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ABSTRACT

We study optimal container unloading and warehouse replenishment at a manufacturing plant. The warehouse
inventory is depleted as parts are consumed in the manufacturing process. The inventory level is replenished
using the parts stored in sea-containers and trailers available at the plant. Our goal is to determine the
optimal team formation, buffer allocation, and job assignment for teams of workers. The teams work at
two tandem stations, each with several finite-buffered parallel queues. The objective is to minimize the
total time required to process all containers and trailers. There are operational constraints on the number of
teams that can be formed, the number of servers in each team, and the number of buffer spaces allotted to
each team. We use a simulation-based optimization approach, and the results consistently show a reduction
in the processing time. Further, we also observe that the optimal team formation is dependent on the total
workload.

1 INTRODUCTION

In a warehouse, inventory gets depleted as the parts are consumed to support the manufacturing processes.
Therefore, the inventory needs to be replenished regularly using incoming shipments of parts. We consider
a manufacturing plant that receives parts in sea-containers and trailers, and stores them on site until a part
replenishment is needed. Multiple sea-containers and trailers, which from here on we refer to as containers,
are often received daily by the manufacturing plant, and each container may hold a different mixture of parts
with potentially different packaging. Thus, the unloading of parts from these containers and their storage
in the warehouse may require unpacking of pallets and/or repacking of materials on a daily basis before
they can be scanned, transported, and stored. As it is often the case that workers have limited physical
space (i.e., one or more staging areas) for unloading, unpacking, and scanning materials, completing these
tasks often requires coordination between multiple workers to avoid backlogs and disruption of production.
Such coordination can be achieved by having workers work in teams to process contents of each container.
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Optimization of the put-away operations is vital for timely processing and storage of materials delivered
to the warehouse. Therefore, our goal in this research is to minimize the total time required to unload,
scan, breakdown, and store all pallets from containers that must be unloaded by determining the optimal
number of teams to be formed and the optimal worker to task assignment in these teams. To address these
operational questions, we build a simulation-optimization model and analyze it using the daily container
and processing time data obtained from our industrial partner, BMW Manufacturing Company.

2 LITERATURE REVIEW

There are several previous studies on the optimization of warehouse operations. However, very few of
these studies have focused on receiving and shipping processes that are part of the warehouse operations
(Gu, Goetschalckx, and McGinnis 2007). Further, most of the studies related to receiving and shipping
processes are concerned with truck-to-door assignment problems in cross-dock facilities (Gu, Goetschalckx,
and McGinnis 2007). An exhaustive review of inventory replenishment problems that were addressed using
simulation-based optimization methods is provided by Jalali and Nieuwenhuyse (2015). In addition,
Negahban and Smith (2014) performed a comprehensive review of studies on manufacturing design and
operations-related problems That were tackled via discrete event simulation. According to their review,
manufacturing operations planning and scheduling is a popular area for the use of discrete event simulation
as an analysis tool. In this section, we review the simulation studies that have focused on optimizing worker
and resource allocation to improve healthcare, manufacturing, and warehouse systems.

Resource allocation problems in healthcare systems have been widely studied using simulation-based
optimization methods. Weng, Cheng, Kwong, Wang, and Chang (2011) used simulation optimization to
study a physician and nurse allocation problem in the emergency department of a hospital to minimize the
NEDOCS value, which is an indicator of crowdedness. Optimal staffing levels that balance the service
level (i.e., quality of care) and nurse utilization in each shift was studied by Sarno and Nenni (2016).
Lucidi, Maurici, Paulon, Rinaldi, and Roma (2016) studied the optimal allocation of a hospital’s obstetrics
ward resources such as stretchers, gynecologists, nurses, beds, and operating rooms. Their objective was
to maximize the profits of the hospital and minimize the cesarean section birth rates.

