
Proceedings of the 2022 Winter Simulation Conference
B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew, T. Roeder, and
P. Lendermann, eds.

TOWARDS A UNIFYING FRAMEWORK FOR MODELING, EXECUTION, SIMULATION,
AND OPTIMIZATION OF RESOURCE-AWARE BUSINESS PROCESSES

Asvin Goel

Kühne Logistics University
Großer Grasbrook 17

20457 Hamburg, GERMANY

ABSTRACT

This paper proposes an extension to BPMN 2.0 to be used within a framework allowing to execute and
simulate resource-aware business processes. The framework consists of three core components: a data
provider responsible for acquiring all relevant information, an execution engine responsible for advancing
process execution according to the respective execution logic, and a controller responsible for making
all decisions required during process execution. The data provider and controller can be easily replaced
depending on the use case and the entire execution logic is encapsulated within the execution engine. The
framework is designed in such a way that it allows any decision mechanism to be deployed ranging from
manual decision making to sophisticated optimization algorithms.

1 INTRODUCTION AND RELATED WORK

In order to improve the performance of business operations many companies apply methods and tools
developed in the fields of Business Process Management, Discrete-Event System Simulation, and Optimiza-
tion. From the field of Business Process Management, the so-called Business Process Model and Notation
(BPMN 2.0) (Object Management Group 2013) has become a standard in modelling business processes
using a graphical notation that is easy to learn and use. Unfortunately, BPMN 2.0 has severe limitations
concerning the consideration of resource requirements. While BPMN 2.0 allows, to some extend, to
specify resources that are needed for subprocesses and tasks, there is no way of ensuring that the required
resources are actually available when executing business processes. In Discrete-Event System Simulation,
resources play a central role and are usually modelled as entities that can accept a limited number of work
items. Resources are usually equipped with queues that can hold work items which have to wait until the
resource becomes available to accept the work item. Although graphical notations used for Discrete-Event
System Simulation share some similarities with BPMN 2.0, a translation from one notation to another is
often not straight-forward. Both BPMN 2.0 and Discrete-Event System Simulation are not designed to find
decisions that contribute to the optimization of performance goals, in particular, regarding the assignment
and allocation of resources. In the field of Optimization, a multitude of models and algorithms have been
developed allowing to optimize the assignment and allocation of resources. These models are usually
based on Mixed-Integer Programming and efficient algorithms are often tailor-made for the respective prob-
lem. Although, such optimization techniques can bring substantial performance improvements, developing
models and algorithms is often a prohibitively expensive task preventing widespread utilization.

The potential of enriching BPMN 2.0 in such a way that it allows for Discrete-Event System Simulation
has been identified early and several approaches have been proposed. With the Business Process Simulation
Specification (BPSim) (Workflow Management Coalition 2013), for example, it is possible to specify
simulation-relevant data such as resource roles, quantities, and availabilities. Pufahl et al. (2017) propose
an architecture of a BPMN process simulator which maps BPMN constructs into a Discrete-Event Simulation
model. Onggo et al. (2018) propose to extend BPMN 2.0 introducing the concept of Shared Tasks which

978-1-6654-7661-4/22/$31.00 ©2022 IEEE 2106

Goel

are used to indicate tasks that share the same resource with a limited capacity. Pufahl and Weske (2013)
propose an execution semantics for so-called Batch Activities allowing to dynamically generate batches
across multiple process instances. Wagner (2020) proposed so-called Resource-constrained Activities which
are visually represented through markers on incoming sequence flows and Wagner (2021) discusses the
use of so-called Processing Activities which are a resource-constrained activities that are performed at
a processing station. In all of these works, resources are assumed to be entities with a predefined set
of characteristics which are required for process execution. In contrast to other work, this paper takes
a novel view on resources by modelling them through so-called Resource Activities comprising several
subprocesses describing the characteristics and behaviour of the resources. As these subprocesses can be
arbitrarily provided by the modeller, the proposal has a high flexibility with respect to the type of resources
that can be modelled. Resource Activities can be included in business process models just like any other
activities and the allocation of resources can be viewed as the initiation of a collaboration between different
processes subject to a specific choreography. Request Activities and Release Activities, as proposed by
Goel and Lin (2022), allow an allocation of resources similar to the Seize-Delay-Release modelling pattern
used in GPSS (Gordon 1961).

