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ABSTRACT 

To address the collision avoidance problem of automated stacking cranes (ASCs) in the automated 
container terminal, this paper provides a collision-free simulation framework for ASCs. The framework is 

constructed based on Spatio-temporal information and enables the effective collision avoidance of multiple 
ASCs even when different path planning algorithms considering only obstacle avoidance are embedded 
into the framework. Finally, the effectiveness of the collision-free simulation framework is demonstrated 
by embedding the A* algorithm and Ant Colony algorithm into the framework. 

1 INTRODUCTION 

Against the background of the enlargement of vessels and the continuous expansion of container terminal 

scale, container terminals are in urgent need of transformation towards automation and intelligence. The 
operational efficiency of intelligent equipment has become one of the key issues affecting the operational 
capability of automated container terminals. In the study of intelligent equipment, the collision avoidance 
problem of automated stacking cranes(ASCs) is one of the key points and difficulties. In order to facilitate 
the study of the multi-ASC collision avoidance problem, it is necessary to construct a collision-free 
simulation framework. In this way, collision avoidance can be achieved by embedding a simple obstacle 

avoidance path planning algorithm into the framework, which significantly increases the efficiency of 
simulation experiments. 

The current simulation for the ASC of the automated terminal mainly simulates the process of multiple 
ASCs performing the loading and unloading tasks autonomously. The working scenario of ASCs is shown 
in the left picture of Figure 1. After one ASC receives the task of unloading ships, it first travels to the 
exchange area, picks up the container, and then travels to the target yard area along the routes calculated 

by the path planning algorithm. When the ASC arrives at the destination, it puts down the container. The 
process of loading ships is the opposite of the process of unloading ships. The ASCs are allowed to travel 
through the middle part of the buffer for efficiency. If the routes of ASCs are not collision-free during the 
execution of the task, it is very easy for multiple ASCs to collide when they intersect, greatly reducing the 
efficiency of the terminal operation. 

The steps to writing the simulation program for the automated terminal are as follows. Firstly, the 

environment map for ASCs is described by using the grid method; as shown in the right picture of Figure 
1, the buffer and the yard area are rasterized. After the environment map is described, the simulation 
framework is constructed according to the agent relationship, and the running logic is written for each agent 
in the framework. Then, the simulation program is finished. In the process of running the simulation 
program, the agent responsible for task transformation will transform the requirements of loading the ships 
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and unloading the ships into task information acceptable to the ASCs, and assign the tasks to each ASC's 
task list according to the task assignment algorithm. Then the ASCs will execute the tasks in the task list 
one by one. In the process of executing the task, the agent responsible for path planning will plan the path 

for the ASC according to the starting node and the destination node of the task and ensure that the ASC will 
follow the planned path. 
 

 

Figure 1: The working scenario of ASCs  and the grid map corresponding to the scenario. 

2 RELATED WORK 

The collision-free path planning problem of automated guided robots can be divided into two categories, 

the first category is short-term collision-free path planning problems, and the second category is long-term 
collision-free path planning problems. Short-term path planning refers to the planning of the shortest 
collision-free path from the start point to the end point for all robots at a one-time point. We also call the 
problem multi-agent path finding (MAPF) problem. Existing researches mainly address the MAPF problem 
from three perspectives. The first perspective is building a model and designing an accurate algorithm to 
solve it. Edward et al. (2022) abstracted the MAPF problem as a network flow problem and designed a 

column generation algorithm combined with a branch and price strategy to solve the problem. Surynek 
(2012) converted the MAPF problem into a Boolean Satisfaction problem and solved them using 
optimization software. Such algorithms can often obtain a globally optimal solution but generally run for a 
long time. The second perspective is to design algorithms based on walking criteria. Luna and Bekris (2011) 
designed the push and pulled algorithm and its extension algorithm so that a feasible solution could be 
obtained quickly. Such algorithms sacrifice the quality of knowledge to ensure speed. The third perspective 