A study on optimal resource allocation for a production logistics system was done by Li, Yang, Xu,
Wang, Ren, and Li (2020) using discrete event simulation. Their objective was to maximize the throughput
of the system while minimizing the economic input, which is achieved by determining the optimal number
of automatic guided vehicles (AGVs), speed and load capacity of AGVs, and buffer capacity. Ekren,
Evans, Heragu, and Usher (2012) studied the problem of reducing the cycle time in the receiving area of a
warehouse by determining the optimal number of workers at each workstation. The truck’s arrival to the
warehouse is considered deterministic. At the same time, each truck’s contents are probabilistically known.
A simulation-based optimization model is proposed to decide the optimal staffing level at each station. In
our study, we also minimize the total completion time for the put-away operations. However, we achieve
this objective by determining the optimal number of teams (parallel workstations) to be formed, the number
of workers and worker to task assignment in each team, buffer space allocation, and the number of forklift
operators needed. Ganbold, Kundu, Li, and Zhang (2020) studied an optimal workforce allocation problem
to improve the warehouse service level using a simulation-based optimization model. They considered
a warehouse with inbound and outbound areas, each with various workstations. In their model, there
are multiple employees with different skills, and the goal is to optimally allocate these employees to
workstations while considering the warehouse operational constraints. However, the constraints related to
warehouse storage capacity, working areas, and buffer zones between activities are not considered in this
problem. In contrast, we determine the optimal number of parallel workstations (teams of workers) that
need to be created, the number of workers at each workstation, and the buffer space for each workstation.
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3 PROBLEM DESCRIPTION AND SIMULATION MODEL

Containers are delivered to the manufacturing plant daily to support the manufacturing process. Each
container holds multiple pallets containing a mixture of different parts with potentially different packaging.
The set of containers that need to be unloaded is known at the beginning of the day. Additionally, each
container is assigned a priority level for unloading such that containers that have the parts with the least
supply in the warehouse are assigned the highest priority. The manufacturer follows a defined procedure to
unload these containers in order to replenish warehouse stock. A container is docked, pallets are unloaded
and processed in a primary staging area, and then they are transported either to the warehouse for storage
or to a secondary staging area if they need further processing. In the primary staging area, two types of
workers, known as the Scanners and the Breakdowners, process the unloaded pallets. A scanner must scan
all unloaded pallets. Some pallets may also need to be broken down into individual boxes by a breakdowner.
The entire process is illustrated in Figure 1.

Figure 1: Process flow chart

In this paper, we only focus on the part of the receiving process until the parts are ready to be transported
out of the primary staging area. The equivalent queuing representation for this process is shown in Figure
2. Process 1 has a finite number of containers whose contents need to be unloaded and processed. Different
containers that need to be unloaded are represented using dark gray colored trapezoids in Figure 2. The
number of parallel queues in Process 1 is equivalent to the number of teams. Queues at Process 2 are
capacitated, and once again, the total number of parallel queues is equivalent to the number of teams. The
capacity of each queue in Process 2 is equal to the buffer size (i.e., number of staging areas) allocated to
each team. Not all pallets unloaded from a container are identical. In Figure 2, various shapes are used to
differentiate different types of pallets waiting in a queue at Station 2. Additionally, pallets unloaded from
the same container are depicted using the same color. Two different teams are represented in Figure 2 with
the colors orange and purple. Figure 2 illustrates the entire procedure with two teams. Thus, at Process
1, there are two parallel queues depicted, Queue 1 and Queue 2. Similarly, at Process 2, the figure shows
two parallel queues, Queue 1 and Queue 2. In our problem, the number of teams that need to be formed is
a decision variable and thus, the number of queues that will be formed at each process is determined by
the simulation-optimization model.
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Figure 2: Queue representation of the process

One or more unloading forklifts work at Station 1 to unload the pallets from the containers. At Station 2,
scanners and breakdowners work in teams to process (scan and breakdown) the unloaded pallets. The order
of processing for each container is determined by its priority level and known in advance. Only one forklift
can work on a container to unload all its contents. The unloaded pallets are then placed into the staging
area. Contents of a container can be placed in any of the available staging areas, however, a staging area
cannot simultaneously hold pallets from different containers. Once a container is completely unloaded, the
scanner starts scanning the unloaded pallets. After all pallets of a container are scanned, the breakdowners
can break down the pallets if required. The scanner starts scanning the pallets from a new container while
the breakdowners work on pallets from the previous container. The scanners and breakdowners work in
a team. In each team, there is one scanner and one or more breakdowners. Collaboration between teams
is not permitted. Furthermore, once the teams are formed at the beginning of the day, they cannot be
changed until all containers are processed. At the beginning of each day, every team is assigned a set of
staging areas to be used throughout the day. When the scanning and breakdown operations are completed
for a container, the transporter forklifts transfer the processed pallets to the warehouse storage spaces and
clear the staging area. The transporter forklifts can work for any team. Similar to the unloading forklifts
working at Station 1, only one transporter forklift can transport the materials belonging to a container.