This paper seeks at contributing towards a unifying framework for modelling resource-aware business
processes that is capable of executing and simulating these processes and optimizing resource allocations
using different approaches ranging from manual decisions to sophisticated optimization algorithms. After
presenting an extension for BPMN 2.0 allowing to model resources and resource requirements, this paper
proposes a flexible architecture of the framework based on the observer design pattern and presents an
example use case demonstrating the applicability.

2 RESOURCE-AWARE BUSINESS PROCESSES

In order to model resource requirements in business process models, Goel and Lin (2022) proposed to
extend BPMN 2.0 by introducing so-called Request Activities and Release Activities. Request Activities
indicate that one or more resources are requested and must be allocated to the requesting process before
it can continue, whereas Release Activities indicate that one or more resources previously requested are
no longer required. These modelling elements are represented by three connected squares representing a
horizontal stack or a queue as shown in Figures 1a and 1b. Request Activities are drawn with normal line
width and Release Activities are drawn with thick line width.

(a) Request Activity (b) Release Activity

Release ActivityRequest Activity

(c) Resource Activity

Figure 1: Additional modelling elements for resource-aware business processes.

The behaviour of Request Activities and Release Activities is illustrated by the subprocesses shown in
Figures 2a and 2b. A Request Activity can simultaneously request one or multiple resources. It sends a
request message to each resource allocated, waits until all resources are ready to be used and have sent a
ready message, and then, sends a start message to all allocated resources. If any of the resources sends
an error message, the Request Activity terminates with a failure. Before termination, however, a message
is sent to all allocated resources that the respective request is revoked. Similarly, if the Request Activity
is interrupted, e.g. by an interrupting event attached to the boundary, all requests are revoked. A Release
Activity behaves analogously, but sends a release message to all resources that are no longer needed.

Goel and Lin (2022) focussed on representing resource requirements and did not detail the modelling of
resources except for the requirement, that they must be able to adequately exchange messages with Request
Activities and Release Activities. In order to facilitate an automated allocation of resources to requests, the

2107

Goel

Request

Request
message

Start
message

Ready
message

Update

Update Notify

Revoke
request

Error

Error Failure

(a) Request Activity

Release

Release
message

Completion
message

Ready
message

Update

Update Notify

Revoke
release

Error

Error Failure

(b) Release Activity

Figure 2: Behaviour of Request Activities and Release Activities (Goel and Lin, 2022).

allocation mechanism needs to be able to identify resource models and their characteristics. This requires
to include additional information. Before showing how this information can be provided, we first have to
note that resources relate to processes in different ways. On the one hand, resources can be used by other
processes or can provide services requested by other processes. On the other hand, resources may have
to conduct their own subprocesses and can be provided by and within business processes. Furthermore,
resources may require the support of other resources in order to provide a service to a requesting process.
For example, a truck requires a trailer to be able to transport shipments. To support a variety of resources
with different characteristics, this paper proposes to model resources as dedicated modelling elements to
be used within business process models. These modelling elements are named Resource Activities and a
stylized conveyor belt as shown in Figure 1c is proposed as graphical representation. A Resource Activity
can be included within the sequence flow of any process model just like any other activity.