is search-based algorithms. Bnaya and Felner (2014) proposed a WCHA* algorithm based on collision 
criterion, which can dynamically place time windows and continuously adjust the planned path. Such 
algorithms can obtain an optimal solution or an approximate optimal solution in a relatively short period of 
time. The long-term path planning problem is also called the multi-agent pickup and delivery problem 
(MAPD),  
It combines path planning and task assignment, and it also models for many other applications of multi-

agent systems, including autonomous aircraft-towing vehicles (Morris et al., 2016) and other systems that 
use fleets of forklift robots (Pecora et al., 2018; Salvado et al. 2018) or teams of service robots (Khandelwal 
et al. 2017; Veloso et al. 2015), the algorithms for these models can only get feasible solutions presently. 

In general, the current research on automated guided robot collision avoidance is mainly focused on 
short-term planning. The research on long-term planning has focused on the design of optimization 
algorithms. However, these algorithms cannot guarantee the quality of the solution presently, and it's also 

very hard to embed these algorithms into the simulation framework. So this paper designs a collision-free 
simulation framework to avoid collisions by embedding a 2D path planning algorithm into the framework. 
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3 PROBLEM DEFINITION 

In discrete event simulation, the event scheduling method simulation model is frequently used. In this 
model, each event has a determined generation time, and then these events are added to the event list. When 

the simulation clock advances to the corresponding event trigger moment, and if the event trigger 
requirements are met, the event will be triggered. For multi-ASC conflict events, because it is not possible 
to know the specific time point of the conflict event, the handling of the conflict event becomes intractable 
in the discrete event simulation. So if a discrete event simulation framework can be designed, using the 
framework, it can be simple and efficient to achieve multi-ASC collision avoidance, thus can greatly 
increase the efficiency of doing simulation experiments. 

4 COLLISION MARKING AND RESOLUTION 

4.1 Spatio-temporal Barrier Table 

For collision avoidance of multiple ASCs, it is very important to allow the ASC to obtain as much 
information as possible about the environment or the location of other vehicles. The most widely used 
algorithms in discrete event simulation are basically 2D path planning algorithms. They can achieve 
complete avoidance of static obstacles and find the shortest path from the starting node to the destination 

node in a short period of time. However, this type of algorithm still cannot meet the requirements of 
collision avoidance because each ASC can be seen as a moving obstacle while executing its task, and the 
path planning algorithms are often designed for static obstacles. So the key issue of our study is to design 
a simulation framework that satirizes moving obstacles and marks all obstacles on a public table. In this 
way, when the agent plans paths for ASCs, it can refer to the public table to avoid the marked obstacles and 
thus achieve collision avoidance. The process of stabilising moving obstacles is shown in Figure 2. 

 

Figure 2: Flowchart for satirising moving obstacles. 

In our study, all ASCs executing the task are set to maintain uniform linear motion and move at the 
same speed. The moment at which the ASCs send path planning requests is set as integer time points. In 
this study, a task manager agent is designed in the simulation framework. Each ASC needs to get a collision-
free path that will send the information of the starting node and the destination node to this task manager at 
integer time points, and the task manager will be started every simulation second. The main purpose of 

designing the task manager is to sort the tasks according to the priority of the tasks and to increase the 
synergy of path planning. We do this because if the ASCs plan their own paths, they will only consider the 
shortest path for them to complete their tasks. It's hard for them to take the initiative to avoid the ASCs 
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whose tasks are more difficult to complete when there is a risk of collision, which may cause deadlock and 
other system failures. When the task manager is started, the tasks of the task pool will be sorted first, and 
the tasks with higher priority will be planned firstly, so as to ensure that ASCs with lower priority will give 

way to ASCs with higher priority. This ensures that important tasks are completed first, and the system 
failure is not caused. 