On a given day, there are S staging areas available, as well as T transporter forklifts, and N workers who
can serve as a scanner, breakdowner, or an unloading forklift’s driver. Teams must be formed optimally
using the available resources (i.e., staging areas and workforce) to minimize the time required to process and
store the materials from the containers that must be unloaded for the day. We develop a simulation-based
optimization model to solve this problem. A detailed discussion of the simulation model is provided below.

The simulation model is built in Arena, and OptQuest is used to build the optimization model. Figure
3 shows a representation of the simulation model we developed. The process starts with the arrival of
all containers (i.e., jobs). The containers enter the system in priority order. A container is held until a
forklift and a buffer space (i.e., staging area) are available to unload it. This process is executed using
the Hold module labeled as Hold containers in Figure 3. Once a forklift and buffer space is available, the
Process module labeled as Sieze forklift and buffer space seizes one unit of both resources for a container.
The Process module labeled as Release forklift releases the forklift after an Erlang distributed amount of
time, once all pallets from the container are unloaded. The service times per pallet for a forklift, scanner,
and breakdowner is assumed to be exponentially distributed, therefore, the service time for a container
containing n pallets is Erlang distributed. Our industrial partner had conducted the time study for each of
these servers (i.e., forklift, scanner, and breakdowner) and provided us with the mean service time for each
process.
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Figure 3: Representation of the simulation model

As mentioned previously, each team is allocated buffer spaces within which they are allowed to work.
Therefore, if a container is unloaded into the buffer space of a team, then only members of that team can
process it. Using the Assign module in Arena, we keep track of the team assignments. The job is then
routed to the specific team that needs to process it. Scanning is required for all pallets in a container.
However, there are two possibilities for the breakdown: (i) breakdown is not required for any of the pallets
in a container, and (ii) breakdown is required for some or all pallets in a container. We use the Decide
module labeled as Requires breakdown to route the job appropriately. In case (i), only scanning is required,
and therefore only the scanner resource is seized. Process times for scanning follow an Erlang distribution.
In case (ii), first, the scanner is seized to scan the pallets and released after and Erlang distributed amount
of time. Then, the breakdowners are seized to breakdown the pallets, and they are released after an
Erlang distributed amount of time. After scanning and breakdown of all pallets belonging to a container is
completed, the transporter forklift is seized using the Process module labeled as Transport pallets to clear
all materials from the staging area. Process times for transportation also follow an Erlang distribution.
Finally, the buffer space is released upon completion of the transporter forklift process. A summary of the
process time distributions per container used in the model is provided in Table 1.

Table 1: Summary of the process time distributions

Process Distribution Shape parameter
Unload Erlang distribution Total pallets in a container
Scanning Erlang distribution Total pallets in a container
Breakdown Erlang distribution Total breakdown pallets in a container
Transporting to warehouse shelves Erlang distribution Total non-breakdown pallets in a container
Transporting to secondary staging Erlang distribution Total breakdown pallets in a container

Note: Rate parameter of each Erlang distribution was estimated by the industry partner using propriety data.

Using the input parameters defined in Table 2 and the decision variables defined in Table 3, we formulate
the optimization model given by equations (1) – (13).

Table 2: Input parameters notation and description

Notation Description
tmin Minimum number of teams to be formed
tmax Maximum number of teams that can be formed

S Total staging areas
N Total number of individuals available
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Table 3: Decision variables notation and description

Notation Description
si Binary variable, equals to 1 if Team i is formed. (where i = 1, 2, . . . tmax)
bi Number of breakdowners in Team i. (where i = 1, 2, . . . tmax)
xi Number of staging areas allocated to Team i. (where i = 1, 2, . . . tmax)
f Number of unload forklifts

minimize: Expected total time required to process and put-away all the containers (1)