The behaviour of Resource Activities is illustrated by the subprocess shown in Figure 3. Each Resource
Activity comprises multiple subprocesses that can be specified by the modeller: a Default subprocess, a
Prepare subprocess, a Service subprocess, and a Finish subprocess. When a Resource Activity receives a
token from a process execution engine, the Default subprocess is initiated. As long as the Default subprocess
is alive, the resource can be allocated to requests. Note, that the mechanism to allocate resources to requests
is not specified in the model. Later in this paper, we will discuss how resources can be allocated to requests.
When a resource is allocated to a request, a request message is sent from the respective Request Activity
describing the job that is to be performed by the resource. The Prepare subprocess is executed by the
resource to ensure that the resource can actually fulfil the requirements as requested. After completion of
the Prepare subprocess, a ready message is sent to the respective Request Activity. The Request Activity
responds with a start message, when all requested resources are ready. Should the request be revoked
before the start message is received, the resource immediately initiates the Finish subprocess described later.
Otherwise, the Service subprocess is conducted which can implement any predefined choreography with
the requesting process. Simultaneously, the Resource Activity awaits a release message. When the Service
subprocess is completed and the release message is obtained, a ready message is sent to the respective
Release Activity. The Release Activity responds with a completion message, when all allocated resources
have completed the Service subprocess. Thereafter, the resource conducts the Finish subprocess. Note
that, if any of these support subprocesses of a Resource Activity are not needed, they can be assumed to be
empty processes that immediately terminate after being invoked. Should an uncaught error occur during
execution of any of these support subprocesses, the Resource Activity terminates with an error. Before
termination, however, the Failure event-subprocess is executed, sending an error message to all processes
that requested the resource.

2108

Goel

Resource Activity

Default

Failure

Error

Allocation

Service Finish

Release
message

Ready
message

Completion
message

Request
allocated

Prepare

Ready
message

Start
message

Revoke
message

Figure 3: Behaviour of Resource Activities.

To allow for automatic execution of process instances, we will use the notion of tokens moving through
the process models to represent the state of the system. For each token a set of status attributes is available.
Throughout process execution, the values of these attributes can be modified using operators and the set
of permissible values can be constrained by restrictions.

Each token is associated with a set of status attributes which can be declared within process models
using the BPMN 2.0 extension mechanism as shown below.
<extensionElements>
<execution:status>
<execution:attribute name="some_attribute" type="xs:string" />
<execution:attribute name="other_attribute" type="xs:decimal" objective="maximize"
↪→ weight="1"/>

</execution:status>
</extensionElements>

Within an <execution:status> block, any number of status attributes can be provided. Each
<execution:attribute> element requires the attributes name and type to be provided. The name at-
tribute defines a name that must be unique within the scope of the token and that can be used to refer to
the attribute during execution of a particular process instance. The type attribute defines the data type and
can be set to "xs:string", "xs:integer", "xs:decimal", or "xs:boolean".

The objective attribute is optional and indicates whether the status attribute contributes to a global
objective which is to maximize all status attributes with objective="maximize" and minimize all status
attributes with objective="minimize". The tradeoff between different objectives can be indicated by
specifying different weight attributes to set the multiplier in a weighted sum of objectives.

The values of status attributes can be constrained by restrictions added to process models as shown
below.
<extensionElements>
<execution:restrictions>
<execution:restriction attribute="some_attribute_name" negate="true">
<execution:enumeration value="Apple"/>
<execution:enumeration value="Orange"/>

</execution:restriction>
<execution:restriction attribute="another_attribute_name" required="true">
<execution:minInclusive value="0"/>
<execution:maxInclusive value="100"/>

</execution:restriction>

2109

Goel

</execution:restrictions>
</extensionElements>

Within an <execution:restrictions> block, any number of restrictions can be provided. Each
<execution:restriction> element requires an attribute attribute indicating the name of the status
attribute to be restricted. A restriction may have the optional boolean attribute required indicating
whether the given status attribute must be defined. Furthermore, restriction may have the optional boolean
attribute negate indicating whether the outcome of the restriction is to be negated. If both required

and negate are "true", the given status attribute must not be defined. Furthermore, any number of
<execution:enumeration> elements can be added to a restriction each giving a value that the given status
attribute is allowed to take (or must not take in case negate="true"). The given status attribute can be
constrained to a value larger or equal to a value given in a <execution:minInclusive> element or to a
value smaller or equal to a value given in a <execution:maxInclusive> element. A negation allows to
model strictly larger than or smaller than restrictions.