The overall collision avoidance process is initializing the simulation parameters first. Then each ASC 
will continuously receive tasks of loading and unloading the vessels. ASCs will execute the assigned tasks 
one by one according to the time order. For the currently executed task, the ASC will send the task to the 
task manager. That is to say, the information of the starting node and destination node of the task is uploaded 

to the task pool of the task manager. The task manager then collects all the tasks that need to be solved in 
the current simulation second and starts to plan the path for the tasks. It sorts all the tasks in the task pool 
according to the priority of the task. After sorting, it plans the paths for the tasks one by one in the order of 
priority of the task from highest to lowest. When planning the paths, the task manager needs to refer to the 
Spatio-temporal barrier table to view the occupancy time period of the nodes and find the free time windows 
which are available for scheduling other vehicle occupancies so that it can plan the shortest path for obstacle 

avoidance. After the shortest path is planned, the planned path is added to the Spatio-temporal barrier table 
as new obstacles using a converted algorithm that takes into account collision avoidance. 

The structure of the Spatio-temporal barrier table and the path corresponding to the data in the table are 
shown in Figure 3, respectively. Because the simulation environment of this study is described by using the 
grid method, in order to clearly represent the position of the obstacles at each time point, the Spatio-
temporal barrier table is designed. The first column of the table indicates the grid ID, and the first row of 

the table indicates the simulation time node. If a grid at a certain time point is not occupied, the 
corresponding position in the table is marked 0. If a grid at a certain time point is occupied, the 
corresponding position in the table is marked 1. 

                

Figure 3: The data in the Spatio-temporal barrier table and the real path corresponding to the data. 

ASCs actually need to avoid two types of obstacles, one is the container placed in the yard, the container 
becomes a static obstacle when the direction or height of the placement makes ASCs unable to cross, and 

the other is the moving ASCs. We designed two tables. The first Spatio-temporal barrier table is the closelist 
table, which is used to record the occupancy situation of all yard storage locations at each time point. The 
second Spatio-temporal barrier table is the reservation table, which is used to record the location of ASCs 
at each time point. In order to facilitate the use of Spatio-temporal barrier tables in the simulation 
framework, we abstract the Spatio-temporal barrier table into the form of a hash table if, during the period 
of planning a path, it is necessary to know whether the grid of row i and column j is occupied at time t, then 

the task manager can quickly check the value of closelist[i][j][t] or reservation[i][j][t]. If the value is 1, the 
grid is occupied at that time point. If the value is 0, it is passable. 

For each container placed on the storage location, from the time it is placed on the storage location by 
an ASC, it will occupy the grid for a period of time. But a problem arises, when the container is placed in 
the storage location, it's hard to know when it will be moved. That is, we do not know how many 1 needs 
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to be marked in the table. Therefore, in this study, the values in the closelist table corresponding to storage 
location from the arrival time of the container till the end of the simulation time are set as 1. When this 
container is removed, change the values in the table corresponding to this storage location from the current 

time point to the end of the simulation time to 0. The above method solves the problem of marking the 
container as a temporary obstacle in the Spatio-temporal barrier table. Supposing a container from time 3 
to time five is placed in the grid 2, and it will be moved at time 6, the corresponding values in the Spatio-
temporal barrier table closelist will present as the form in Figure 4 so that the problem of marking the grid 
occupied by the container in the Spatio-temporal barrier map is solved. 

 

Figure 4: Diagram of how containers are marked in the closelist table as obstacles. 

When planning a path for one ASC, it is necessary to determine whether a node is occupied at a certain 
time point. Firstly the task manager checks whether there is a risk that the current moving direction will 
conflict with the containers. If not, there is no need to check the closelist table, directly check the reservation 
table. But if a collision may happen, it's necessary to check the closelist table to see if the container is placed 
in that storage location. If not, the task manager continues to check the reservation table to see if there is a 
risk of conflicting with other ASCs. If not, the node can be chosen. 