Subject to:

tmax

∑
i=1

si ≥ tmin (2)

tmax

∑
i=1

si ≤ tmax (3)

bi− si ≥ 0 . . . i ∈ {1, 2, . . . , tmax} (4)

xi− si ≥ 0 . . . i ∈ {1, 2, . . . , tmax} (5)

si ∗bi−bi = 0 . . . i ∈ {1, 2, . . . , tmax} (6)

si ∗ xi− xi = 0 . . . i ∈ {1, 2, . . . , tmax} (7)

f +
tmax

∑
i=1

si +
tmax

∑
i=1

bi = N (8)

tmax

∑
i=1

xi = S (9)

si ∈ {0, 1} . . . i ∈ {1, 2, . . . , tmax} (10)

bi ∈ Z≥0 . . . i ∈ {1, 2, . . . , tmax} (11)

xi ∈ Z≥0 . . . i ∈ {1, 2, . . . , tmax} (12)

f ∈ Z> (13)

Constraints defined by equations (2) and (3) provide a lower and upper bound on the number of teams
that need to be formed. When Team i is formed, it is assigned a scanner using the decision variable si. If
Team i is formed, then it gets assigned a minimum of one breakdowner and one buffer space; constraints (4)
and (5) ensure this. Further, if Team i is not formed, then no breakdowner and buffer space are assigned to
Team i due to constraints (6) and (7). Constraint (8) ensures that all the available individuals are assigned,
and constraint (9) ensures that all the buffer spaces are allocated to teams.

4 EXPERIMENTAL SETUP

We analyzed the data provided by our industrial partner for the number of containers unloaded on a given
day in the warehouse. We observed that around eight percent of the time, the number of containers unloaded
was less than 75. Most of the time, around 100 containers were unloaded daily, with the maximum being
115 containers unloaded on a single day. Therefore, we chose to run our experiments using 75, 100, and
125 as the number of containers to be unloaded. Further, by discussing with the process associates at the
BMW Manufacturing Company, we decided to vary the percentage of containers requiring breakdown as
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25%, 50%, and 75%. Using this information, we construct nine scenarios for our simulation experiments.
The number of pallets in each container is generated using the discrete uniform distribution, U{15, 25},
as estimated by our industrial partner. The percentage of pallets to be broken down in each container
that requires breakdown is estimated to follow the continuous uniform distribution U [30,70] based on the
analysis carried out by our industry partner.

On each day, 14 individuals are available to work as either a forklift operator, scanner, or breakdowner.
A minimum of 2 and a maximum of 4 individuals need to be assigned as forklift operators. The remaining
individuals need to be assigned to a minimum of 3 and a maximum of 5 teams, each team consisting of
one scanner and at least one breakdowner. There are 13 staging areas available that need to be distributed
amongst the teams. These details on capacity of resources and process requirements were provided by the
industrial partner.

The optimization model was constructed in OptQuest using the parameters mentioned above. The
number of solutions to be explored in OptQuest was set as 100. Additionally, the number of replications
performed for each simulation run was dynamically determined by OptQuest using the 95% confidence
interval built around the mean of the total time required to complete all jobs, with a minimum of 30
and a maximum of 50 replications. The best solution obtained by OptQuest was then evaluated using
the simulation model with 100 replications. We test the solutions obtained using OptQuest, against the
currently practiced team formation. For this purpose, we simulated the unloading process with the current
team formation under each scenario considered. These simulations were also run using 100 replications.

5 RESULTS

In this section, we discuss the results obtained using the simulation optimization model. In Table 4, the
currently practiced team formation is presented. Currently, the same team formation with three teams and
two forklifts is used every day, regardless of number and characteristics of containers to be unloaded. Each
team has an equal number of breakdowners and an approximately equal number of buffer spaces allocated.
The best solutions (i.e., solutions with a minimum total time for processing all jobs) for nine different
scenarios obtained using the OptQuest are presented in Table 5.