At every node in a process model, the values of status attributes can be modified by operators added
to the node as shown below.

<extensionElements>
<execution:operators>
<execution:operator name="expression" attribute="volume">
<execution:parameter name="expression" value="height*width*length" />

</execution:operator>
<execution:operator name="lookup" attribute="distance">
<execution:parameter name="source" value="distanceTable" />
<execution:parameter name="origin" value="current_location" />
<execution:parameter name="destination" value="customer_location" />

</execution:operator>
<execution:operator name="random" attribute="duration">
<execution:parameter name="distribution" value="exponential" />
<execution:parameter name="lambda" value="rate" />

</execution:operator>
<execution:operator name="choice" attribute="x" />

</execution:operators>
</extensionElements>

Within an <execution:operators> block, any number of operators to be executed in the given order
can be provided. Each <execution:operator> element requires an attribute attribute indicating the
name of the status attribute in which the result obtained by applying the operator is stored. Furthermore, an
attribute name indicating the name of the operator to be applied. The operator name can be "expression",
"lookup", "random", or "choice". A list of <execution:parameter> elements with name and value

attributes can be provided for each operator. Additional operators using the same parameter definitions can
be implemented by custom tools.

The"expression"operator expects an element<execution:parameter>with attributename="expression"
and value being the expression to be applied. The example above determines the value of the at-
tribute with name "volume" by multiplying the attribute values of the attributes with names "height",
"width", and "length". The "lookup" operator expects an element <execution:parameter>with attribute
name="source" and value being the name of the lookup function. For each required input parameter of the
lookup function, an <execution:parameter> element with attribute name indicating the name of an input
parameter and attribute value indicating the respective name of the status attribute to be used as parameter
are required. The example above determines the value of the attribute with name "distance" using a
lookup function named "distanceTable" that expects the parameters "origin" and "destination" which
are stored in the status attributes named "current_location" and "customer_location". Custom tools
implementing the framework can provide any kind of lookup function required. The "random" operator
expects a parameter with name distribution, and other distribution-dependent parameters. The example

2110

Goel

above determines the value of the attribute with name "duration" using an exponential distribution with
the parameter named "lambda" that is set to value of the attributes with name "rate". The set of random
operators can be arbitrarily extended by custom implementations. The "choice" operator requires a decision
to be made. In the example above, the decision made is stored in the attribute with name "x". The set of
possible choices that can be taken is determined by the the data type of the respective attribute and can be
further constrained by adding respective restrictions.

For every Resource Activity a list of key-values pairs must be provided specifying the information
required from any request to which the resource is allocated as shown below.
<extensionElements>
<execution:job>
<execution:content key="a_key" attribute="an_attribute_name" />
<execution:content key="another_key" attribute="another_attribute_name" />

</execution:job>
</extensionElements>

Within an <execution:job> block, any number of <execution:content> elements can be given,
providing a dictionary translating each key of the job description given with a request message into the
attribute of the token status of the respective Allocation event-subprocess shown in Figures 3.

For each Request Activity a list of requested resource allocations can be provided as shown below.
<extensionElements>
<execution:allocations>
<execution:request id="some_id">
<execution:job>
<execution:content key="a_key" attribute="an_attribute_name" />
<execution:content key="another_key" value="a_value" />

</execution:job>
</execution:request>

</execution:allocations>
</extensionElements>

Within the <execution:allocations> element any number of <execution:request> elements can be
provided describing individual requests for resources. For each <execution:request> a unique identifier
must be provided in the attribute id. The <execution:job> block is used to describe the characteristics
of the job to be conducted by the resource. A request message is created based on the key-value pairs
specified through the <execution:content> elements provided for each job.