4.2 Conflict Resolution 

4.2.1 Resolving Cross Conflict 

There are three types of conflicts that ASCs are prone to while driving, as shown in Figure 5. The first is 
overtaking conflict, the second is head-on conflict, and the third is cross conflict. 

 

(a)  Overtaking conflict                                      (b) Head-on conflict                                 (c) Cross conflict 

Figure 5: Classification of conflicts. 

Since all ASCs are set to travel at the same speed and maintain uniform linear motion in this simulation, 
there is no overtaking conflict. For cross conflict, when the task manager plans the path for a task, it will 
check the Spatio-temporal barrier table to observe the obstacle situation and avoid choosing a grid that has 

already been marked as an obstacle at some point in the future. After planning the path, the task manager 
adds the planned path to the Spatio-temporal barrier table. When planning the path for subsequent tasks, 
the task manager just needs to avoid choosing the grid that has been marked one at the corresponding time 
point, thus making it hard for multiple ASCs to occupy the same grid at the same time and the cross conflicts 
can be solved. Assuming that the task being executed by ASC1 has a higher priority than that of ASC2 and 
both vehicles send a path planning request at the moment 0. ASC1 wants to travel from the grid 
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corresponding to (3,1) to the grid corresponding to (3,5), while ASC2 wants to travel from the grid 
corresponding to (1,3) to the grid corresponding to (5,3). After the two vehicles pass their tasks to the task 
manager, the task manager judges that ASC1's task priority is higher than ASC2's, so it plans the path for 

ASC1 first. Since there are no obstacles on the road by checking the Spatio-temporal barrier table, so the 
planned path for ASC1 is a straight line: (3,1), (3,2), (3,3), (3,4), (3,5). This path is then put into the Spatio-
temporal barrier table according to the corresponding time points, which is equivalent to turning ASC1, a 
moving obstacle, into static obstacles recorded in the table at several integer simulation time points. When 
planning the path for subsequent ASCs, as long as these obstacles are avoided at the corresponding 
simulation time points, it is equivalent to avoiding ASC1 and achieving the collision-free effect. After 

planning the path for ASC1, the task manager continues to plan the path for ASC2. If the Spatio-temporal 
barrier table is not checked, the planned path for ASC2 should also be straight. But if using the Spatio-
temporal barrier table, we can see that at the moment 2, the grid (3,3) is already occupied by ASC1. A better 
choice for ASC2 is to stay at the grid (2,3) for one simulation second at time 2 and then continue at time 3, 
thus avoiding a cross conflict with ASC1 and making ASC2 reach the destination in a relatively short period 
of time. The above process is shown in Figure 6, so checking the Spatio-temporal barrier table when 

planning a path can effectively solve the cross-conflict problem. 

 

Figure 6: The process of resolving cross conflicts. 

4.2.2 Resolving Head-on Conflict 

Firstly, if we ignore the size difference between ASCs and containers, each of them will occupy a grid at 
integer time points, thus making it easier for the head-on conflict to happen.Supposing that ASC1 is now 
on the grid 1 and ASC2 is on the grid 2, ASC1 has a higher priority of task. The partial path planned for 

ASC1 is to travel to grid 1 at time t, and to travel to grid 2 at time t+1. Although the task manager can see 
ASC1's path when it plans a path for ASC2, it may still plan a path requiring ASC2 to travel to grid 2 at 
time t and travel to grid 1 at time t+1. As shown in Figure 7, the dark cells indicate ASC1's partial path and 
the light cells indicate ASC2's partial path. At time t and time t+1, ASC2 does not occupy grids already 
occupied by ASC1, but the head-on conflict still happens,thus forming a crossover structure. 