Table 4: Currently practiced team formation

Breakdowner Buffer space Scanner Number
of

forklifts
allocation allocation allocation

T1 T2 T3 T1 T2 T3 T1 T2 T3
3 3 3 4 4 5 1 1 1 2

Table 5: OptQuest solution for best team formation

Breakdown
(%)

Number
of

containers

Breakdowner Buffer space Scanner Number
of

forklifts
allocation allocation allocation

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4
25 75 2 1 2 1 8 2 2 1 1 1 1 1 4
25 100 3 1 1 1 8 2 2 1 1 1 1 1 4
25 125 3 1 1 1 8 2 2 1 1 1 1 1 4
50 75 1 1 1 3 2 2 2 7 1 1 1 1 4
50 100 1 1 3 1 2 2 8 1 1 1 1 1 4
50 125 1 1 3 1 2 2 8 1 1 1 1 1 4
75 75 2 1 2 2 2 2 4 5 1 1 1 1 3
75 100 2 1 2 2 2 2 4 5 1 1 1 1 3
75 125 3 1 2 1 4 2 6 1 1 1 1 1 3
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Results reported in Table 5 show that currently, the forklift operators are a bottleneck. Further, we
observe that the optimal team formation is dependent on the breakdown percentage. The optimal team
formation remains the same for the scenarios with 25% – 50% breakdown and 100 – 125 containers.
A similar observation can be made in the case of 75% breakdown and 75 – 100 containers. Having
fewer solutions to implement in different scenarios is better from a practical perspective for our industrial
partner. Furthermore, some of the solutions presented in Table 5 may be statistically equivalent in terms of
performance under a given scenario. To reduce the number of solutions we propose and eliminate statistically
equivalent solutions, we have performed 95% t-tests to compare the performance of the solutions in Table 5
across scenarios. Based on this analysis, we present the proposed solutions that depend on the breakdown
percentage in Table 6. The solutions presented in Table 5 and Table 6 are statistically equivalent as per
our analysis.

Table 6: Proposed solution for best team formation

Breakdown
(%)

Number
of

containers

Breakdowner Buffer space Scanner Number
of

forklifts
allocation allocation allocation

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4
25 75 2 1 2 1 8 2 2 1 1 1 1 1 4
25 100 2 1 2 1 8 2 2 1 1 1 1 1 4
25 125 2 1 2 1 8 2 2 1 1 1 1 1 4
50 75 2 1 2 1 5 2 4 2 1 1 1 1 4
50 100 2 1 2 1 5 2 4 2 1 1 1 1 4
50 125 2 1 2 1 5 2 4 2 1 1 1 1 4
75 75 2 1 2 2 2 2 4 5 1 1 1 1 3
75 100 2 1 2 2 2 2 4 5 1 1 1 1 3
75 125 2 1 2 2 2 2 4 5 1 1 1 1 3

The average time required to complete all jobs under different scenarios using the current team formation
(i.e., Table 4) and the proposed solution (i.e., Table 6) is presented in Table 7. These results suggest a
minimum 19% and maximum 39% of performance improvement under the various scenarios considered.

Table 7: Performance improvement

Breakdown
(%)

Number
of

containers

Currently practised Proposed Average
performance
improvement

team formation solution
Average (min) Half-width (min) Average (min) Half-width (min)

25 75 545.65 4.85 341.46 4.65 37.42%
25 100 714.40 4.94 434.10 4.26 39.24%
25 125 884.30 4.98 534.52 5.01 39.55%
50 75 554.11 4.37 391.39 5.00 29.37%
50 100 722.14 4.90 504.16 5.27 30.19%
50 125 896.92 4.99 615.53 5.77 31.37%
75 75 558.11 4.17 451.07 4.65 19.18%
75 100 728.99 4.56 582.69 4.77 20.07%
75 125 898.06 4.07 710.43 5.61 20.89%

The details related to the average utilization of each resource under the current team formation and
the proposed solution are presented in Table 8 and Table 9, respectively. We observe that utilizations of
breakdowners and buffer spaces increase when the breakdown percentage or number of containers increases.
In comparison, the average utilizations of scanners and forklifts increase only with an increase in the number
of containers. Additionally, the average utilization per scanner and the average utilization per forklift remain
the same for different breakdown percentages as long as the number of containers remain the same. This
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is because the workloads of the forklifts and scanners are unaffected by the amount of breakdown needed.
These results also show that the average utilization per forklift is higher using the presently practiced team
formation because of the lower number of forklifts deployed when compared to the proposed solution.
Furthermore, the average utilization per scanner is higher under the currently practiced team formation
because of the lower number of teams formed when compared to the proposed solution. On the contrary,
the average utilizations of breakdowners and buffer spaces under the current team formation is lower than
under the proposed solution because improper resource allocation in the current practice results in a longer
putaway time required to process all containers. Table 10 presents the detailed per resource utilization in
each team for all resources under the proposed solution given in Table 6.