For each Release Activity a list of resource allocations to be released must be provided. The requested
allocations to be released can be added to as shown below.
<extensionElements>
<execution:allocations>
<execution:release request="a_request_id"/>
<execution:release request="another_request_id" />

</execution:allocations>
</extensionElements>

Within the <execution:allocations> element any number of <execution:release> elements can be
provided. Each <execution:release> must provide the identifier of the request to be released in the
attribute request.

3 EXECUTION AND SIMULATION FRAMEWORK

This section describes a framework allowing to execute, simulate, and optimize process instances for resource-
aware business process models using Resource Activities, Request Activities, and Release Activities, as well
as status attributes, operators, and restrictions as described above. The proposed architecture is based on
the observer design pattern and illustrated as an UML component diagram in Figure 4.

2111

Goel

ExecutionEngine
(token flow, status attributes)

Controller
(time, start and end of

subprocesses and tasks,
choices, resource allocations)

DataProvider
(resource-aware process models,

process instances)

decisions

token updates

instance data

Figure 4: Core components of the framework.

The data provider reads all process models and instance data. It allows observers to subscribe to
updates. Whenever new or modified instance data becomes available, all observers are notified allowing
them to update their data accordingly.

The execution engine subscribes to the data provider to receive information about all process instances.
Furthermore, the execution engine subscribes to a controller to receive the current time of the execution as
well as all other decisions that must be made throughout process execution. Whenever the execution engine
receives a new time or decision from the controller, the provided information is implemented accordingly
and the execution engine advances process execution as far as it can on its own. The execution engine
allows observers to subscribe to updates concerning the token flow. Whenever the state of the token changes
or status attributes are modified, all observers are notified allowing them to react accordingly. Decisions
that may have to be taken during process execution, i.e., decisions on whether to advance in time, whether
to start or end a subprocess or task, which choice to be taken and which resource to allocate to a request,
are not made by the execution engine.

Instead, the controller decides whether to advance in time or whether to take a decision that is necessary
for the execution engine to proceed with process execution. The controller subscribes to the data provider
to receive information about all process instances and the execution engine to receive information about
the progress of process execution. Based on this information, the controller makes the decisions by any
reasonable approach. Different controllers can be developed making decisions in different ways. For
example, a controller can be developed that provides a dashboard for a human decision maker showing
all necessary information. Alternatively, a controller can be developed that applies appropriate rules for
certain decisions that have to be taken, or a controller can make decisions using an appropriate optimization
technique. Any controller allows observers to subscribe to all decisions made by the controller. Whenever
a decision is made, all observers are notified allowing them to react accordingly.

The observer design pattern makes it easy to exchange specific implementations of the core components.
For example, different controllers can be developed for different use cases without having the need to
adapt the execution engine or the data provider. Furthermore, the observer design pattern makes it easy to
integrate further components subscribing to the core components, e.g., a logger or performance analyzer.

4 EXAMPLE USE CASE: SHARED TAXI SERVICES

This section provides an example use case showing how the proposed framework can be used to execute,
simulate, and optimize shared taxi services modelled by resource-aware business process models.

2112

Goel

Figure 5 illustrates the process providing a Resource Activity representing a taxi. At the end of the
process the Return to depot task ensures that each taxi eventually returns to the depot.

Taxi

Return to
depot

Figure 5: Process providing the taxi resource.

For each process instance, the data provider initializes the following status attributes: the attribute time
gives the time at which the taxi begins service, the attribute seats gives the number of passenger seats of
the taxi, the attribute speed gives the average speed of the taxi, the attribute fare gives the distance-based
fare of the taxi, the attribute cleaning duration gives the duration required to desinfect a used seat, the
attributes depot x and depot y give the coordinates of the taxi depot, and the attribute latest allocation
gives the time when the taxi stops to offer the service.

