticity and nonlinearity, from which other 
methods often suffer. 
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Table 1: Variance ratio and variance difference between supply chain stages. 

Variance Ratio  Customer-
Factory %Decrease Customer-

Wholesaler %Decrease 

Sc
en

ar
io

 1 Decentralized 
Information 

w/o Risk Pooling 16.20±1.69 - 9.48±0.65 - 
2 w/ Risk Pooling 11.10±0.93 33.23±8.93 7.74±0.46 19.42±7.46 
3 Centralized 

Information 
w/o Risk Pooling 12.3±1.42 24.51±12.59 6.80±0.77 27.22±11.47 

4 w/ Risk Pooling 8.49±0.66 46.32±7.44 4.77±0.46 49.27±6.33 
Variance Difference  

Sc
en

ar
io

    

1 Decentralized 
Information 

w/o Risk Pooling 9,379.93±1213.57 - 5,242.66±539.32 - 
2 w/ Risk Pooling 4,840.50±425.99 48.40±12.43 3,228.52±192.46 38.42±7.46 
3 Centralized 

Information 
w/o Risk Pooling 5,425.64±651.68 42.16±12.60 2,788.17±375.05 46.82±11.47 

4 w/ Risk Pooling 3,594.39±317.76 61.68±7.41 1,809.58±218.93 65.48±7.00 
 

  
 
 
 
 
 
 
 
 
 
 

 
 
  

Figure 9: Variance ratio reduction at scenario 4 with deterministic lead time. 

 
 
 
 
 
 
 
 
 
 
 
 

  

Figure 10: Variance ratio reduction at scenario 4 with stochastic lead time. 
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4  CONCLUSION 

An agent-based simulation model is developed in this work to measure the bullwhip effect in a supply 
chain and to investigate different strategies, specifically information sharing and risk pooling, to mitigate 
the impact from the bullwhip effect. Four scenarios have been considered combining the presence and 
absence of risk pooling and information sharing. The proposed agent-based simulation model was used to 
conduct a numerical study of a three-stage supply chain. The bullwhip effect for four different scenarios 
was measured and compared. Simulation results show that information sharing and risk pooling can 
reduce the bullwhip effect in a supply chain when applied separately as well as simultaneously. When 
information sharing and risk pooling are applied at the same time, numerical results show greater variance 
reduction. With an increase in deterministic lead the combined strategies show significant and increasing 
reduction in variance with reasonable confidence interval. The variance reduction is also high when 
stochastic lead time is used. The wider the range of the values of discrete uniform distribution of lead 
time, the higher the percentage of variance reduction. Therefore, risk pooling and information sharing 
strategies works well together even in the case of larger and stochastic lead times. This agent-based 
simulation framework can be extended to study complex model configurations, for example, under 
situations where customer demands can be directly fulfilled from the wholesaler and manufacturer. Future 
research could also consider, disruptions in the supply chain, order split in wholesaler and manufacture, 
and so on. 
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