                       

Figure 7: A two-dimensional representation of a directed conflict. 
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The above example shows that it's unwise to ignore the dimensions of the entities practically.To make 
it impossible to form a crossover structure and to make the simulation environment closer to reality. We 
resize each entity in the simulation experiment according to its actual size, as shown in Figure 8. A 20-feet 

container occupies a grid at integer time points. A 40-feet container occupies two consecutive grids at 
integer time points. An ASC occupies two consecutive grids either because it ensures that the ASC can grab 
two 20-feet containers or one 40-feet container at one time practically. In the process of updating the Spatio-
temporal barrier table, we devise a method that puts a path node into the Spatio-temporal barrier table in a 
way that occupies two consecutive integer time points. This means that when an ASC with a higher task 
priority is to travel to grid m at time t and to travel to grid z at time t+1, the coordinate of grid m is (x,y) 

and the coordinate of grid z is (x1,y1), the nodes occupied by the ASC are (x,y,t), (x,y,t+1), (x1,y1,t+1), 
and (x1,y1,t+2). We do like this because when some components of the ASC have moved to (x1,y1) at time 
t+1, there is still some component of the ASC just arriving at (x,y) for that one ASC occupies two 
consecutive grids. When the ASC occupies grid m at time t, the method mentioned above is guaranteed that 
grid m will not be occupied at time t+1 by any of the other ASCs, thus not only being consistent with the 
devised size of the ASC in the grid map but also eliminating all possibility of head-on conflicts, we call this 

method a converted algorithm. 

 

Figure 8: The correspondence of dimensions. 

An example of this converted algorithm is shown below. As shown in Figure 9, ASC1 needs to travel 

from the grid (3,1) to the grid (3,4), and ASC2 needs to travel from the grid (3,4) to the grid (3,1). ASC1's 
priority is higher than ASC2's. If the converted algorithm is not used, then when ASC1 has finished planning 
the path, ASC2 will not be able to identify the head-on conflict according to the Spatio-temporal barrier 
table, thus colliding with ASC1. 

 

Figure 9: The crossover structure in the Spatio-temporal barrier table. 

When the path of ASC1 is put into the Spatio-temporal barrier table using the converted algorithm, 
each path node of the path will occupy the same grid at two consecutive integer time points so that when 
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the table value of the grid (3,2) at time 1 is set as 1, its value at time 2 will also be set as 1, which means 
that ASC2 cannot move to the grid (3,2) at time 2, thus avoiding the formation of a crossover structure and 
solving the potential head-on conflict. The paths of the two ASCs planned by using the converted algorithm 

are shown in Figure 10. Although it takes longer for ASC2 to reach its destination, the head-on conflict is 
avoided and thus preventing great damage to the overall system. 

 

Figure 10: The converted path in the Spatio-temporal barrier table. 

4.2.3 Resolving the Conflict With Stationary ASCs  

When an ASC reaches the destination, it needs to stop and then pick up or put down the container. During 
this period of time, the ASC is equivalent to a stationary obstacle, so it is necessary to put the information 
of the ASC into the Spatio-temporal barrier table. Otherwise, it is likely to cause other ASCs to collide with 
this ASC. 

The ASC in a static state will occupy the same grid for a period of time. Assuming that ASC arrives at 

the destination grid 100 at time t. This causes another problem that we don't know how long it takes the 
ASC to pick up or put down the container and how long the grid 100 will be occupied by the ASC. To solve 
this problem, the same processing method as in section 4.1 is used. The values in the reservation table 
corresponding to grid 100 from the arrival time of the ASC till the end of the simulation time are all marked 
as 1. The time point when the ASC leaves is assumed to be t+2, and the values in the reservation table 
corresponding to the time point t+2 to the end of the simulation time is marked as 0. Because the grid 100 

is no longer occupied after the ASC leaves, it is necessary to modify the value in the reservation table to let 
other ASCs know that they can pass the grid 100 after time t+2 normally. The above operations are shown 
in Figure 11. 