When the process is initiated, the execution engine determines the current location of the taxi (stored in
status attributes current x and current y) and the number of free seats (stored in status attribute free seats)
by applying the following expression operators.
<execution:operators>
<execution:operator attribute="current_x">
<execution:parameter name="expression" value="depot_x" />

</execution:operator>
<execution:operator attribute="current_y">
<execution:parameter name="expression" value="depot_y" />

</execution:operator>
<execution:operator attribute="free_seats">
<execution:parameter name="expression" value="seats" />

</execution:operator>
</execution:operators>

A restriction ensures that the value of the attribute free seats never falls below zero.
<execution:restrictions>
<execution:restriction attribute="free_seats">
<execution:minInclusive value="0" />

</execution:restriction>
</execution:restrictions>

The taxi resource accepts request messages that provide the status attributes pickup x, pickup y,
dropoff x, dropoff y, and passengers to be used with the Allocation event-subprocess illustrated in
Figure 3 which are specified for the Resource Activity as follows.
<extensionElements>
<execution:job>
<execution:content key="PickupX" attribute="pickup_x" />
<execution:content key="PickupY" attribute="pickup_Y" />
<execution:content key="DropoffX" attribute="dropoff_x" />
<execution:content key="DropoffY" attribute="dropoff_Y" />
<execution:content key="Passengers" attribute="passengers" />

</execution:job>
</extensionElements>

A status attribute distance with objective="minimize" and weight="1" indicates the Manhattan
distance for the return trip from the current taxi location to the depot location. When conducting the Return
to depot task, the distance, arrival time at the depot location, and the location of the taxi are determined
using the following expression operators.

2113

Goel

<execution:operators>
<execution:operator attribute="distance">
<execution:parameter name="expression" value="abs(depot_x - current_x) +
↪→ abs(depot_y - current_y)" />

</execution:operator>
<execution:operator attribute="time">
<execution:parameter name="expression" value="time + distance/speed" />

</execution:operator>
<execution:operator attribute="current_x">
<execution:parameter name="expression" value="depot_x" />

</execution:operator>
<execution:operator attribute="current_x">
<execution:parameter name="expression" value="depot_y" />

</execution:operator>
</execution:operators>

Deadline

Figure 6: Default subprocess of the taxi resource.

The Default subprocess of the taxi resource is shown in Figure 6 and only includes a timer event which
triggers at the time specified for the latest allocation-attribute.

Drive to
pickup
location

(a) Prepare subprocess

Drive to
drop-off
location

(b) Service subprocess

Drive to
depot

(c) Finish subprocess

Figure 7: Prepare, Service, and Finish subprocesses of the taxi resource.

The Prepare, Service, and Finish subprocesses are shown in Figure 7. The Prepare subprocess and
the Service declare a status attribute distance with objective="minimize" and weight="1" indicating the
Manhattan distance from the current taxi location to the pickup location and the drop-off location, respectively.
Furthermore, the Prepare subprocess declares a status attribute revenue with objective="maximize" and
weight="1" indicating the revenue obtained for the request. When the Prepare subprocess is initiated, the
following expression operators are applied by the execution engine.

<execution:operators>
<execution:operator attribute="free_seats">
<execution:parameter name="expression" value="free_seats - passengers" />

</execution:operator>
<execution:operator attribute="distance">
<execution:parameter name="expression" value="abs(pickup_x - current_x) +
↪→ abs(pickup_y - current_y)" />

</execution:operator>
<execution:operator attribute="revenue">
<execution:parameter name="expression" value="fare*(abs(dropoff_x - pickup_x) +
↪→ abs(dropoff_y - pickup_y))" />

</execution:operator>
</execution:operators>

2114

Goel

It must be noted that it is the responsibility of the controller to ensure that all restrictions are satisfied when
making decisions, in particular, those that impact the outcome of operators that change restricted attributes
like the free seats-attribute in this example.

When the Drive to pickup location task is executed, the arrival time at the pickup location, and the
new location of the taxi are determined by the following expression operators.