Table 8: Average resource utilization using currently practised team formation

Breakdown
(%)

Number of
containers Breakdowner Buffer space Scanner Forklift

25 75 0.056 0.184 0.063 0.425
25 100 0.073 0.245 0.083 0.566
25 125 0.092 0.307 0.104 0.709
50 75 0.111 0.214 0.062 0.426
50 100 0.148 0.284 0.084 0.566
50 125 0.185 0.356 0.104 0.711
75 75 0.164 0.243 0.063 0.425
75 100 0.221 0.326 0.084 0.567
75 125 0.277 0.407 0.104 0.708

Table 9: Average resource utilization using proposed solution

Breakdown
(%)

Number of
containers Breakdowner Buffer space Scanner Forklift

25 75 0.084 0.226 0.047 0.212
25 100 0.110 0.301 0.062 0.284
25 125 0.139 0.381 0.078 0.354
50 75 0.167 0.271 0.047 0.213
50 100 0.223 0.363 0.062 0.283
50 125 0.279 0.455 0.078 0.354
75 75 0.211 0.305 0.047 0.283
75 100 0.285 0.408 0.063 0.378
75 125 0.351 0.510 0.078 0.475

Table 10: Resource utilization for proposed solution

Breakdown
(%)

Number
of

containers

Breakdowner Buffer space Scanner Forklift
utiliza
-tion

utilization utilization utilization
T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

25 75 0.16 0.07 0.04 0.03 0.24 0.22 0.21 0.19 0.12 0.03 0.03 0.01 0.21
25 100 0.21 0.09 0.05 0.04 0.31 0.30 0.28 0.26 0.16 0.04 0.04 0.02 0.28
25 125 0.26 0.13 0.06 0.05 0.39 0.38 0.36 0.34 0.20 0.05 0.05 0.02 0.35
50 75 0.21 0.15 0.16 0.13 0.28 0.28 0.26 0.26 0.08 0.03 0.06 0.02 0.21
50 100 0.27 0.19 0.21 0.18 0.37 0.37 0.35 0.34 0.10 0.04 0.08 0.03 0.28
50 125 0.34 0.24 0.26 0.23 0.47 0.46 0.44 0.44 0.13 0.05 0.10 0.04 0.35
75 75 0.14 0.22 0.24 0.26 0.33 0.33 0.31 0.28 0.04 0.03 0.06 0.07 0.28
75 100 0.18 0.29 0.32 0.35 0.43 0.44 0.41 0.39 0.05 0.04 0.08 0.09 0.38
75 125 0.22 0.35 0.39 0.44 0.54 0.54 0.52 0.48 0.06 0.04 0.10 0.11 0.47
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Based on the experimental results, we make three important observations. First, the unloading forklifts
are a bottleneck in the currently practiced team formation. Therefore, according to our proposed solution,
more forklift operators (3–4) must be assigned. Second, the number of workers assigned as breakdowners
should increase with the increase in the breakdown percentage. This is because the breakdown process
becomes a bottleneck as breakdown percentages increase. The number of breakdowners is increased by
reducing the number of forklift operators assigned in our proposed solution. Third, four teams should be
formed instead of the three teams formed in the current practice. This is evident from the higher average
breakdowner and buffer space utilization achieved using the proposed solutions.

6 CONCLUSION

We study the problem of optimal team formation, buffer allocation, and job assignment to teams of workers
to optimize the container unloading and warehouse replenishment process. We solve this problem using a
simulation optimization approach. Currently, the industrial partner forms three teams with equal sizes and
approximately equal buffer space allocations. The solutions obtained using the simulation optimization
model suggest that the team formation should be dependent on the percentage of containers that require
additional processing (i.e., breakdown). Further, the unloading forklift operators are the bottleneck in the
current process. This bottleneck can be alleviated by increasing the number of unloading forklift operators.
A considerable reduction in the total time required to putaway all needed materials can be achieved by
increasing the number of forklift operators and adjusting the number of teams formed depending on the
percentage of containers that require additional processing.
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