 

Figure 11: Diagram of how stationary ASCs are marked in the reservation table. 
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5 COLLISION-FREE SIMULATION FRAMEWORK 

The collision-free simulation framework is shown in Figure 12. First of all, the tasks of loading the ships 
and unloading the ships are generated according to a certain rule, which can be determined by the actual 

situation. Because different automated terminals are in different situations and the number of ships arriving 
at the same terminal can change in the same long period of time. So using random seeds to simulate the 
frequency of the generation of the tasks is a feasible method. 

 

Figure 12: The collision-free simulation framework. 

When the threshold for a task of loading the ships or unloading the ships is met, a corresponding task 

will be generated. When a task of unloading the ship is generated, there are two steps to be performed, the 
first step is to determine where in the yard the unloaded container should be stored, and the second step is 
to select a suitable ASC to perform that task. Similarly, for the task of loading the ship, there are still two 
steps to be performed. The first step is to select a suitable container to meet the demand and then to select 
a suitable ASC to perform the task. Each of these two steps can be transformed into an operations 
optimization problem, then a model can be built, and a suitable algorithm can be designed to get an optimal 

solution. Because this part is not the focus of our study, we do not discuss this part in detail. The method 
of violent search is used to determine the storage location, the suitable container, and ASC. For the selection 
of storage location, firstly, the storage space in the yard area is traversed, and the first storage location that 
does not have a container and is suitable for the size of the container that needs to be stored is selected. For 
the selection of the suitable ASC, first number the ASCs, then assign the task to the first ASC when the 
first task is generated, then assign the task to the second ASC when the second task is generated, until all 

ASCs are assigned, then assign the current task to the first ASC again, and keep rolling the assignment. 
When a task is assigned to an ASC, it is first added to the task list of that ASC. Then the ASC agent 

determines whether the ASC is currently executing one task. If not, the new task would be executed 
immediately. If the ASC is busy, then the new task will be executed when all the tasks that were added to 
the task list ahead of the new task have been executed. For the current task to be executed, the ASC will 
send the task to the task manager. Each task essentially consists of two path nodes. The first path node 

indicates the starting node of the task, and the other path node indicates the destination node of the task. 
The task sent by the ASC will first be stored in the task pool of the task manager, and when the task manager 
has collected all the tasks that need to be executed at the current simulation second, it will sort the tasks in 
the task pool in order of task priority from highest to lowest, and then plan the path for the tasks according 
to the ranked order. In the process of path planning, the task manager will first check the Spatio-temporal 
barrier table and plan the path according to the data in the Spatio-temporal barrier table because the 

obstacles represented in the Spatio-temporal barrier table are generated by the converted algorithm, so the 
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path planned by referring to the table is the shortest path to avoid collisions. After planning the path for all 
the tasks in the task pool, the task manager will send the route to the corresponding ASC. When the ASC 
receives the planned route, it will first move from its current position to the starting node of the task, pick 

up the container, then transport the container to the destination node of the task, and put down the container. 

6 CASE STUDY 

In order to verify the effectiveness of the collision-free simulation framework, a collision count indicator 
is designed to calculate the number of collisions that occur during the whole experiment, and two-time 
consumption indicators are designed to verify the computational efficiency of the simulation framework. 
We use the idea of controlled variables and design two groups of comparative experiments. In the first 

group, we observe whether both the embedded A* algorithm and the ACO algorithm can achieve complete 
collision avoidance by changing the number of ASCs and the time interval at which the tasks arrive. In the 
second group, we calculate the average time for the framework to plan for each task and the average 
calculation time of all tasks in one simulation second to observe the computational efficiency of the 
framework. The simulation is realized in the spatial planning tool MicroCity (https://microcity.github.io). 

6.1 Design of Indicators 

In the simulation experiment of the automated terminal, the calculation of the number of collisions is set at 
each update time of the positions of all ASCs. If the centers of two ASCs overlap each other, then the two 
ASCs must be in a collision. For the average time to plan for each task, if it is short and stable when we 
change the number of ASCs for all embedded algorithms, we can say that the framework is practical. For 
the average calculation time of all tasks in one simulation second, as we mentioned in section 5, the task 
manager will be awakened per simulation second and plans the path for all the tasks that need to be executed 

at the current simulation second, if the calculation time is short, we can conclude that the framework is 
efficient. 