<execution:operators>
<execution:operator attribute="time">
<execution:parameter name="expression" value="time + distance/speed" />

</execution:operator>
<execution:operator attribute="current_x">
<execution:parameter name="expression" value="pickup_x" />

</execution:operator>
<execution:operator attribute="current_x">
<execution:parameter name="expression" value="pickup_y" />

</execution:operator>
</execution:operators>

When the Service subprocess is conducted, the distance, arrival time at the drop-off location, and the
location of the taxi are determined using the following expression operators.

<execution:operators>
<execution:operator attribute="distance">
<execution:parameter name="expression" value="abs(dropoff_x - current_x) +
↪→ abs(dropoff_y - current_y)" />

</execution:operator>
<execution:operator attribute="time">
<execution:parameter name="expression" value="time + distance/speed" />

</execution:operator>
<execution:operator attribute="current_x">
<execution:parameter name="expression" value="dropoff_x" />

</execution:operator>
<execution:operator attribute="current_x">
<execution:parameter name="expression" value="dropoff_y" />

</execution:operator>
</execution:operators>

When the Finish subprocess is initiated, the time when all used seats are desinfected and the number
of free seats are determined using the following expression operators.

<execution:operators>
<execution:operator attribute="time">
<execution:parameter name="expression" value="time + cleaning_duration*passengers" />

</execution:operator>
<execution:operator attribute="free_seats">
<execution:parameter name="expression" value="free_seats + passengers" />

</execution:operator>
</execution:operators>

After the Finish subprocess is completed, the used seats are available again and can be used by other
requests.

Taxi Taxi

Figure 8: Process requesting a taxi.

2115

Goel

Figure 8 shows a simple process requesting a taxi. The process begins with a Request Activity requesting
the transport of passengers from a pickup location to a drop-off location. Whenever a suitable resource is
allocated to the request, a request message containing the following information is sent to the resource.

<extensionElements>
<execution:allocations>
<execution:request>
<execution:job>
<execution:content key="PickupX" attribute="pickup_x" />
<execution:content key="PickupY" attribute="pickup_Y" />
<execution:content key="DropoffX" attribute="dropoff_x" />
<execution:content key="DropoffY" attribute="dropoff_Y" />
<execution:content key="Passengers" attribute="passengers" />

</execution:job>
</execution:request>

</execution:allocations>
</extensionElements>

The Request Activity is completed when a taxi is available to pick up the passengers. Thereafter,
the resource is released. The Release Activity, however, is only completed when the allocated taxi has
completed its Service subprocess, i.e., has reached the drop-off location.

The data provider dynamically generates new process instances of this process with the status attributes
required for the request: the attributes pickup x and pickup y give the origin coordinates of the passengers,
the attributes dropoff x and dropoff y give the destination coordinates of the passengers, and the attribute
passengers gives the number of passengers.

The allocation of requests to taxis as well as the sequence in which the respective trips are conducted is
done by the controller and different controllers can be used ranging from manual controllers, over heuristic
controllers subsequently selecting the nearest destination for the next trip, to sophisticated optimization
methods exploiting information about the status of all process instances and the contribution of each decision
to the objective.

The proposed framework can be used for both execution and simulation of these resource-aware business
process models. For execution purposes, a data provider would give all information related to all taxi
requests and would update status attributes, when necessary, e.g. if traffic conditions cause a delay. For
simulation purposes, a data provider would be used that generates taxi requests according to some random
distribution. Also status attributes could be updated dynamically, to simulate changing traffic conditions
that can cause delays.

Various alternative use cases have been developed for the proposed framework ranging from inventory
systems with periodic review to complex shipping processes in which multiple shipments are consolidated
and transport resources themselves require resources such as drivers and vehicles. Due to the page limits,
however, a detailed description of these use cases cannot be included in this paper.