6.2 Comparison of Simulation Results 

The structure of the task table is shown in Table 1. The tasks of the task table are executed in turn. This 
experiment set a total of two types of containers, the first type is a 20-foot container, and the second is a 
40-foot container. A 40-foot container can roughly equate to two 20-foot containers. In terms of time 

settings, the loading and unloading time of the former is shorter than that of the latter.  
The results of the first group experiments are shown in Table 2 and Table 3. We can conclude that the 

simulation framework can be used to achieve complete collision avoidance of ASCs performing tasks when 
the number of ASCs or the average time interval of task generation changes. The results of the second group 
experiments are shown in Table 4. When we change the number of ASCs and embedded algorithms, the 
average time to plan for each task is stable and short. Also, the average calculation time of all tasks in one 

simulation second is short. So we can conclude that the framework is practical and efficient for small 
terminals with dozens of ASCs. 

Table 1: The structure of the task table. 

Id Dimension Number Task 

1 20 3 load 

2 40 4 unload 

3 40 5 load 

4 20 3 unload 

5 40 2 unload 

6 20 4 load 

7 20 2 load 

8 40 3 unload 
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Table 2: The results of the first group expirements. 

Algorithm Number of ascs      Time interval Number of collisions 

A* 

4 15 0 

5 15 0 

6 15 0 

7 15 0 

8 15 0 

 

 

ACO 

4 15 0 

5 15 0 

6 15 0 

7 15 0 

8 15 0 

Table 3: The results of the second group expirements. 

Algorithm Time interval    Number of ascs Number of collisions 

A* 

5 6 0 

10 6 0 

15 6 0 

20 6 0 

25 6 0 

 

 

ACO 

5 6 0 

10 6 0 

15 6 0 

20 6 0 

25 6 0 

Table 4: The calculation speed of the simulation framework. 

Algorithm    Number of ascs 
The average time to 

plan for each task 

The average 

calculation time of all 

tasks in one 

simulation second 

A* 

5 0.0298 0.0388 

10 0.0316 0.0494 

20 0.0286 0.0455 

30 0.0313 0.0503 

40 0.0300 0.0482 

 

 

ACO 

5 0.4196 0.5473 

10 0.3819 0.5977 

20 0.3836 0.6115 

30 0.3590 0.5775 

40 0.4055 0.6523 

7 CONCLUSION AND FUTURE WORK 

In this paper, a discrete event simulation framework is designed, which makes reasonable use of Spatio-
temporal information, viewing the ASC, a moving obstacle, as a static obstacle at each integer simulation 
time point and putting this obstacle information into a publicly available Spatio-temporal barrier table for 
reference by other vehicles, thus successfully achieving multi-ASCs collision avoidance. 
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In future research, the speed variation of the ASC needs to be taken into account in the simulation 
model, but considering the speed variation of the ASC creates a new problem that there may not be a way 
to guarantee that all ASCs arrive at the grid node at integer simulation time points, thus making it impossible 

to put the paths into the Spatio-temporal barrier table designed in this study. 
 

ACKNOWLEDGMENTS 

This work is supported in part by the National Natural Science Foundation of China (61304179, 
71431001, 71831002); the Humanity and Social Science Youth Foundation of the Ministry of Education 
(19YJC630151); the International Association of Maritime Universities (20200205_AMC); the Natural 

Science Foundation of Liaoning Province (2020-HYLH-32); the Dalian Science and Technology 
Innovation Fund (2020JJ26GX023); the Social Science Planning Fund of Liaoning Province 
(L19BGL011); the National Social Science Fund(21BGJ073). 