5 CONCLUSION

This paper proposes a unifying framework allowing to model resource-aware business processes in such a
way that they can be used for execution and simulation. The framework consists of three core components:
a data provider, an execution engine, and a controller. The data provider and controller can be easily
replaced depending on the use case and the entire execution logic is encapsulated within the execution
engine. The framework is designed in such a way that it allows any decision mechanism to be deployed
and that it allows for sophisticated optimization algorithms to be used. At the time of writing this paper a
controller implementing a greedy one-step lookahead decision mechanism is developed that can be used
to heuristically determine decisions that aim at optimizing the stated objectives. The development of
controllers based on efficient optimization techniques, e.g. based on mixed-integer programming or deep
reinforcement learning, is currently being investigated and an exciting direction for further research.

2116

Goel

REFERENCES
Goel, A., and M.-B. Lin. 2022. “Resource Requirements in Business Process Modelling from an Operations Management

Perspective”. In Proceedings of the 24th IEEE International Conference on Business Informatics, edited by J. Gordijn,
G. Poels, M. M. da Silva, S. de Kinderen, and T. P. Sales, 41–48: Institute of Electrical and Electronics Engineers, Inc.

Gordon, G. . 1961. “A General Purpose Systems Simulation Program”. In AFIPS ’61: Proceedings of the Eastern Joint
Computer Conference, edited by W. H. Ware: Association for Computing Machinery.

Object Management Group 2013. “Business Process Model and Notation (BPMN) 2.0.2”. https://www.omg.org/spec/BPMN/2.
0.2/PDF, last accessed September 26, 2022.

Onggo, B. S. S., N. Proudlove, S. D’Ambrogio, A. Calabrese, S. Bisogno, and N. Levialdi Ghiron. 2018. “A BPMN Extension
to support Discrete-event Simulation for Healthcare Applications: An explicit representation of Queues, Attributes and
Data-driven Decision Points”. Journal of the Operational Research Society 69(5):788–802.

Pufahl, L., and M. Weske. 2013. “Batch Activities in Process Modeling and Execution”. In International Conference on
Service-Oriented Computing, 283–297. Springer.

Pufahl, L., T. Y. Wong, and M. Weske. 2017. “Design of an extensible BPMN Process Simulator”. In International conference
on business process management, edited by E. Teniente and M. Weidlich, 782–795. Springer.

Wagner, G. 2020. “Business Process Modeling and Simulation with DPMN: Resource-Constrained Activities”. In Proceedings of
the 2020 Winter Simulation Conference, edited by K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder,
and R. Thiesing: Institute of Electrical and Electronics Engineers, Inc.

Wagner, G. 2021. “Business Process Modeling and Simulation with DPMN: Processing Activities”. In Proceedings of the 2021
Winter Simulation Conference, edited by S. Kim, B. Feng, K. Smith, S. Masoud, Z. Zheng, C. Szabo, and M. Loper:
Institute of Electrical and Electronics Engineers, Inc.

Workflow Management Coalition 2013. “BPSim - Business Process Simulation Specification”. Document Number WFMC-
BPSWG-2012-1, https://www.bpsim.org/specifications/2.0/WFMC-BPSWG-2016-01.pdf, last accessed September 26, 2022.

AUTHOR BIOGRAPHIES
ASVIN GOEL is Professor of Supply Chain Management and Logistics at Kühne Logistics University in Hamburg, Germany.
Prof. Goel holds academic degrees from the Faculty of Mathematics at the University of Göttingen (Dipl.-Math.), from the Faculty
of Mathematics and Computer Science at the University of Leipzig (Dr. rer. nat.), and from the Faculty of Law, Economics,
and Business at the University of Halle-Wittenberg (Dr. rer. pol. habil.). His e-mail address is asvin.goel@the-klu.org. The
modeller used for the examples shown in this paper is available at https://bpmn.telematique.eu.

2117

https://www.omg.org/spec/BPMN/2.0.2/PDF
https://www.omg.org/spec/BPMN/2.0.2/PDF
https://www.bpsim.org/specifications/2.0/WFMC-BPSWG-2016-01.pdf
mailto://asvin.goel@the-klu.org
https://bpmn.telematique.eu

	Introduction and related work
	Resource-aware business processes
	Execution and simulation framework
	Example use case: shared taxi services
	Conclusion