REFERENCES 

Lam, E., P. L. Bodic, P., D. Harabor, and P. J. Stuckey. 2022. "Branch-and-Cut-and-Price for Multi-Agent Path Finding". 

Computers and Operations Research 144:105809. 

Surynek, P.. 2012. "Towards Optimal Cooperative Path Planning in Hard Setups through Satisfiability Solving". In PRICAI 2012: 

Trends in Artificial Intelligence, edited by P. Anthony, M, Ishizuka, and D. Lukose, 564-576. Berlin, German: Springer. 

Luna, R., and K. E. Bekris. 2011. "Push and Swap: Fast Cooperative Path-Finding with Completeness Guarantees". In proceedings 

of the Twenty-Second International Joint Conference on Artificial Intelligence, edited by T. Walsh, NICTA, and University 

of NSW, 294-300. Menlo Park, California: AAAI Press/International Joint Conferences on Artifical Intelligence. 

Bnaya, Z., and A. Felner. 2014. "Conflict-Oriented Windowed Hierarchical Cooperative A∗". In IEEE International Conference 

on Robotics and Automation ICRA, edited by J. D. Tew, M. Manivannan, D. A. Sadowski, and A. F. Seila, 3743-3748. 

Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc. 

Morris, R., C. S. Pasareanu, K. Luckow, W.Malik, H. Ma, T. K. S. Kumar, and S. Koenig. 2016. "Planning, Scheduling and 

Monitoring for Airport Surface Operations". In Workshops at the Thirtieth AAAI Conference on Artificial Intelligence, 

February 12th-17th, Phoenix, USA, 608-614. 

Pecora, F., H. Andreasson, M. Mansouri, and V. Petkov. 2018. "A Loosely-Coupled Approach for Multi-Robot Coordination, 

Motion Planning and Control". In Proceedings of Twenty-Eighth International Conference On Automated Planning And 

Scheduling, edited by M. D. Weerdt, S. Koenig, G. Roger, and M. Spaan, 485-493. Palo Alto, California: AAAI Press. 

Salvado, J., R. Krug, M. Mansouri, and F. Pecora. 2018. "Motion Planning and Goal Assignment for Robot Fleets Using Trajectory 

Optimization". In IEEE International Conference on Intelligent Robots and Systems, edited by J. Kosecka, 7939-7946. 

Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc. 

Khandelwal, P., S. Zhang, J. Sinapov, M. Leonetti, J. Thomason, F. Yang, I. Gori, M. Svetlik, P. Khante, V. Lifschitz, J. K. 

Aggarwal, R. Mooney, and P. Stone. 2017. "BWIBots: A Platform for Bridging the Gap Between AI and Human–Robot 

Interaction Research". International Journal of Robotics Research 36(5-7):635-659. 

Veloso, M., J. Biswas, B. Coltin, and S. Rosenthal. 2015. "CoBots: Robust Symbiotic Autonomous Mobile Service Robots". In 

proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI), edited by Q. Yang, M. 

Wooldridge, 4423-4429. Freiburg, German: Ijcai-Int Joint Conf Artif Intell. 

AUTHOR BIOGRAPHIES 

ZHUO SUN is a Professor in the School of Transportation Engineering at the Dalian Maritime University. He earned his Ph.D in 

Japan's Nagoya University. His research focuses on shipping network design, port planning, and port operation. Early in his 

undergraduate studies, it dawned on him to develop a software tool that would help analyze transport systems. The following years 

served as an incubation period for his idea, and after almost ten years of contemplation and devotion to hard work, his idea was 

finally realized as 'MicroCity'. His e-mail address is mixwind@gmail.com. 

 

ZIYANG QI is a student in the School of Transportation Engineering at the Dalian Maritime University. He is now studying for a 

Master's degree and major in Logistics Engineering and Management. His e-mail address is 919948694@qq.com. 

 

1922

mailto:mixwind@gmail.com
mailto:919948694@qq.com

